首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most human endogenous retroviruses (HERVs) are ancient and their genes are rendered nonfunctional by debilitating mutations. One exception is a recently discovered envelope gene located on chromosome 14. This envelope protein was also recently shown to be expressed in various human tissues and to mediate cell-cell fusion ex vivo. In this study, we demonstrate that this locus (designated ERVPb1) is preserved in Old World monkeys and that the reading frame is maintained. This is congruent with the entry of the HERV-P(b) group between 27 and 36 million years ago as suggested by long terminal repeat divergence. Although the coding capacity is generally lost in the HERV-IP supergroup, the analysis of nucleotide substitutions, lack of stop codons, and single-nucleotide polymorephisms strongly indicates a selective advantage of the ERVPb1 envelope genes during primate evolution. The purifying selection and tissue-specific expression of the human ERVPb1 envelope gene provide strong evidence of a beneficial role for the host.  相似文献   

2.
3.
Huh JW  Kim DS  Ha HS  Kim TH  Kim W  Kim HS 《Molecules and cells》2006,22(3):360-363
Human endogenous retroviruses (HERVs) contribute to various kinds of genomic instability via rearrangement and retrotransposition events. In the present study the formation of a new human-specific solo-LTR belonging to the HERV-H family (AP001667; chromosome 21q21) was detected by a comparative analysis of human chromosome 21 and chimpanzee chromosome 22. The solo-LTR was formed as a result of an equal homologous recombination excision event. Several evolutionary processes have occurred at this locus during primate evolution, indicating that mammalian-wide interspersed repeat (MIR) and full-length HERV-H elements integrated into hominoid genomes after the divergence of Old World monkeys and hominoids, and that the solo-LTR element was created by recombination excision of the HERV-H only in the human genome.  相似文献   

4.
5.
We analysed over 8 million base pairs of bacterial artificial chromosome-based sequence alignments of four Old World monkeys and the human genome. Our findings are as follows. (i) Genomic divergences among several Old World monkeys mirror those between well-studied hominoids. (ii) The X-chromosome evolves slower than autosomes, in accord with ‘male-driven evolution’. However, the degree of male mutation bias is lower in Old World monkeys than in hominoids. (iii) Evolutionary rates vary significantly between lineages. The baboon branch shows a particularly slow molecular evolution. Thus, lineage-specific evolutionary rate variation is a common theme of primate genome evolution. (iv) In contrast to the overall pattern, mutations originating from DNA methylation exhibit little variation between lineages. Our study illustrates the potential of primates as a model system to investigate genome evolution, in particular to elucidate molecular mechanisms of substitution rate variation.  相似文献   

6.
7.
Tristem M 《Journal of virology》2000,74(8):3715-3730
Human endogenous retroviruses (HERVs) were first identified almost 20 years ago, and since then numerous families have been described. It has, however, been difficult to obtain a good estimate of both the total number of independently derived families and their relationship to each other as well as to other members of the family Retroviridae. In this study, I used sequence data derived from over 150 novel HERVs, obtained from the Human Genome Mapping Project database, and a variety of recently identified nonhuman retroviruses to classify the HERVs into 22 independently acquired families. Of these, 17 families were loosely assigned to the class I HERVs, 3 to the class II HERVs and 2 to the class III HERVs. Many of these families have been identified previously, but six are described here for the first time and another four, for which only partial sequence information was previously available, were further characterized. Members of each of the 10 families are defective, and calculation of their integration dates suggested that most of them are likely to have been present within the human lineage since it diverged from the Old World monkeys more than 25 million years ago.  相似文献   

8.
We characterized the human endogenous retrovirus (HERV-W) family in humans and primates. In silico expression data indicated that 22 complete HERV-W families from human chromosomes 1-3, 5-8, 10-12, 15, 19, and X are randomly expressed in various tissues. Quantitative real-time RT-PCR analysis of the HERV-W env gene derived from human chromosome 7q21.2 indicated predominant expression in the human placenta. Several copies of repeat sequences (SINE, LINE, LTR, simple repeat) were detected within the complete or processed pseudo HERV-W of the human, chimpanzee, and rhesus monkey. Compared to other regions (5'LTR, Gag, Gag-Pol, Env, 3'LTR), the repeat family has been mainly integrated into the region spanning the 5'LTRs of Gag (1398 bp) and Pol (3242 bp). FISH detected the HERV-W probe (fosWE1) derived from a gorilla fosmid library in the metaphase chromosomes of all primates (five hominoids, three Old World monkeys, two New World monkeys, and one prosimian), but not in Tupaia. This finding was supported by molecular clock and phylogeny data using the divergence values of the complete HERV-W LTR elements. The data suggested that the HERV-W family was integrated into the primate genome approximately 63 million years (Myr) ago, and evolved independently during the course of primate radiation.  相似文献   

9.
10.
Ancestry of a human endogenous retrovirus family.   总被引:6,自引:2,他引:4       下载免费PDF全文
The human endogenous retrovirus type II (HERVII) family of HERV genomes has been found by Southern blot analysis to be characteristic of humans, apes, and Old World monkeys. New World monkeys and prosimians lack HERVII proviral genomes. Cellular DNAs of humans, common chimpanzees, gorillas, and orangutans, but not lesser ape lar gibbons, appear to contain the HERVII-related HLM-2 proviral genome integrated at the same site (HLM-2 maps to human chromosome 1). This suggests that the ancestral HERVII retrovirus(es) entered the genomes of Old World anthropoids by infection after the divergence of New World monkeys (platyrrhines) but before the evolutionary radiation of large hominoids.  相似文献   

11.
12.
The vertebrate genome contains an endogenous retrovirus that has been inherited from the past millions of years. Although approximately 8% of human chromosomal DNA consists of sequences derived from human endogenous retrovirus (HERV) fragments, most of the HERVs are currently inactive and non-infectious due to recombination, deletions, and mutations after insertion into the host genome. Several studies suggested that Human endogenous retroviruses (HERVs) factors are significantly related to certain cancers. However, only limited studies have been conducted to analyze the expression of HERV derived elements at protein levels in certain cancers. Herein, we analyzed the expression profiles of HERV-K envelope (Env) and HERV-R Env proteins in eleven different kinds of cancer tissues. Furthermore, the expression patterns of both protein and correlation with various clinical data in each tissue were analyzed. The expressions of both HERV-K Env and HERV-R Env protein were identified to be significantly high in most of the tumors compared with normal surrounding tissues. Correlations between HERV Env expressions and clinical investigations varied depending on the HERV types and cancers. Overall expression patterns of HERV-K Env and HERV-R Env proteins were different in every individual but a similar pattern of expressions was observed in the same individual. These results demonstrate the expression profiles of HERV-K and HERV-R Env proteins in various cancer tissues and provide a good reference for the association of endogenous retroviral Env proteins in the progression of various cancers. Furthermore, the results elucidate the relationship between HERV-Env expression and the clinical significance of certain cancers.  相似文献   

13.
Retrovirus genes have become inserted into the human genome for more than one million years. These retroviruses are now inactivated due to mutation, such as deletions or nonsense mutations. After mutation, retroviruses eventually become fixed in the genome in the endogenous form and exist as traces of ancient viruses. These retroviruses are called human endogenous retroviruses (HERVs). HERVs cannot make fully active viruses, but a number of viral proteins (or even virus particles) are expressed under various conditions. By comparison with ERVs, some exogenous retroviruses are still infectious and cause serious diseases threatening human life. Recent studies have shown that some elements of HERVs are closely related to other exogenous retroviruses, including human immunodeficiency virus (HIV). This review will describe the regulation and interaction between HERVs and other active viral infections. In addition, we introduce the development of vaccines and therapeutic agents against these viral infections through the use of HERV elements.  相似文献   

14.
Iodinated Mason-Pfizer virus (MPV) 60-70S RNA has been used in molecular hybridization experiments to determine the distribution of MPV-specific proviral sequences in the DNAs of primates. Approximately 20% of the MPV genome is present as endogenous provirus in rhesus monkeys. Competitive hybridization experiments showed no homology between MPV 60-70S RNA and the 60-70S RNAs of M7, RD-114, and the simian sarcoma virus. No MPV-specific proviral sequences were detected in the DNAs of apparently normal tissues of various species of New World monkeys, apes, and humans. The part of the MPV genome that is endogenous to rhesus is also endogenous to the other species of Old World monkeys examined: baboon, African green, and patas. This was determined as a result of the following observations: (i) C(0)t(1/2) values and final extent of hybridization were the same for all four species. (ii) T(m) values of MPV 60-70S RNA and DNA of all four species were identical. (iii) The removal of MPV sequences endogenous to rhesus tissues by recycling against rhesus DNA resulted in the loss of any hybridizable MPV RNA to the DNAs of baboon, African green, and patas tissues. (iv) Mixing experiments of rhesus, African green, and baboon DNAs resulted in the same kinetics of hybridization as did rhesus DNA alone, when hybridized with MPV 60-70S RNA. These findings demonstrate that sequences that constitute an integral part of the MPV genome are conserved in the DNAs of several different species of Old World monkeys.  相似文献   

15.
16.
To investigate the evolution of the Rh blood-group system in anthropoid apes, New and Old World monkeys, and nonprimate animals, serologic typing of erythrocytes from these species with antibodies specific for the human Rh blood-group antigens was performed. In addition, genomic DNA from these animals was analyzed on Southern blots with a human Rh-specific cDNA.Consistent with earlier reports, serologic results showed that gorilla and chimpanzee erythrocytes had epitopes recognized by human Rh D and c antisera, and gibbon erythrocytes were recognized by the c antisera. Surprisingly, some Old and New World monkeys also expressed a Rh c epitope on their erythrocytes. No erythrocytes from the nonprimate animals reacted specifically with any of the human Rh antisera.Southern blot analysis with a human Rh-specific cDNA probe detected Rh-related sequences in anthropoid apes, all New and Old World monkeys, and in most nonprimate animals tested. Although some Rh-related restriction fragments were conserved across species lines in primates, the Rh locus was more polymorphic in chimpanzees and gorillas than in humans. In addition, restriction fragments segregating with the presence of the D antigen in humans were present in the primate species that expressed the D antigen.  相似文献   

17.
Retroviruses and primate evolution   总被引:9,自引:0,他引:9  
Human endogenous retroviruses (HERVs), probably representing footprints of ancient germ-cell retroviral infections, occupy about 1% of the human genome. HERVs can influence genome regulation through expression of retroviral genes, either via genomic rearrangements following HERV integrations or through the involvement of HERV LTRs in the regulation of gene expression. Some HERVs emerged in the genome over 30 MYr ago, while others have appeared rather recently, at about the time of hominid and ape lineages divergence. HERVs might have conferred antiviral resistance on early human ancestors, thus helping them to survive. Furthermore, newly integrated HERVs could have changed the pattern of gene expression and therefore played a significant role in the evolution and divergence of Hominoidea superfamily. Comparative analysis of HERVs, HERV LTRs, neighboring genes, and their regulatory interplay in the human and ape genomes will help us to understand the possible impact of HERVs on evolution and genome regulation in the primates. BioEssays 22:161-171, 2000.  相似文献   

18.
The distribution of the human endogenous retrovirus (HERV)-K genome was investigated by Southern-blot analyses using a HERV-K-env DNA probe. With the exception of one DNA-sample, obtained from a Chinese individual in whom an amplification of HERV-K was detected, Southern-blot analyses yielded identical hybridization patterns with DNA from peripheral blood lymphocytes of 37 normal healthy blood donors, with DNA from six tumor cell lines, or with 23 DNA samples prepared from various carcinoma tissues. To elucidate whether the integration of HERV-K genomes into the primate lineage occurred as a single event or as an integration with later expansion, we further examined the evolutionary history of HERV-K by Southern blot analyses with DNA samples from different primate species. We detected HERV-K genomes in Macaca mulatta and Macaca silenus, which represent Old World monkeys, but not in prosimians (Galago demidovii) and New World monkeys, represented by Saguinus fuscicollis, Saguinus oedipus, and Calliihrix iacchus. Thus, we assume that the infection of the primate lineage with HERV-K had occurred after the divergence of New World and Old World monkeys, but before the evolutionary expansion of large hominoids. In contrast to the apparent lack of HERV-Kenv sequences in DNA from tissue of the New World monkey Saguinus oedipus (cotton-top marmoset), we found HERV-K-DNA in the B95-8 cell-line, which is a Saguinus oedipus leukocyte cell-line, immortalized in vitro by Epstein-Barr virus (EBV) and cultivated in human cells. It may be speculated that HERV-K-DNA or HERV-K-particles were introduced into these cells during in vitro transformation with EBV.  相似文献   

19.
We describe a method to identify candidate cancer biomarkers by analyzing numeric approximations of tissue specificity of human genes. These approximations were calculated by analyzing predicted tissue expression distributions of genes derived from mapping expressed sequence tags (ESTs) to the human genome sequence using a binary indexing algorithm. Tissue-specificity values facilitated high-throughput analysis of the human genes and enabled the identification of genes highly specific to different tissues. Tissue expression distributions for several genes were compared to estimates obtained from other public gene expression datasets and experimentally validated using quantitative RT-PCR on RNA isolated from several human tissues. Our results demonstrate that most human genes ( approximately 98%) are expressed in many tissues (low specificity), and only a small number of genes possess very specific tissue expression profiles. These genes comprise a rich dataset from which novel therapeutic targets and novel diagnostic serum biomarkers may be selected.  相似文献   

20.
The expression of epsilon- and gamma-globin mRNA and protein has been determined in three Old World monkey species (Macaca mulatta, Macaca nemestrina, and Cercopithecus aethiops). Using RT-PCR with primers for epsilon- and gamma-globin, both mRNAs were detected in early fetal stages, whereas at 128 days (85% of full term), only gamma was expressed. High-performance liquid chromatography was used for separation and quantitation, and matrix-assisted laser desorption/ionization mass spectrometry was used for identification of globin polypeptides. An alpha-globin polymorphism was observed in all of the species examined. During fetal life, gamma-globin was the predominant expressed beta-type globin. The red blood cells of infants still contained substantial amounts of gamma-globin, which declined to negligible levels in 14 weeks as beta-globin expression reached adult values. The ratio of gamma1- to gamma2-globins (equivalent to Ggamma/Agamma in humans) was approximately 2.5, similar to the Ggamma/Agamma ratio observed in humans. Thus, gamma-globin gene expression in these Old World monkeys species has three features in common with human expression: expression of both duplicated gamma genes, the relative preponderance of gamma1 over gamma2 expression, and the delay of the switch from gamma- to beta-globin until the perinatal period. Thus, the catarrhines seem to share a common pattern of developmental switching in the beta-globin gene cluster, which is distinct from the timing of expression in either prosimians or the New World monkeys. Our results indicate that an Old World monkey, such as Rhesus, could serve as a model organism (resembling humans) for experimentally investigating globin gene expression patterns during the embryonic, fetal, and postnatal stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号