首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degradation of polycyclic aromatic hydrocarbons (PAHs) by bacteria has been widely studied. While many pure cultures have been isolated and characterized for their ability to grow on PAHs, limited information is available on the diversity of microbes involved in PAH degradation in the environment. We have designed generic PCR primers targeting the gene fragment encoding the Rieske iron sulfur center common to all PAH dioxygenase enzymes. These Rieske primers were employed to track dioxygenase gene population shifts in soil enrichment cultures following exposure to naphthalene, phenanthrene, or pyrene. PAH degradation was monitored by gas chromatograph with flame ionization detection. DNA was extracted from the enrichment cultures following PAH degradation. 16S rRNA and Rieske gene fragments were PCR amplified from DNA extracted from each enrichment culture and an unamended treatment. The PCR products were cloned and sequenced. Molecular monitoring of the enrichment cultures before and after PAH degradation using denaturing gradient gel electrophoresis and 16S rRNA gene libraries suggests that specific phylotypes of bacteria were associated with the degradation of each PAH. Sequencing of the cloned Rieske gene fragments showed that different suites of genes were present in soil microbe populations under each enrichment culture condition. Many of the Rieske gene fragment sequences fell into clades which are distinct from the reference dioxygenase gene sequences used to design the PCR primers. The ability to profile not only the bacterial community but also the dioxygenases which they encode provides a powerful tool for both assessing bioremediation potential in the environment and for the discovery of novel dioxygenase genes.  相似文献   

2.
The degradation of polycyclic aromatic hydrocarbons (PAHs) by bacteria has been widely studied. While many pure cultures have been isolated and characterized for their ability to grow on PAHs, limited information is available on the diversity of microbes involved in PAH degradation in the environment. We have designed generic PCR primers targeting the gene fragment encoding the Rieske iron sulfur center common to all PAH dioxygenase enzymes. These Rieske primers were employed to track dioxygenase gene population shifts in soil enrichment cultures following exposure to naphthalene, phenanthrene, or pyrene. PAH degradation was monitored by gas chromatograph with flame ionization detection. DNA was extracted from the enrichment cultures following PAH degradation. 16S rRNA and Rieske gene fragments were PCR amplified from DNA extracted from each enrichment culture and an unamended treatment. The PCR products were cloned and sequenced. Molecular monitoring of the enrichment cultures before and after PAH degradation using denaturing gradient gel electrophoresis and 16S rRNA gene libraries suggests that specific phylotypes of bacteria were associated with the degradation of each PAH. Sequencing of the cloned Rieske gene fragments showed that different suites of genes were present in soil microbe populations under each enrichment culture condition. Many of the Rieske gene fragment sequences fell into clades which are distinct from the reference dioxygenase gene sequences used to design the PCR primers. The ability to profile not only the bacterial community but also the dioxygenases which they encode provides a powerful tool for both assessing bioremediation potential in the environment and for the discovery of novel dioxygenase genes.  相似文献   

3.
Mycobacterium vanbaalenii PYR-1 is capable of degrading a number of polycyclic aromatic hydrocarbons (PAHs) to ring cleavage metabolites via multiple pathways. Genes for the large and small subunits of a pyrene dioxygenase, nidA and nidB, respectively, were previously identified in M. vanbaalenii PYR-1 [Appl. Environ. Microbiol. 67 (2001) 3577]. A library of the M. vanbaalenii PYR-1 genome was constructed in a fosmid vector to identify additional genes involved in PAH degradation. Twelve fosmid clones containing nidA were identified by Southern hybridization. Sequence analysis of one nidA-positive clone, pFOS608, revealed a number of additional genes involved in PAH degradation. At this locus, one putative operon contained genes involved in phthalate degradation, and another contained genes encoding a putative ABC transporter(s). A number of the genes found in this region are homologous to those involved in phenanthrene degradation via the phthalic acid pathway. The majority of phenanthrene degradation genes were located between putative transposase genes. In Escherichia coli, pFOS608 converted phenanthrene into phenanthrene cis-3,4-dihydrodiol, and converted 1-hydroxy-2-naphthoic acid into 2'-carboxybenzalpyruvate, 2-carboxybenzaldehyde, and phthalic acid. A subclone containing nidA and nidB converted phenanthrene into phenanthrene cis-3,4-dihydrodiol, suggesting that the NidAB dioxygenase is responsible for an initial attack on phenanthrene. This study is the first to identify genes responsible for the degradation of phenanthrene via the phthalic acid pathway in Mycobacterium species.  相似文献   

4.
5.
Nineteen polycyclic aromatic hydrocarbon (PAH)-degrading bacteria were isolated from environmental samples in Kuwait, Indonesia, Thailand, and Japan by enrichment with either naphthalene or phenanthrene as a sole carbon source. Sequence analyses of the 16-S rRNA gene indicated that at least seven genera (Ralstonia, Sphingomonas, Burkholderia, Pseudomonas, Comamonas, Flavobacterium, and Bacillus) were present in this collection. Determination of the ability of the isolates to use PAH and its presumed catabolic intermediates suggests that the isolates showed multiple phenotypes in terms of utilization and degradation pathways. The large subunit of the terminal oxygenase gene (phnAc) from Burkholderia sp. strain RP007 hybridized to 32% (6/19) of the isolates, whilst gene probing using the large subunit of terminal oxygenase gene (pahAc) from Pseudomonas putida strain OUS82 revealed no pahAc-like genes amongst the isolates. Using three degenerated primer sets (pPAH-F/NR700, AJ025/26, and RieskeF/R), targeting a conserved region with the genes encoding the large subunit of terminal oxygenase successfully amplified material from 6 additional PAH-degrading isolates. Sequence analyses showed that the large subunit of terminal oxygenase in 4 isolates was highly homologous to the large subunit of naphthalene dioxygenase gene from Ralstonia sp. strain U2. However, we could not obtain any information on the oxygenase system involved in the naphthalene and/or phenathrene degradation by 7 other strains. These results suggest that PAH-degrading bacteria are diverse, and that there are still many unidentified PAH-degrading bacteria.  相似文献   

6.
Mycobacterium sp. strain PYR-1 degrades high-molecular-weight polycyclic hydrocarbons (PAHs) primarily through the introduction of both atoms of molecular oxygen by a dioxygenase. To clone the dioxygenase genes involved in PAH degradation, two-dimensional (2D) gel electrophoresis of PAH-induced proteins from cultures of Mycobacterium sp. strain PYR-1 was used to detect proteins that increased after phenanthrene, dibenzothiophene, and pyrene exposure. Comparison of proteins from induced and uninduced cultures on 2D gels indicated that at least six major proteins were expressed (105, 81, 52, 50, 43, and 13 kDa). The N-terminal sequence of the 50-kDa protein was similar to those of other dioxygenases. A digoxigenin-labeled oligonucleotide probe designed from this protein sequence was used to screen dioxygenase-positive clones from a genomic library of Mycobacterium sp. strain PYR-1. Three clones, each containing a 5,288-bp DNA insert with three genes of the dioxygenase system, were obtained. The genes in the DNA insert, from the 5' to the 3' direction, were a dehydrogenase, the dioxygenase small (beta)-subunit, and the dioxygenase large (alpha)-subunit genes, arranged in a sequence different from those of genes encoding other bacterial dioxygenase systems. Phylogenetic analysis showed that the large alpha subunit did not cluster with most of the known alpha-subunit sequences but rather with three newly described alpha subunits of dioxygenases from Rhodococcus spp. and Nocardioides spp. The genes from Mycobacterium sp. strain PYR-1 were subcloned and overexpressed in Escherichia coli with the pBAD/ThioFusion system. The functionality of the genes for PAH degradation was confirmed in a phagemid clone containing all three genes, as well as in plasmid subclones containing the two genes encoding the dioxygenase subunits.  相似文献   

7.
Indigenous bacteria with the capability to degrade polycyclic aromatic hydrocarbons (PAH) were isolated from polluted sediment samples recovered from Caleta Cordova by using selective enrichment cultures supplemented with phenanthrene. Bacterial communities were evaluated by denaturing gradient gel electrophoresis (DGGE) in order to detect changes along enrichment culture and relationships with the representative strains subsequently isolated. Members of these communities included marine bacteria such as Lutibacter, Polaribacter, Arcobacter and Olleya, whose degradation pathway of PAH has not been studied yet. However, isolated bacteria obtained from this enrichment comprised the genus Pseudomonas, Marinobacter, Salinibacterium and Brevibacterium. The ability of isolates to grow and degrade naphthalene, phenanthrene and pyrene was demonstrated by detection of the residual substrate by HPLC. Archetypical naphthalene and catechol dioxygenase genes were found in two isolates belonging to genus Pseudomonas (Pseudomonas monteilii P26 and Pseudomonas xanthomarina N12), suggesting biodegradation potential in these sediments. The successful bacterial isolation with the ability to degrade PAH in pure culture suggest the possibility to study and further consider strategies like growth stimulation in situ, in order to increase the intrinsic bioremediation opportunities in the polluted Caleta Cordova harbor.  相似文献   

8.
Unculturable polycyclic aromatic hydrocarbon (PAH)-degrading bacteria are a significant reservoir of the microbial potential to catabolize low-molecular-weight PAHs. The population of these bacteria is larger than the population of nah-like bacteria that are the dominant organisms in culture-based studies. We used the recently described phn genes of Burkholderia sp. strain RP007, which feature only rarely in culture-based studies, as an alternative genotype for naphthalene and phenanthrene degradation and compared this genotype with the genotypically distinct but ubiquitous nah-like class in different soils. Competitive PCR quantification of phnAc and nahAc, which encode the iron sulfur protein large (alpha) subunits of PAH dioxygenases in nah-like and phn catabolic operons, revealed that the phn genotype can have a greater ecological significance than the nah-like genotype.  相似文献   

9.
We report the amplification of bacterial genes from uninoculated surface and subsurface sediments by the polymerase chain reaction (PCR). PCR amplification of indigenous bacterial 16S ribosomal DNA genes was unsuccessful when subsurface sediment containing approximately 10(7) cells.g-1 was added directly to a PCR mixture. However, when 10 mg of sediment was inoculated with approximately 10(5) cells of Pseudomonas putida G7, the nahAc naphthalene dioxygenase gene characteristic of the P. putida G7 NAH7 plasmid was detected by PCR amplification. Southern blotting of the PCR amplification product improved sensitivity to 10(3) to 10(4) cells from samples inoculated with P. putida G7, but controls with no sediment added showed that the PCR was partially inhibited by the sediments. Lysozyme-sodium dodecyl sulfate-freeze-thaw DNA extraction was combined with gel electrophoretic partial purification in the presence of polyvinylpyrrolidone to render DNA from indigenous bacteria in surface or subsurface sediment samples amplifiable by PCR using eubacterial 16S ribosomal DNA primers. The nahAc gene could also be amplified from indigenous bacteria by using nahAc-specific primers when PCR conditions were modified by increasing Taq and primer concentrations. Restriction digests of the nahAc amplification products from surface and subsurface sediments revealed polymorphism relative to P. putida G7. The procedures for DNA extraction, purification, and PCR amplification described here demonstrate that the PCR is a potentially useful tool in studies of function- and taxon-specific DNA from indigenous microbial communities in sediment and groundwater environments.  相似文献   

10.
Mycobacterium sp. strain PYR-1 degrades high-molecular-weight polycyclic hydrocarbons (PAHs) primarily through the introduction of both atoms of molecular oxygen by a dioxygenase. To clone the dioxygenase genes involved in PAH degradation, two-dimensional (2D) gel electrophoresis of PAH-induced proteins from cultures of Mycobacterium sp. strain PYR-1 was used to detect proteins that increased after phenanthrene, dibenzothiophene, and pyrene exposure. Comparison of proteins from induced and uninduced cultures on 2D gels indicated that at least six major proteins were expressed (105, 81, 52, 50, 43, and 13 kDa). The N-terminal sequence of the 50-kDa protein was similar to those of other dioxygenases. A digoxigenin-labeled oligonucleotide probe designed from this protein sequence was used to screen dioxygenase-positive clones from a genomic library of Mycobacterium sp. strain PYR-1. Three clones, each containing a 5,288-bp DNA insert with three genes of the dioxygenase system, were obtained. The genes in the DNA insert, from the 5′ to the 3′ direction, were a dehydrogenase, the dioxygenase small (β)-subunit, and the dioxygenase large (α)-subunit genes, arranged in a sequence different from those of genes encoding other bacterial dioxygenase systems. Phylogenetic analysis showed that the large α subunit did not cluster with most of the known α-subunit sequences but rather with three newly described α subunits of dioxygenases from Rhodococcus spp. and Nocardioides spp. The genes from Mycobacterium sp. strain PYR-1 were subcloned and overexpressed in Escherichia coli with the pBAD/ThioFusion system. The functionality of the genes for PAH degradation was confirmed in a phagemid clone containing all three genes, as well as in plasmid subclones containing the two genes encoding the dioxygenase subunits.  相似文献   

11.
To investigate the diversity of dioxygenase genes involved in polycyclic aromatic hydrocarbon (PAH)-degradation, a total of 32 bacterial strains were isolated from surface mangrove sediments, from the genera Mycobacterium, Sphingomonas, Terrabacter, Sphingopyxis, Sphingobium and Rhodococcus. Two sets of PCR primers were constructed to detect the nidA-like and nahAc-like sequences of the alpha subunit of the PAH ring-hydroxylating dioxygenase. PCR amplified the DNA fragments from all Gram-positive bacteria by using nidA-like primers and from all Gram-negative bacteria, except two, by using nahAc-like primers. The nidA-like primers showed three subtypes of nidA-like gene: (i) fadA1, clustering with nidA3 from M. vanbaalenii PYR-1, (ii) nidA, clustering with nidA from PYR-1, and (iii) fadA2 clustering with dioxygenase from Arthrobacter sp. FB24. The amplicons detected by nahAc-like primers had high sequence homologies to phnA1a from Sphingomonas sp. CHY-1 and were amplifiable from 8 of the 16 Gram-negative isolates. The primer also generated amplicons that had a 32-36% similarity to phnA1a and 53-93% identity to p-cumate dioxygenase. These results suggest that the nidA-like and nahAc-like genes are prevalent in the PAH-degrading bacteria and that they are useful for determining the presence of PAH-dioxygenase genes in environmental samples.  相似文献   

12.
Five naphthalene- and salicylate-utilizing Pseudomonas putida strains cultivated for a long time on phenanthrene produced mutants capable of growing on this substrate and 1-hydroxy-2-naphthoate as the sole sources of carbon and energy. The mutants catabolize phenanthrene with the formation of 1-hydroxy-2-naphthoate, 2-hydroxy-1-naphthoate, salicylate, and catechol. The latter products are further metabolized by the meta- and ortho-cleavage pathways. In all five mutants, naphthalene and phenanthrene are utilized with the involvement of plasmid-borne genes. The acquired ability of naphthalene-degrading strains to grow on phenanthrene is explained by the fact that the inducible character of the synthesis of naphthalene dioxygenase, the key enzyme of naphthalene and phenanthrene degradation, becomes constitutive.  相似文献   

13.
This study focused on detecting catabolic genes for polycyclic aromatic hydrocarbons (PAHs) distributed in the reed rhizosphere of Sunchon Bay, Korea. These marsh and mud environments were severely affected by human activities, including agriculture and fisheries. Our previous study on microbial roles in natural decontamination displayed the possibility that PAH-degrading bacteria, such as Achromobacter sp., Alcaligenes sp., Burkholderia sp. and Pseudomonas sp. play an important decontamination role in a reed rhizosphere. In order to gain further fundamental knowledge on the natural decontamination process, catabolic genes for PAH metabolism were investigated through PCR amplification of dioxygenase genes using soil genomic DNA and sequencing. Comparative analysis of predicted amino acid sequences from 50 randomly selected dioxygenase clones capable of hydroxylating inactivated aromatic nuclei indicated that these were divided into three groups, two of which might be originated from PAH-degrading bacteria. Amino acid sequences of each dioxygenase clone were a part of the genes encoding enzymes for initial catabolism of naphthalene, phenanthrene, or pyrene that might be originated from bacteria in the reed rhizosphere of Sunchon Bay.  相似文献   

14.
通过30d室内培养试验,分别研究了接种蚯蚓(E)、细菌(B)以及同时接种细菌和蚯蚓(BE)对土壤中菲降解的影响.结果表明: 在土壤中菲的初始污染浓度为50 mg*kg-1的条件下,各处理间菲的降解率差异显著,其降解率的大小顺序依次为:BE》B》E》CK(对照); 在150 mg*kg-1菲的初始污染浓度下,BE处理中菲的降解率高达98.86%,显著高于CK和E处理.B处理中细菌的双加氧酶活性在3种菲初始污染浓度下没有显著差异,而BE处理中双加氧酶的活性随着土壤中菲的初始污染浓度的升高而增加.在相同菲污染浓度下BE处理中蚯蚓体内的菲含量明显高于E处理.表明蚯蚓能够通过生物富集作用降低土壤中菲的浓度,而蚯蚓与细菌的相互作用能够进一步促进土壤中菲的降解.  相似文献   

15.
Five naphthalene- and salicylate-utilizing Pseudomonas putida strains cultivated for a long time on phenanthrene produced mutants capable of growing on this substrate and 1-hydroxy-2-naphthoate as the sole sources of carbon and energy. The mutants catabolize phenanthrene with the formation of 1-hydroxy-2-naphthoate, 2-hydroxy-1-naphthoate, salicylate, and catechol. The latter products are further metabolized by the meta- and ortho-cleavage pathways. In all five mutants, naphthalene and phenanthrene are utilized with the involvement of plasmid-born genes. The acquired ability of naphthalene-degrading strains to grow on phenanthrene is explained by the fact that the inducible character of the synthesis of naphthalene dioxygenase, the key enzyme of naphthalene and phenanthrene degradation, becomes constitutive.  相似文献   

16.
Aim:  The goal of this study was to identify functional targets to detect polycyclic aromatic hydrocarbon (PAH)-degrading bacterial populations in cold marine ecosystems.
Methods and Results:  We designed a degenerate primer set targeting genes encoding the α subunit of PAH-dioxygenases from Gram-positive bacteria. This primer set was used to amplify gene fragments from metagenomic DNA isolated from Subantarctic marine sediments (Ushuaia Bay, Argentina). These gene fragments were cloned and sequenced. We identified 14 distinct groups of genes, most of them showing significant relatedness with dioxygenases from Gram-positive bacteria of the genera Rhodococcus , Mycobacterium , Nocardioides , Terrabacter and Bacillus . The level of identity with these genes, however, was low to moderate (33–62% at the amino acid level).
Conclusion:  These results indicate the presence of a high diversity of hitherto unidentified dioxygenase genes in this cold polluted environment.
Significance and Impact of the Study:  Subantarctic marine ecosystems are particularly vulnerable to hydrocarbon pollution, and the development of environmental restoration strategies for these environments is pressing. The information obtained in this work will be the starting point for the design of quantitative molecular tools to analyse the abundance and dynamics of these aromatic hydrocarbon-degrading bacterial populations in the marine environment.  相似文献   

17.
Fifteen bacterial strains capable of utilizing naphthalene, phenanthrene, and biphenyl as the sole sources of carbon and energy were isolated from soils and bottom sediments contaminated with waste products generated by chemical- and salt-producing plants. Based on cultural, morphological, and chemotaxonomic characteristics, ten of these strains were identified as belonging to the genera Rhodococcus, Arthrobacter, Bacillus, and Pseudomonas. All ten strains were found to be halotolerant bacteria capable of growing in nutrient-rich media at NaCl concentrations of 1–1.5 M. With naphthalene as the sole source of carbon and energy, the strains could grow in a mineral medium with 1 M NaCl. Apart from being able to grow on naphthalene, six of the ten strains were able to grow on phenanthrene; three strains, on biphenyl; three strains, on octane; and one strain, on phenol. All of the strains were plasmid-bearing. The plasmids of the Pseudomonas sp. strains SN11, SN101, and G51 are conjugative, contain genes responsible for the degradation of naphthalene and salicylate, and are characterized by the same restriction fragment maps. The transconjugants that gained the plasmid from strain SN11 acquired the ability to grow at elevated NaCl concentrations. Microbial associations isolated from the same samples were able to grow at a NaCl concentration of 2.5 M.  相似文献   

18.
Experiments were carried out to develop methods to generate well-characterized, polycyclic aromatic hydrocarbon (PAH)-spiked, aged but minimally altered sediments for fate, biodegradation, and bioavailability experiments. Changes in indigenous bacterial populations were monitored in mesocosms constructed of relatively clean San Diego Bay sediments, with and without exposure to gamma radiation, and then spiked with five different PAHs and hexadecane. While phenanthrene and chrysene degraders were present in the unspiked sediments and increased during handling, PAH spiking of nonirradiated sediments led to dramatic increases in their numbers. Phenotypic characterization of isolates able to grow on phenanthrene or chrysene placed them in several genera of marine bacteria: Vibrio, Marinobacter or Cycloclasticus, Pseudoalteromonas, Marinomonas, and HALOMONAS: This is the first time that marine PAH degraders have been identified as the latter two genera, expanding the diversity of marine bacteria with this ability. Even at the highest irradiation dose (10 megarads), heterotrophs and endospore formers reappeared within weeks. However, while bacteria from the unirradiated sediments had the capacity to both grow on and mineralize 14C-labeled phenanthrene and chrysene, irradiation prevented the reappearance of PAH degraders for up to 4 months, allowing spikes to age onto the sediments, which can be used to model biodegradation in marine sediments.  相似文献   

19.
Bioconversion (biotransformation) experiments on arenes (aromatic compounds), including various tricyclic fused aromatic compounds such as fluorene, dibenzofuran, dibenzothiophene, carbazole, acridene, and phenanthridine, were done using the cells of Escherichia coli transformants expressing several arene dioxygenase genes. E. coli carrying the phenanthrene dioxygenase (phdABCD) genes derived from the marine bacterium Nocardioides sp. strain KP7 converted all of these tricyclic aromatic compounds, while E. coli carrying the Pseudomonas putida F1 toluene dioxygenase (todC1C2BA) genes or the P. pseudoalcaligenes KF707 biphenyl dioxygenase (bphA1A2A3A4) genes was not able to convert these substrates. Surprisingly, E. coli carrying hybrid dioxygenase (todC1::bphA2A3A4) genes with a subunit substitution between the toluene and biphenyl dioxygenases was able to convert fluorene, dibenzofuran, and dibenzothiophene. The cells of a Streptomyces lividans transformant carrying the phenanthrene dioxygenase genes were also evaluated for bioconversion of various tricyclic fused aromatic compounds. The ability of this actinomycete in their conversion was similar to that of E. coli carrying the corresponding genes. Products converted from the aromatic compounds with these recombinant bacterial cells were purified by column chromatography on silica gel, and identified by their MS and 1H and 13C NMR analyses. Several products, e.g., 4-hydroxyfluorene converted from fluorene, and cis-1,2-dihydroxy-1,2-dihydrophenanthridine, cis-9,10-dihydroxy-9,10-dihydrophenanthridine, and 10-hydroxyphenanthridine, which were converted from phenanthridine, were novel compounds.  相似文献   

20.
Bioconversion (biotransformation) experiments on arenes (aromatic compounds), including various tricyclic fused aromatic compounds such as fluorene, dibenzofuran, dibenzothiophene, carbazole, acridene, and phenanthridine, were done using the cells of Escherichia coli transformants expressing several arene dioxygenase genes. E. coli carrying the phenanthrene dioxygenase (phdABCD) genes derived from the marine bacterium Nocardioides sp. strain KP7 converted all of these tricyclic aromatic compounds, while E. coli carrying the Pseudomonas putida F1 toluene dioxygenase (todC1C2BA) genes or the P. pseudoalcaligenes KF707 biphenyl dioxygenase (bphA1A2A3A4) genes was not able to convert these substrates. Surprisingly, E. coli carrying hybrid dioxygenase (todC1::bphA2A3A4) genes with a subunit substitution between the toluene and biphenyl dioxygenases was able to convert fluorene, dibenzofuran, and dibenzothiophene. The cells of a Streptomyces lividans transformant carrying the phenanthrene dioxygenase genes were also evaluated for bioconversion of various tricyclic fused aromatic compounds. The ability of this actinomycete in their conversion was similar to that of E. coli carrying the corresponding genes. Products converted from the aromatic compounds with these recombinant bacterial cells were purified by column chromatography on silica gel, and identified by their MS and 1H and 13C NMR analyses. Several products, e.g., 4-hydroxyfluorene converted from fluorene, and cis-1,2-dihydroxy-1,2-dihydrophenanthridine, cis-9,10-dihydroxy-9,10-di-hydrophenanthridine, and 10-hydroxyphenanthridine, which were converted from phenanthridine, were novel compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号