首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genome-probing microarray (GPM) was developed for quantitative, high-throughput monitoring of community dynamics in lactic acid bacteria (LAB) fermentation through the deposit of 149 microbial genomes as probes on a glass slide. Compared to oligonucleotide microarrays, the specificity of GPM was remarkably increased to a species-specific level. GPM possesses about 10- to 100-fold higher sensitivity (2.5 ng of genomic DNA) than the currently used 50-mer oligonucleotide microarrays. Since signal variation between the different genomes was very low compared to that of cDNA or oligonucleotide-based microarrays, the capacity of global quantification of microbial genomes could also be observed in GPM hybridization. In order to assess the applicability of GPMs, LAB community dynamics were monitored during the fermentation of kimchi, a traditional Korean food. In this work, approximately 100 diverse LAB species could be quantitatively analyzed as actively involved in kimchi fermentation.  相似文献   

2.
Metagenomic analysis of kimchi, a traditional Korean fermented food   总被引:2,自引:0,他引:2  
Kimchi, a traditional food in the Korean culture, is made from vegetables by fermentation. In this study, metagenomic approaches were used to monitor changes in bacterial populations, metabolic potential, and overall genetic features of the microbial community during the 29-day fermentation process. Metagenomic DNA was extracted from kimchi samples obtained periodically and was sequenced using a 454 GS FLX Titanium system, which yielded a total of 701,556 reads, with an average read length of 438 bp. Phylogenetic analysis based on 16S rRNA genes from the metagenome indicated that the kimchi microbiome was dominated by members of three genera: Leuconostoc, Lactobacillus, and Weissella. Assignment of metagenomic sequences to SEED categories of the Metagenome Rapid Annotation using Subsystem Technology (MG-RAST) server revealed a genetic profile characteristic of heterotrophic lactic acid fermentation of carbohydrates, which was supported by the detection of mannitol, lactate, acetate, and ethanol as fermentation products. When the metagenomic reads were mapped onto the database of completed genomes, the Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 and Lactobacillus sakei subsp. sakei 23K genomes were highly represented. These same two genera were confirmed to be important in kimchi fermentation when the majority of kimchi metagenomic sequences showed very high identity to Leuconostoc mesenteroides and Lactobacillus genes. Besides microbial genome sequences, a surprisingly large number of phage DNA sequences were identified from the cellular fractions, possibly indicating that a high proportion of cells were infected by bacteriophages during fermentation. Overall, these results provide insights into the kimchi microbial community and also shed light on fermentation processes carried out broadly by complex microbial communities.  相似文献   

3.
Kimchi, a traditional Korean food made by the fermentation of vegetables, has become popular globally because of its organoleptic, beneficial, and nutritional properties. Spontaneous kimchi fermentation in unsterilized raw materials leads to the growth of various lactic acid bacteria (LAB), which results in variations in the taste and sensory qualities of kimchi products and difficulties in the standardized industrial production of kimchi. Raw materials, kimchi varieties, ingredients, and fermentation conditions have significant effects on the microbial communities and fermentative characteristics of kimchi during fermentation. Heterofermentative LAB belonging to the genera Leuconostoc, Lactobacillus, and Weissella are likely to be key players in kimchi fermentation and have been subjected to genomic and functional studies to gain a better understanding of the fermentation process and beneficial effects of kimchi. The use of starter cultures has been considered for the industrial production of high quality, standardized kimchi. Here, we review the composition and biochemistry of kimchi microflora communities, functional and genomic studies of kimchi LAB, and perspectives for industrial kimchi production.  相似文献   

4.
Soil microbial communities are responsible for important physiological and metabolic processes. In the last decade soil microorganisms have been frequently analysed by cultivation-independent techniques because only a minority of the natural microbial communities are accessible by cultivation. Cultivation-independent community analyses have revolutionized our understanding of soil microbial diversity and population dynamics. Nevertheless, many methods are still laborious and time-consuming, and high-throughput methods have to be applied in order to understand population shifts at a finer level and to be better able to link microbial diversity with ecosystems functioning. Microbial diagnostic microarrays (MDMs) represent a powerful tool for the parallel, high-throughput identification of many microorganisms. Three categories of MDMs have been defined based on the nature of the probe and target molecules used: phylogenetic oligonucleotide microarrays with short oligonucleotides against a phylogenetic marker gene; functional gene arrays containing probes targeting genes encoding specific functions; and community genome arrays employing whole genomes as probes. In this review, important methodological developments relevant to the application of the different types of diagnostic microarrays in soil ecology will be addressed and new approaches, needs and future directions will be identified, which might lead to a better insight into the functional activities of soil microbial communities.  相似文献   

5.
Aims: The present work was aimed at identifying strains of lactic acid bacteria (LAB) from kimchi, with properties suitable for use as starter cultures in yogurt fermentation. Methods and Results: A total of 2344 LAB strains were obtained from two different sources, one group consisted of commercial LAB strains from kimchi, and the second group consisted of those strains isolated from various types of kimchi. The LAB strains from both groups were screened for resistance to biological barriers (acid and bile salts), and the four most promising strains were selected. Further analysis revealed that KFRI342 of the four selected strains displayed the greatest ability to reduce the growth of the cancer cells, SNU‐C4. The in vivo efficacy of strains in quinone reductase induction assay was evaluated, and the extent of DNA strand breakage in individual cells was investigated using the comet assay. Strain KFRI342 was identified as Lactobacillus acidophilus by 16S rRNA sequence analysis, showed protection against tumour initiation and imparted immunostimulation as well as protection against DNA damage. Conclusions: Strain KFRI342, which showed probiotic characteristics reducing cancer cell growth, could be a suitable starter culture for yogurt fermentation because of its strong acid production and high acid tolerance. Significance and Impact of the Study: This is the first report to describe a bacterium, isolated from kimchi, Lact. acidophilus KFRI342 which has the probiotic characteristics and the acid tolerance needed for its use as a starter culture in yogurt fermentation.  相似文献   

6.
7.
A distinct subset of lactic acid bacteria that are greatly influenced by temperature play an important role during kimchi fermentation. However, microbial population dynamics and temperature control during kimjang kimchi fermentation, which is traditionally fermented underground, are not known. Here we show that Lactobacillus sakei predominates in kimjang kimchi, perhaps due to suitable fermentation (5∼9°C) and storage (−2°C) temperatures. The temperature of this kimchi gradually decreased to 3.2°C during the first 20 days of fermentation (−0.3°C/day) and then was stably maintained around 1.6°C, indicating that this simple approach is very efficient both for fermentation and storage. These findings provide important information towards the development of temperature controlling systems for kimchi fermentation.  相似文献   

8.
Kimchi is a Korean traditional fermented food made of brined vegetables, with a variety of spices. Various microorganisms are associated with the kimchi fermentation process. This study was undertaken in order to apply quantitative real-time PCR targeting the 16S and 26S rRNA genes for the investigation of dynamics of bacterial, archaeal, and yeast communities during fermentation of various types of kimchi. Although the total bacterial and archaeal rRNA gene copy numbers increased during kimchi fermentation, the number of yeasts was not significantly altered. In 1 ng of bulk DNA, the mean number of rRNA gene copies for all strains of bacteria was 5.45×106 which was 360 and 50 times greater than those for archaea and yeast, respectively. The total gene copy number for each group of microorganisms differed among the different types of kimchi, although the relative ratios among them were similar. The common dominance of bacteria in the whole microbial communities of various types of kimchi suggests that bacteria play a principal role in the kimchi fermentation process.  相似文献   

9.
基因芯片技术在环境微生物群落研究中的应用   总被引:2,自引:0,他引:2  
金敏  李君文 《微生物学通报》2008,35(9):1466-1471
基因芯片技术作为一种快速、敏感、高通量的检测技术,近几年来在环境微生物群落研究中的应用越来越广泛并且得到充分的发展.它不仅可以研究环境微生物群落的微生物分布、种类、功能、动力学变化,还能分析环境污染等环境因素改变对其微生物生态的影响.本文按照基因芯片探针的设计方法,将环境样品群落研究基因芯片分为系统寡核苷酸芯片、功能基因芯片、群落基因组芯片、宏基因组芯片,并简要综述了该技术在活性污泥、土壤、水等环境样品微生物群落研究上的应用,最后,本文展望了该技术的研究方向和在寻找不同环境微生物群落之间差异微生物、差异基因或差异表达基因研究中的应用前景.  相似文献   

10.
【目的】为解决中国寒冷地区水稻秸秆大面积废弃问题,加快低温地区水稻秸秆饲料转化,本文筛选了可以低温下加速秸秆发酵过程的微生物复合菌系,研究其微生物组成并跟踪其发酵动态。【方法】通过5℃下连续定向富集筛选,获得低温复合菌系。采用克隆文库方法分析复合菌系的组成。将复合菌系和商业接种剂(由Lactobacillus plantarum,Enterococcus faecium,L.salivarilus,Pediococcus acidilactici组成)分别接入稻秸进行10℃发酵。气质联机(GC-MS)测定发酵产物的同时,通过变性梯度凝胶电泳检测微生物在发酵体系的定殖情况。采用定量PCR方法追踪复合菌系组成菌在发酵过程中的动态。【结果】16S rDNA克隆文库分析结果表明复合系主要由两种微生物组成,一种属乳酸杆菌(Lactobacillus),一种属乳酸球菌(Leuconostoc)。10℃稻秸发酵结果表明,在发酵第6天接种复合菌系处理的pH已经下降到4.3,乳酸菌菌落形成单位为2.9×109CFU/g鲜样,而接种商业接种剂的处理pH为5.3,乳酸菌菌落形成单位为3.6×108 CFU/g鲜样;在发酵30 d时,接种复合菌系处理的乳酸含量为8.1 g/kg鲜样,接种商业接种剂处理的乳酸含量为2.0 g/kg鲜样。变性梯度凝胶电泳结果表明,在接种复合菌系的稻秸中,从发酵的第6天开始,检测到的微生物主要为L.sakei和Leuconostoc inhae,在整个发酵过程中,两菌一直存在;在商业接种剂处理中,发酵第6天检测到的微生物除其四种组成菌外,还包括Uncultured bacterium;而在发酵第16天和第30天,只检测到组成菌中的L.plantarum和E.faecium。定量PCR结果显示,接种复合菌系处理中,L.sakeiDNA在发酵第6天达到41.0%,在发酵第16天已达到65%,Le inhae在发酵的第6天达到整个发酵过程中的最大值(5.5%)。【结论】接种复合菌系,可以有效促进水稻秸秆的低温发酵进程。复合菌系组成菌可以定殖在发酵体系中,并占据优势。复合菌系的关键菌为L.sakei。  相似文献   

11.
The dynamics of the microbial community responsible for the traditional fermentation of maize in the production of Mexican pozol was investigated by using a polyphasic approach combining (i) microbial enumerations with culture media, (ii) denaturing gradient gel electrophoresis (DGGE) fingerprinting of total community DNA with bacterial and eukaryotic primers and sequencing of partial 16S ribosomal DNA (rDNA) genes, (iii) quantification of rRNAs from dominant microbial taxa by using phylogenetic oligonucleotide probes, and (iv) analysis of sugars and fermentation products. A Streptococcus species dominated the fermentation and accounted for between 25 and 75% of the total flora throughout the process. Results also showed that the initial epiphytic aerobic microflora was replaced in the first 2 days by heterofermentative lactic acid bacteria (LAB), including a close relative of Lactobacillus fermentum, producing lactic acid and ethanol; this heterolactic flora was then progressively replaced by homofermentative LAB (mainly close relatives of L. plantarum, L. casei, and L. delbrueckii) which continued acidification of the maize dough. At the same time, a very diverse community of yeasts and fungi developed, mainly at the periphery of the dough. The analysis of the DGGE patterns obtained with bacterial and eukaryotic primers targeting the 16S and 18S rDNA genes clearly demonstrated that there was a major shift in the community structure after 24 h and that high biodiversity-according to the Shannon-Weaver index-was maintained throughout the process. These results proved that a relatively high number of species, at least six to eight, are needed to perform this traditional lactic acid fermentation. The presence of Bifidobacterium, Enterococcus, and enterobacteria suggests a fecal origin of some important pozol microorganisms. Overall, the results obtained with different culture-dependent or -independent techniques clearly confirmed the importance of developing a polyphasic approach to study the ecology of fermented foods.  相似文献   

12.
Microarrays for bacterial detection and microbial community analysis   总被引:27,自引:0,他引:27  
Several types of microarrays have recently been developed and evaluated for bacterial detection and microbial community analysis. These studies demonstrated that specific, sensitive and quantitative detection could be obtained with both functional gene arrays and community genome arrays. Although single-base mismatch can be differentiated with phylogenetic oligonucleotide arrays, reliable specific detection at the single-base level is still problematic. Microarray-based hybridization approaches are also useful for defining genome diversity and bacterial relatedness. However, more rigorous and systematic assessment and development are needed to realize the full potential of microarrays for microbial detection and community analysis.  相似文献   

13.
Specific identification of microorganisms in the environment is important but challenging, especially at the species/strain level. Here, we have developed a novel k-mer-based approach to select strain/species-specific probes for microbial identification with diagnostic microarrays. Application of this approach to human microbiome genomes showed that multiple (≥10 probes per strain) strain-specific 50-mer oligonucleotide probes could be designed for 2,012 of 3,421 bacterial strains of the human microbiome, and species-specific probes could be designed for most of the other strains. The method can also be used to select strain/species-specific probes for sequenced genomes in any environments, such as soil and water.  相似文献   

14.
While wine fermentation has long been known to involve complex microbial communities, the composition and role of bacteria other than a select set of lactic acid bacteria (LAB) has often been assumed either negligible or detrimental. This study served as a pilot study for using barcoded amplicon next-generation sequencing to profile bacterial community structure in wines and grape musts, comparing the taxonomic depth achieved by sequencing two different domains of prokaryotic 16S rDNA (V4 and V5). This study was designed to serve two goals: 1) to empirically determine the most taxonomically informative 16S rDNA target region for barcoded amplicon sequencing of wine, comparing V4 and V5 domains of bacterial 16S rDNA to terminal restriction fragment length polymorphism (TRFLP) of LAB communities; and 2) to explore the bacterial communities of wine fermentation to better understand the biodiversity of wine at a depth previously unattainable using other techniques. Analysis of amplicons from the V4 and V5 provided similar views of the bacterial communities of botrytized wine fermentations, revealing a broad diversity of low-abundance taxa not traditionally associated with wine, as well as atypical LAB communities initially detected by TRFLP. The V4 domain was determined as the more suitable read for wine ecology studies, as it provided greater taxonomic depth for profiling LAB communities. In addition, targeted enrichment was used to isolate two species of Alphaproteobacteria from a finished fermentation. Significant differences in diversity between inoculated and uninoculated samples suggest that Saccharomyces inoculation exerts selective pressure on bacterial diversity in these fermentations, most notably suppressing abundance of acetic acid bacteria. These results determine the bacterial diversity of botrytized wines to be far higher than previously realized, providing further insight into the fermentation dynamics of these wines, and demonstrate the utility of next-generation sequencing for wine ecology studies.  相似文献   

15.
Microarray technology provides the opportunity to identify thousands of microbial genes or populations simultaneously, but low microbial biomass often prevents application of this technology to many natural microbial communities. We developed a whole-community genome amplification-assisted microarray detection approach based on multiple displacement amplification. The representativeness of amplification was evaluated using several types of microarrays and quantitative indexes. Representative detection of individual genes or genomes was obtained with 1 to 100 ng DNA from individual or mixed genomes, in equal or unequal abundance, and with 1 to 500 ng community DNAs from groundwater. Lower concentrations of DNA (as low as 10 fg) could be detected, but the lower template concentrations affected the representativeness of amplification. Robust quantitative detection was also observed by significant linear relationships between signal intensities and initial DNA concentrations ranging from (i) 0.04 to 125 ng (r2 = 0.65 to 0.99) for DNA from pure cultures as detected by whole-genome open reading frame arrays, (ii) 0.1 to 1,000 ng (r2 = 0.91) for genomic DNA using community genome arrays, and (iii) 0.01 to 250 ng (r2 = 0.96 to 0.98) for community DNAs from ethanol-amended groundwater using 50-mer functional gene arrays. This method allowed us to investigate the oligotrophic microbial communities in groundwater contaminated with uranium and other metals. The results indicated that microorganisms containing genes involved in contaminant degradation and immobilization are present in these communities, that their spatial distribution is heterogeneous, and that microbial diversity is greatly reduced in the highly contaminated environment.  相似文献   

16.
乳酸菌发酵可赋予茶饮料独特的香气与滋味,且可改变其物质组成,产生益生因子等。目前,针对乳酸菌在不同发酵阶段对茶汤中风味物质形成影响的研究较少。本研究以从中国传统泡菜中筛选获得的棒状乳杆菌FZU63为发酵菌株,对不同发酵阶段红茶汤中的挥发性香气成分、还原糖、游离氨基酸、有机酸等含量的变化过程进行分析,并对发酵红茶汤的感官品质进行评价。结果表明,棒状乳杆菌FZU63以红茶汤中的葡萄糖、果糖、甘露糖和木糖作为发酵过程中的主要碳源物质。红茶汤经棒状乳杆菌FZU63发酵作用后,香气成分丰度显著增加,且主要香气组分结构发生改变,发酵红茶汤在花香、坚果香的基础上增添了水果香;此外,部分苦味氨基酸含量下降,甜味和鲜味氨基酸含量增加;并且,乳酸、苹果酸、柠檬酸等有机酸含量在发酵过程中呈现积累。同时,感官评定结果表明棒状乳杆菌FZU63发酵可改善红茶汤的感官品质,且在发酵48h后达到较优。本文系统分析了经棒状乳杆菌发酵不同阶段对红茶汤风味的影响,可为乳酸菌发酵茶饮料的品质控制与产业化应用提供理论参考。  相似文献   

17.
The distribution of microorganisms in pozol balls, a fermented maize dough, was investigated by a polyphasic approach in which we used both culture-dependent and culture-independent methods, including microbial enumeration, fermentation product analysis, quantification of microbial taxa with 16S rRNA-targeted oligonucleotide probes, determination of microbial fingerprints by denaturing gradient gel electrophoresis (DGGE), and 16S ribosomal DNA gene sequencing. Our results demonstrate that DGGE fingerprinting and rRNA quantification should allow workers to precisely and rapidly characterize the microbial assemblage in a spontaneous lactic acid fermented food. Lactic acid bacteria (LAB) accounted for 90 to 97% of the total active microflora; no streptococci were isolated, although members of the genus Streptococcus accounted for 25 to 50% of the microflora. Lactobacillus plantarum and Lactobacillus fermentum, together with members of the genera Leuconostoc and Weissella, were the other dominant organisms. The overall activity was more important at the periphery of a ball, where eucaryotes, enterobacteria, and bacterial exopolysacharide producers developed. Our results also showed that the metabolism of heterofermentative LAB was influenced in situ by the distribution of the LAB in the pozol ball, whereas homolactic fermentation was controlled primarily by sugar limitation. We propose that starch is first degraded by amylases from LAB and that the resulting sugars, together with the lactate produced, allow a secondary flora to develop in the presence of oxygen. Our results strongly suggest that cultivation-independent methods should be used to study traditional fermented foods.  相似文献   

18.
Spotted oligonucleotide microarrays potentially offer a wide scope of applications for microbial ecology, especially as they improve the flexibility of design and the specificity of detection compared to PCR product based microarrays. Sensitivity, however, was expected to be problematic, as studies with the more sensitive PCR-based cDNA microarrays indicate that only genes from populations contributing to more than 5% of the community DNA can be detected. We evaluated several parameters to increase sensitivity and then tested applicability for bacterial functional genomics. The optimal parameters were the use of 5'-C6-amino-modified 70-mers printed on CMT-GAPS II substrates at a 40 micro M concentration combined with the use of Tyramide Signal Amplification labelling. This protocol allowed detection of single copy genes belonging to an organism contributing to 1% or more of the total community. To demonstrate its application, we detected the specific aromatic oxygenase genes in a soil community degrading polychlorinated biphenyls (PCBs). This increase in sensitivity is important if oligonucleotide microarrays are to be used for simultaneous monitoring of a range of functions performed by different microorganisms in the environment.  相似文献   

19.
Microarray technology provides the opportunity to identify thousands of microbial genes or populations simultaneously, but low microbial biomass often prevents application of this technology to many natural microbial communities. We developed a whole-community genome amplification-assisted microarray detection approach based on multiple displacement amplification. The representativeness of amplification was evaluated using several types of microarrays and quantitative indexes. Representative detection of individual genes or genomes was obtained with 1 to 100 ng DNA from individual or mixed genomes, in equal or unequal abundance, and with 1 to 500 ng community DNAs from groundwater. Lower concentrations of DNA (as low as 10 fg) could be detected, but the lower template concentrations affected the representativeness of amplification. Robust quantitative detection was also observed by significant linear relationships between signal intensities and initial DNA concentrations ranging from (i) 0.04 to 125 ng (r2 = 0.65 to 0.99) for DNA from pure cultures as detected by whole-genome open reading frame arrays, (ii) 0.1 to 1,000 ng (r2 = 0.91) for genomic DNA using community genome arrays, and (iii) 0.01 to 250 ng (r2 = 0.96 to 0.98) for community DNAs from ethanol-amended groundwater using 50-mer functional gene arrays. This method allowed us to investigate the oligotrophic microbial communities in groundwater contaminated with uranium and other metals. The results indicated that microorganisms containing genes involved in contaminant degradation and immobilization are present in these communities, that their spatial distribution is heterogeneous, and that microbial diversity is greatly reduced in the highly contaminated environment.  相似文献   

20.
The dynamics of the microbial community responsible for the traditional fermentation of maize in the production of Mexican pozol was investigated by using a polyphasic approach combining (i) microbial enumerations with culture media, (ii) denaturing gradient gel electrophoresis (DGGE) fingerprinting of total community DNA with bacterial and eukaryotic primers and sequencing of partial 16S ribosomal DNA (rDNA) genes, (iii) quantification of rRNAs from dominant microbial taxa by using phylogenetic oligonucleotide probes, and (iv) analysis of sugars and fermentation products. A Streptococcus species dominated the fermentation and accounted for between 25 and 75% of the total flora throughout the process. Results also showed that the initial epiphytic aerobic microflora was replaced in the first 2 days by heterofermentative lactic acid bacteria (LAB), including a close relative of Lactobacillus fermentum, producing lactic acid and ethanol; this heterolactic flora was then progressively replaced by homofermentative LAB (mainly close relatives of L. plantarum, L. casei, and L. delbrueckii) which continued acidification of the maize dough. At the same time, a very diverse community of yeasts and fungi developed, mainly at the periphery of the dough. The analysis of the DGGE patterns obtained with bacterial and eukaryotic primers targeting the 16S and 18S rDNA genes clearly demonstrated that there was a major shift in the community structure after 24 h and that high biodiversity—according to the Shannon-Weaver index—was maintained throughout the process. These results proved that a relatively high number of species, at least six to eight, are needed to perform this traditional lactic acid fermentation. The presence of Bifidobacterium, Enterococcus, and enterobacteria suggests a fecal origin of some important pozol microorganisms. Overall, the results obtained with different culture-dependent or -independent techniques clearly confirmed the importance of developing a polyphasic approach to study the ecology of fermented foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号