首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Enterovirus 70 (EV70) is a recently emerged human pathogen belonging to the family Picornaviridae. The ability of EV70 to infect a wide variety of nonprimate cell lines in vitro is unique among human enteroviruses. The importance of virus receptors as determinants of viral host range and tropism led us to study the host cell receptor for this unusual picornavirus. We produced a monoclonal antibody (MAb), EVR1, which bound to the surface of HeLa cells and protected them against infection by EV70 but not by poliovirus or by coxsackievirus B3. This antibody also inhibited the binding of [35S]EV70 to HeLa cells. MAb EVR1 did not bind to monkey kidney (LLC-MK2) cells, nor did it protect these cells against virus infection. In Western immunoassays and in immunoprecipitations, MAb EVR1 identified a HeLa cell glycoprotein of approximately 75 kDa that is attached to the cell membrane by a glycosyl-phosphatidylinositol (GPI) anchor. Decay-accelerating factor (DAF, CD55) is a 70- to 75-kDa GPI-anchored membrane protein that is involved in the regulation of complement and has also been shown to function as a receptor for several enteroviruses. MAb EVR1 bound to Chinese hamster ovary (CHO) cells constitutively expressing human DAF. Anti-DAF MAbs inhibited EV70 binding to HeLa cells and protected them against EV70 infection. Transient expression of human DAF in murine NIH 3T3 cells resulted in binding of labelled EV70 and stably, transformed NIH 3T3 cells expressing DAF were able to support virus replication. These data indicate that the HeLa cell receptor for EV70 is DAF.  相似文献   

2.
Enterovirus 70 (EV70) is one of several human enteroviruses that exhibit a propensity for infecting the central nervous system (CNS). The mechanisms by which neurotropic enteroviruses gain access to and invade the CNS are poorly understood. One possibility is that circulating leukocytes become infected and carry neurotropic enteroviruses to the CNS. We examined the ability of EV70 to infect cell lines derived from lymphoid, myeloid, and monocytic lineages. Most leukocyte cell lines tested bound radiolabeled EV70 and were permissive for EV70 replication, suggesting that EV70, in contrast to other enteroviruses, has an in vitro tropism that includes lymphoid, monocytic, and myeloid cell lines. For some of the cell lines, virus binding and infection correlated with surface expression of decay-accelerating factor (DAF), an attachment protein for EV70 on HeLa cells. However, EV70 also adsorbed to and infected cell lines that expressed little or no DAF. In contrast to what was observed for HeLa cells, neither DAF-specific monoclonal antibodies nor phosphatidylinositol-specific phospholipase C treatment inhibited EV70 binding to permissive leukocyte cell lines, and antibody blockade of DAF had little or no effect on EV70 replication. We also found that neither the human coxsackievirus-adenovirus receptor nor intercellular cell adhesion molecule 1, which mediate the entry of coxsackie B viruses and coxsackievirus A21, respectively, functions as a receptor for EV70. EV70 binding to all cell lines was sensitive to sialidase treatment and to inhibition of O glycosylation by benzyl N-acetyl-alpha-D-galactosaminide. Taken together, these results suggest that a sialylated molecule(s) other than DAF serves as a receptor for EV70 on permissive human leukocyte cell lines.  相似文献   

3.
Sixty-six human enterovirus serotypes have been identified by serum neutralization, but the molecular determinants of the serotypes are unknown. Since the picornavirus VP1 protein contains a number of neutralization domains, we hypothesized that the VP1 sequence should correspond with neutralization (serotype) and, hence, with phylogenetic lineage. To test this hypothesis and to analyze the phylogenetic relationships among the human enteroviruses, we determined the complete VP1 sequences of the prototype strains of 47 human enterovirus serotypes and 10 antigenic variants. Our sequences, together with those available from GenBank, comprise a database of complete VP1 sequences for all 66 human enterovirus serotypes plus additional strains of seven serotypes. Phylogenetic trees constructed from complete VP1 sequences produced the same four major clusters as published trees based on partial VP2 sequences; in contrast to the VP2 trees, however, in the VP1 trees strains of the same serotype were always monophyletic. In pairwise comparisons of complete VP1 sequences, enteroviruses of the same serotype were clearly distinguished from those of heterologous serotypes, and the limits of intraserotypic divergence appeared to be about 25% nucleotide sequence difference or 12% amino acid sequence difference. Pairwise comparisons suggested that coxsackie A11 and A15 viruses should be classified as strains of the same serotype, as should coxsackie A13 and A18 viruses. Pairwise identity scores also distinguished between enteroviruses of different clusters and enteroviruses from picornaviruses of different genera. The data suggest that VP1 sequence comparisons may be valuable in enterovirus typing and in picornavirus taxonomy by assisting in the genus assignment of unclassified picornaviruses.Human enteroviruses (family Picornaviridae) infect millions of people worldwide each year, resulting in a wide range of clinical outcomes ranging from inapparent infection to mild respiratory illness (common cold), hand-foot-and-mouth disease, acute hemorrhagic conjunctivitis, aseptic meningitis, myocarditis, severe neonatal sepsis-like disease, and acute flaccid paralysis (reviewed in references 43 and 45). In the United States, enteroviruses are responsible for 30,000 to 50,000 meningitis hospitalizations per year as a result of 30 million to 50 million infections. Serologic studies have distinguished 66 human enterovirus serotypes on the basis of an antibody neutralization test (43), and additional antigenic variants have been defined within several of the serotypes on the basis of reduced or nonreciprocal cross-neutralization between prototype and variant strains (6, 8, 68, 71, 72). On the basis of their pathogenesis in humans and experimental animals, the enteroviruses were originally classified into four groups, polioviruses, coxsackie A viruses (CA), coxsackie B viruses (CB), and echoviruses, but it was quickly realized that there were significant overlaps in the biological properties of viruses in the different groups (8). The more recently isolated enteroviruses have been named with a system of consecutive numbers: EV68, EV69, EV70, and EV71 (42).A comparison of nucleotide and deduced amino acid sequences at the 5′ end of VP2 has identified four major phylogenetic groups within the Enterovirus genus: CA16-like viruses (cluster A), a CB-like group containing all CB and echoviruses as well as CA9 and EV69 (cluster B), poliovirus-like viruses (cluster C), and EV68 and EV70 (cluster D) (23, 24, 49, 53, 54, 73). However, pairwise alignments and phylogenetic analyses within these groups demonstrated that the VP2 sequence does not fully correlate with serotype, as viruses known to belong to the same serotype often failed to cluster together (2, 49). (E22 and E23 are genetically distinct from enteroviruses [24], and their reclassification into a separate genus has been proposed [45]).VP1 is the most external and immunodominant of the picornavirus capsid proteins (58). A number of major neutralization sites reside in the VP1 proteins of many picornaviruses (reviewed in references 40 and 44), but the specific epitopes responsible for serotype specificity and intratypic variation have not been identified. Similarly, the genetic correlates of serotype identity remain unknown. If the important serotype-specific neutralization sites reside in VP1, then the VP1 sequence or some portion thereof would be predicted to correlate with serotype. Studies on the three serotypes of poliovirus have shown that a partial VP1 sequence correlates well with serotype (32). In addition, genetic lineages based on the VP1 sequence can be used to define poliovirus reservoirs and chains of transmission (reviewed in reference 30). To test whether the VP1 sequence might be applied to the classification of nonpolio enteroviruses and to the analysis of the phylogenetic relationships among the human enteroviruses, we determined the complete VP1 nucleotide sequences for 47 human enterovirus prototypes and 10 well-characterized antigenic variants. These data, together with previously available sequences, comprise a database of complete VP1 sequences for all known human enterovirus serotypes and 12 natural antigenic variants. This database will be useful for molecular epidemiologic studies of enteroviral disease outbreaks, to obtain a better understanding of the genetic correlates of serotype, and for the development of enteroviral molecular diagnostic reagents.  相似文献   

4.
Decay accelerating factor (DAF, CD55) is a glycophospholipid-anchored membrane protein that protects cells from complement-mediated damage by inhibiting the formation and accelerating the decay of C3/C5 convertases. DAF deletion mutants lacking each of the four short consensus repeats (SCR) or the serine/threonine-rich region (S/T) were created by site-directed mutagenesis. These deletion mutants were expressed by stable transfection in Chinese hamster ovary cells for the purpose of mapping important structural and functional sites in DAF. The epitopes on DAF for 16 murine mAb were mapped by immunoprecipitation studies as follows: SCR1, 6; SCR2, 3; SCR3, 3; SCR4, 3; S/T, 1. Testing of 13 mAb showed complete blocking of DAF function only by 1C6 and 1H4, both directed at SCR3. The single N-linked glycosylation site was confirmed at a location between SCR1 and SCR2, and the multiple O-linked oligosaccharides were localized to the S/T region. Functional activity of DAF mutants was assessed by the ability of these transfected constructs to protect Chinese hamster ovary cells from cytotoxicity induced by rabbit antibody plus human complement. Removal of SCR1 had no effect on DAF function, but individual deletion of SCR2, SCR3, or SCR4 totally abolished DAF function. Surprisingly, deletion of the S/T region totally abrogated DAF function, but this could be restored by a fusion construct placing the four SCR domains of DAF onto the HLA-B44 molecule, implying that the O-glycosylated S/T region serves as an important but nonspecific spacer projecting the DAF functional domains above the plasma membrane. Overall, the creation of DAF deletion mutants has elucidated important structure-function relations in the DAF molecule.  相似文献   

5.
Alexander DA  Dimock K 《Journal of virology》2002,76(22):11265-11272
The interaction of viruses with host cell receptors is the initial step in viral infection and is an important determinant of virus host range, tissue tropism, and pathogenesis. The complement regulatory protein decay-accelerating factor (DAF/CD55) is an attachment receptor for enterovirus 70 (EV70), a member of the Picornaviridae, commonly associated with an eye infection in humans known as acute hemorrhagic conjunctivitis. In early work, the EV70 receptor on erythrocytes, responsible for its hemagglutinating activity, was shown to be sensitive to neuraminidase, implying an essential role for sialic acid in virus attachment. Here, we extend these results to show that cell surface sialic acid is required for EV70 binding to nucleated cells susceptible to virus infection and that sialic acid binding is important in productive infection. Through the use of site-directed mutagenesis to eliminate the single N-linked glycosylation site of DAF and of a chimeric receptor protein in which the O-glycosylated domain of DAF was replaced by a region of the HLA-B44 molecule, a role in EV70 binding for the sialic acid residues of DAF was excluded, suggesting the existence of at least one additional, sialylated EV70-binding factor at the cell surface. Treatment of cells with metabolic inhibitors of glycosylation excluded a role for the N-linked oligosaccharides of glycoproteins but suggested that O-linked glycosylation is important for EV70 binding.  相似文献   

6.
Decay-accelerating factor (DAF) functions as cell attachment receptor for a wide range of human enteroviruses. The Kuykendall prototype strain of coxsackievirus A21 (CVA21) attaches to DAF but requires interactions with intercellular cell adhesion molecule 1 (ICAM-1) to infect cells. We show here that a bioselected variant of CVA21 (CVA21-DAFv) generated by multiple passages in DAF-expressing, ICAM-1-negative rhabdomyosarcoma (RD) cells acquired the capacity to induce rapid and complete lysis of ICAM-1-deficient cells while retaining the capacity to bind ICAM-1. CVA21-DAFv binding to DAF on RD cells mediated lytic infection and was inhibited by either antibody blockade with a specific anti-DAF SCR1 monoclonal antibody (MAb) or soluble human DAF. Despite being bioselected in RD cells, CVA21-DAFv was able to lytically infect an additional ICAM-1-negative cancer cell line via DAF interactions alone. The finding that radiolabeled CVA21-DAFv virions are less readily eluted from surface-expressed DAF than are parental CVA21 virions during a competitive epitope challenge by an anti-DAF SCR1 MAb suggests that interactions between CVA21-DAFv and DAF are of higher affinity than those of the parental strain. Nucleotide sequence analysis of the capsid-coding region of the CVA21-DAFv revealed the presence of two amino acid substitutions in capsid protein VP3 (R96H and E101A), possibly conferring the enhanced DAF-binding phenotype of CVA21-DAFv. These residues are predicted to be embedded at the interface of VP1, VP2, and VP3 and are postulated to enhance the affinity of DAF interaction occurring outside the capsid canyon. Taken together, the data clearly demonstrate an enhanced DAF-using phenotype and expanded receptor utilization of CVA21-DAFv compared to the parental strain, further highlighting that capsid interactions with DAF alone facilitate rapid multicycle lytic cell infection.  相似文献   

7.
In this study, a viral microarray based assay was developed to detect the human herpesviruses and enteroviruses associated with central nervous system infections, including herpes simplex virus type 1, type 2 (HSV1 and HSV2), Epstein-Barr virus (EBV), cytomegalovirus (CMV), enterovirus 71 (EV71), coxsackievirus A 16 (CA16) and B 5(CB5). The DNA polymerase gene of human herpesviruses and 5’-untranslated region of enteroviruses were selected as the targets to design primers and probes. Human herpesviruses DNA and enteroviruses RNA were extracted simultaneously by using a guanidinium thiocyanate acid buffer, and were subsequently amplified through a biotinylated asymmetry multiplex RT-PCR with the specific primer of enteroviruses. In total, 90 blood samples and 49 cerebrospinal fluids samples with suspected systemic or neurological virus infections were investigated. Out of 139 samples, 66 were identified as positive. The specificities of this multiplex RT-PCR microarray assay were over 96% but the sensitivities were various from 100% for HSV1, HSV2, EV71 and CB5, 95.83% for CMV, 80% for EBV to 71.43% for CA16 in comparison with reference standards of TaqMan qPCR/qRT-PCR. The high Kappa values (>0.90) from HSV1, HSV2, CMV, EV71 and CB5 were obtained, indicating almost perfect agreement in term of the 5 viruses detection. But lower Kappa values for EBV (0.63) and CA16 (0.74) displayed a moderate to substantial agreement. This study provides an innovation of simultaneous extraction, amplification, hybridization and detection of DNA viruses and RNA viruses with simplicity and specificity, and demonstrates a potential clinical utility for a variety of viruses’ detection.  相似文献   

8.
9.
Enterovirus 71 (EV71) causes seasonal epidemics of hand-foot-and-mouth disease and has a high mortality rate among young children. We recently demonstrated potent induction of the humoral and cell-mediated immune response in monkeys immunized with EV71 virus-like particles (VLPs), with a morphology resembling that of infectious EV71 virions but not containing a viral genome, which could potentially be safe as a vaccine for EV71. To elucidate the mechanisms through which EV71 VLPs induce cell-mediated immunity, we studied the immunomodulatory effects of EV71 VLPs on human monocyte-derived dendritic cells (DCs), which bind to and incorporate EV71 VLPs. DC treatment with EV71 VLPs enhanced the expression of CD80, CD86, CD83, CD40, CD54, and HLA-DR on the cell surface; increased the production of interleukin (IL)-12 p40, IL-12 p70, and IL-10 by DCs; and suppressed the capacity of DCs for endocytosis. Treatment with EV71 VLPs also enhanced the ability of DCs to stimulate naïve T cells and induced secretion of interferon (IFN)-γ by T cells and Th1 cell responses. Neutralization with antibodies against Toll-like receptor (TLR) 4 suppressed the capacity of EV71 VLPs to induce the production of IL-12 p40, IL-12 p70, and IL-10 by DCs and inhibited EV71 VLPs binding to DCs. Our study findings clarified the important role for TLR4 signaling in DCs in response to EV71 VLPs and showed that EV71 VLPs induced inhibitor of kappaB alpha (IκBα) degradation and nuclear factor of kappaB (NF-κB) activation.  相似文献   

10.
Many enteroviruses bind to the complement control protein decay-accelerating factor (DAF) to facilitate cell entry. We present here a structure for echovirus (EV) type 12 bound to DAF using cryo-negative stain transmission electron microscopy and three-dimensional image reconstruction to 16-A resolution, which we interpreted using the atomic structures of EV11 and DAF. DAF binds to a hypervariable region of the capsid close to the 2-fold symmetry axes in an interaction that involves mostly the short consensus repeat 3 domain of DAF and the capsid protein VP2. A bulge in the density for the short consensus repeat 3 domain suggests that a loop at residues 174-180 rearranges to prevent steric collision between closely packed molecules at the 2-fold symmetry axes. Detailed analysis of receptor interactions between a variety of echoviruses and DAF using surface plasmon resonance and comparison of this structure (and our previous work; Bhella, D., Goodfellow, I. G., Roversi, P., Pettigrew, D., Chaudhry, Y., Evans, D. J., and Lea, S. M. (2004) J. Biol. Chem. 279, 8325-8332) with reconstructions published for EV7 bound to DAF support major differences in receptor recognition among these viruses. However, comparison of the electron density for the two virus.receptor complexes (rather than comparisons of the pseudo-atomic models derived from fitting the coordinates into these densities) suggests that the dramatic differences in interaction affinities/specificities may arise from relatively subtle structural differences rather than from large-scale repositioning of the receptor with respect to the virus surface.  相似文献   

11.
Enterovirus 71 (EV71) infection is more likely to induce severe complications and mortality than other enteroviruses. Methods for detection of IgM antibody against EV71 had been established for years, however, the performance of the methods in the very early diagnosis of EV71 infection had not been fully evaluated, which is especially meaningful because of the short incubation period of EV71 infection. In this report, the performance of an IgM anti-EV71 assay was evaluated using acute sera collected from 165 EV71 infected patients, 165 patients infected with other enteroviruses, and more than 2,000 sera from healthy children or children with other infected diseases. The results showed a 90% sensitivity in 20 patients who were in their first illness day, and similar sensitivity remained till 4 days after onset. After then the sensitivity increased to 95% to 100% for more than one month. The specificity of the assay in non-HFMD children is 99.1% (95% CI: 98.6–99.4), similar as the 99.9% specificity in healthy adults. The cross-reaction rate in patients infected with other non-EV71 enteroviruses was 11.4%. In conclusion, the data here presented show that the detection of IgM anti-EV71 by ELISA affords a reliable, convenient, and prompt diagnosis of EV71 infection.  相似文献   

12.
The glycosylphosphatidylinositol (GPI)-anchored complement regulatory protein decay-accelerating factor (DAF) is used by a number of enteroviruses as a receptor during infection. DAF and other GPI-anchored proteins can be found in cholesterol-rich ordered domains within the plasma membrane that are known as "lipid rafts." We have shown, by using drugs to specifically inhibit various endocytosis routes, that infection by a DAF-using strain of echovirus 11 (EV11) is dependent upon cholesterol and an intact cytoskeleton, whereas a non-DAF-using mutant derived from it was unaffected by these drugs. Using RNA transfection and virus-binding assays, we have shown that this requirement for cholesterol, the actin cytoskeleton, and the microtubule network occurs postbinding of the virus but prior to uncoating of the RNA, indicating a role during virus entry. Confocal microscopy of virus infection supported the role of cholesterol and the cytoskeleton during entry. In addition, [(35)S]methionine-labeled DAF-using EV11, but not the non-DAF-using EV11, could be copurified with lipid raft components during infection after Triton X-100 extraction. These data indicate that DAF usage by EV11 enables the virus to associate with lipid rafts and enter cells through this novel route.  相似文献   

13.
CD55, or decay-accelerating factor (DAF), is a cell surface glycoprotein which regulates complement activity by accelerating the decay of C3/C5 convertases. Recently, we and others have established that this molecule acts as a cellular receptor for echovirus 7 and related viruses. DAF consists of five domains: four short consensus repeats (SCRs) and a serine/threonine-rich region, attached to the cell surface by a glycosylphosphatidyl inositol anchor. Chinese hamster ovary cells stably transfected with deletion mutants of DAF or DAF-membrane cofactor protein recombinants were analyzed for virus binding. The results indicate that the binding of echovirus 7 to DAF specifically requires SCR2, SCR3, and SCR4. There is also a nonspecific requirement for the S/T-rich region which probably functions to project the binding region away from the cell membrane. The three nonpeptide modifications of DAF, N-linked glycosylation, O-linked glycosylation, and the glycosylphosphatidyl inositol anchor, are not required for virus binding. The SCRs of membrane cofactor protein, the closest known relative of DAF, cannot substitute for those of DAF with retention of virus binding activity. The monoclonal antibody used to identify DAF as an echovirus receptor, and which inhibits binding of the virus (monoclonal antibody 854), binds to SCR3.  相似文献   

14.
 To avoid destruction by complement, normal and malignant cells express membrane glycoproteins that restrict complement activity. These include decay-accelerating factor (DAF, CD55), membrane cofactor protein (MCP, CD46) and protectin (CD59), which are all expressed on colonic adenocarcinoma cells in situ. In this study we have characterised the C3/C5 convertase regulators DAF and MCP on the human colonic adenocarcinoma cell line HT29. DAF was found to be a glycosyl-phosphatidylinositol-anchored 70-kDa glycoprotein. Blocking experiments with F(ab′)2 fragments of the anti-DAF monoclonal antibody BRIC 216 showed that DAF modulates the degree of C3 deposition and mediates resistance to complement-mediated killing of the cells. The expression and function of DAF were enhanced by tumour necrosis factor α (TNFα) and interleukin-1β (IL-1β). Cells incubated with interferon γ (IFNγ) did not alter their DAF expression. Two MCP forms were expressed, with molecular masses of approximately 58 kDa and 68 kDa, the lower form predominating. MCP expression was up-regulated by IL-1β, but not by TNFα or IFNγ. Expression of DAF and MCP promotes resistance of colonic adenocarcinoma cells to complement-mediated damage, and represents a possible mechanism of tumour escape. Received: 18 July 1995 / Accepted: 4 January 1996  相似文献   

15.
NK cells play a critical role in the rejection of xenografts. In this study, we report on an investigation of the effect of complement regulatory protein, a decay accelerating factor (DAF: CD55), in particular, on NK cell-mediated cytolysis. Amelioration of human NK cell-mediated pig endothelial cell (PEC) and pig fibroblast cell lyses by various deletion mutants and point substitutions of DAF was tested, and compared with their complement regulatory function. Although wild-type DAF and the delta-short consensus repeat (SCR) 1-DAF showed clear inhibition of both complement-mediated and NK-mediated PEC lyses, delta-SCR2-DAF and delta-SCR3-DAF failed to suppress either process. However, delta-SCR4-DAF showed a clear complement regulatory effect, but had no effect on NK cells. Conversely, the point substitution of DAF (L147 x F148 to SS and KKK(125-127) to TTT) was half down-regulated in complement inhibitory function, but the inhibition of NK-mediated PEC lysis remained unchanged. Other complement regulatory proteins, such as the cell membrane-bound form factor H, fH-PI, and C1-inactivator, C1-INH-PI, and CD59 were also assessed, but no suppressive effect on NK cell-mediated PEC lysis was found. These data suggest, for DAF to function on NK cells, SCR2-4 is required but no relation to its complement regulatory function exists.  相似文献   

16.
We report the cloning of cDNAs encoding multiple isoforms of the pig analogue of human decay-accelerating factor (DAF; CD55). Screening of a pig muscle cDNA library using a human DAF probe identified a single clone that encoded a DAF-like molecule comprising three short consensus repeats (SCR) homologous with the amino-terminal three SCR in human DAF, a serine/threonine-rich (ST) region, and sequence compatible with a transmembrane domain and cytoplasmic tail. Northern blot and RT-PCR analysis showed that pig DAF was expressed in a wide range of tissues. Additional isoforms of DAF were sought using RT-PCR and 3'-rapid amplification of cDNA ends followed by sequencing. Isoforms containing a GPI anchor and with differing lengths of ST region were identified; no isoform containing a fourth SCR was found. Cloning of the GPI-anchored isoform from granulocytes confirmed that it was identical with the original transmembrane isoform through the three SCR and first portion of ST and was derived from a frame shift caused by splicing out 176 bp of sequence. A panel of mAbs was generated and used to analyze the distribution and anchoring of pig DAF in circulating cells. Pig DAF was expressed on all circulating cells and was transmembrane anchored on erythrocytes, but completely or partially GPI anchored on granulocytes and mononuclear cells. The transmembrane isoform of pig DAF was expressed on Chinese hamster ovary cells and was shown to affect regulatory activity for the classical pathway of human complement, but was only marginally active against pig serum.  相似文献   

17.
Echovirus type 12 (EV12), an Enterovirus of the Picornaviridae family, uses the complement regulator decay-accelerating factor (DAF, CD55) as a cellular receptor. We have calculated a three-dimensional reconstruction of EV12 bound to a fragment of DAF consisting of short consensus repeat domains 3 and 4 from cryo-negative stain electron microscopy data (EMD code 1057). This shows that, as for an earlier reconstruction of the related echovirus type 7 bound to DAF, attachment is not within the viral canyon but occurs close to the 2-fold symmetry axes. Despite this general similarity our reconstruction reveals a receptor interaction that is quite different from that observed for EV7. Fitting of the crystallographic co-ordinates for DAF(34) and EV11 into the reconstruction shows a close agreement between the crystal structure of the receptor fragment and the density for the virus-bound receptor, allowing unambiguous positioning of the receptor with respect to the virion (PDB code 1UPN). Our finding that the mode of virus-receptor interaction in EV12 is distinct from that seen for EV7 raises interesting questions regarding the evolution and biological significance of the DAF binding phenotype in these viruses.  相似文献   

18.
Enterovirus type 70, an etiologic agent of acute hemorrhagic conjunctivitis, may bind different cellular receptors depending on cell type. To understand how EV70-receptor interaction is controlled, we studied two variants of the virus with distinct receptor utilization. EV70-Rmk, derived by passage in rhesus monkey kidney cells, replicates poorly in HeLa cells and does not cause cytopathic effects. Decay accelerating factor (DAF) is not a cell receptor for EV70-Rmk. Passage of EV70-Rmk in HeLa cells lead to isolation of EV70-Dne, which does not replicate in rhesus monkey kidney cells but grows to high titers in HeLa cells and causes cytopathic effects. DAF is sufficient for cell entry of EV70-Dne. EV70-Rmk replicates in human eye and brain-derived cell lines, whereas the Dne strain replicates only in HeLa cells and in conjunctiva-derived 15C4 cells. The two EV70 strains differ by five amino acid changes in the viral capsid. Single substitution of four of the five EV70-Rmk amino acids with the residue from EV70-Dne leads to lytic replication in HeLa cells. Conversely, substitution of any of the five EV70-Dne amino acids with the EV70-Rmk amino acid does not alter replication in HeLa cells. Three of these capsid amino acids are predicted to be located in the canyon encircling the fivefold axis of symmetry, one amino acid is found at the fivefold axis of symmetry, and one is located the interior of the capsid. The five EV70 residues define a region of the capsid that controls viral host range, DAF utilization, and cytopathogenicity.  相似文献   

19.

Background

Clinical manifestations of enterovirus 71 (EV71) range from herpangina, hand-foot-and-mouth disease (HFMD), to severe neurological complications. Unlike the situation of switching genotypes seen in EV71 outbreaks during 1998–2008 in Taiwan, genotype B5 was responsible for two large outbreaks in 2008 and 2012, respectively. In China, by contrast, EV71 often persists as a single genotype in the population and causes frequent outbreaks. To investigate genetic changes in viral evolution, complete EV71 genome sequences were used to analyze the intra-genotypic evolution pattern in Taiwan, China, and the Netherlands.

Results

Genotype B5 was predominant in Taiwan’s 2008 outbreak and was re-emergent in 2012. EV71 strains from both outbreaks were phylogenetically segregated into two lineages containing fourteen non-synonymous substitutions predominantly in the non-structural protein coding region. In China, genotype C4 was first seen in 1998 and caused the latest large outbreak in 2008. Unlike shifting genotypes in Taiwan, genotype C4 persisted with progressive drift through time. A majority of non-synonymous mutations occurred in residues located in the non-structural coding region, showing annual increases. Interestingly, genotype B1/B2 in the Netherlands showed another stepwise evolution with dramatic EV71 activity increase in 1986. Phylogeny of the VP1 coding region in 1971–1986 exhibited similar lineage turnover with genotype C4 in China; however, phylogeny of the 3D-encoding region indicated separate lineage appearing after 1983, suggesting that the 3D-encoding region of genotype B2 was derived from an unidentified ancestor that contributed to intra-genotypic evolution in the Netherlands.

Conclusions

Unlike VP1 coding sequences long used for phylogenetic study of enteroviruses due to expected host immune escape, our study emphasizes a dominant role of non-synonymous mutations in non-structural protein regions that contribute to (re-)emergent genotypes in continuous stepwise evolution. Dozens of amino acid substitutions, especially in non-structural proteins, were identified via genetic changes driven through intra-genotypic evolution worldwide. These identified substitutions appeared to increase viral fitness in the population, affording valuable insights not only for viral evolution but also for prevention, control, and vaccine against EV71 infection.  相似文献   

20.
Decay accelerating factor (DAF) is a glycophospholipid-anchored membrane protein that is part of the regulators of complement activation (RCA) gene family located on human chromosome 1, band q32. These proteins, beginning at their amino terminus, consist largely of multiple copies of an approximately 60 amino acid short consensus repeat (SCR). A DAF cDNA clone was used to identify overlapping bacteriophage genomic clones. The human DAF gene spans approximately 40 kb and consists of 11 exons. The length of these exons and introns varies considerably, with the exons ranging from 21 to 956 bp and the introns ranging from approximately 0.5 to 19.8 kb. SCR I, II, and IV are all encoded by single exons; however, SCR III is encoded by two separate exons, with the splice junction occurring after the second nucleotide of the codon for the glycine residue at position 34 of the consensus sequence. This feature has also been found in CR1, CR2, membrane cofactor protein, and murine factor H. Following the SCR in DAF is a 76 amino acid serine/threonine-rich domain encoded on three separate exons. Exon 10 encodes the Alu family sequence that has been found as an insert in a minor class of DAF cDNA, thus indicating that this mRNA arises by standard alternative splicing. The last DAF exon, which comes after the largest intron of 19.8 kb, encodes the hydrophobic carboxy terminus and the 3'UT region. The nature of the signal that directs posttranslational attachment of a glycophospholipid anchor to DAF is not known, but that signal is apparently spread over three exons and greater than 20 kb. An analysis of the DAF gene provides additional evidence for the common evolutionary heritage of the RCA gene family. The exon/intron structure of this gene will facilitate experiments aimed at understanding the functions of the various domains of DAF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号