首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of high mobility group protein 1 (HMG 1) isolated from chicken erythrocytes with DNA has been characterized using the intrinsic tryptophan fluorescence of the protein as a probe. It was found that the fluorescence is quenched approximately 30% upon binding to either single- or double-stranded DNA. Fluorescent titrations indicate that the physical site size for HMG 1 binding on native DNA is approximately 14 base pairs (or 14 bases for binding to single-stranded DNA). Binding to single-stranded poly(dA) is only slightly dependent on ionic strength, although the affinity for double-stranded DNA is strongly ionic strength-dependent and has an optimum at approximately 100-120 mM Na+. Above this range, binding to native DNA is virtually all electrostatic in nature. Although the affinity of HMG 1 for single-stranded DNA is higher than that for double-stranded DNA at the extremes of the ionic range studied, no clear evidence for a helix-destabilizing activity was obtained. At low ionic strength, the protein actually stabilized DNA against thermal denaturation, while at high ionic strength, HMG 1 appears to undergo denaturation below the Tm of the DNA. Studies of the environment of the tryptophan fluorophores using collisional quenchers iodide, cesium, and acrylamide suggest that the predominant fluorophore is relatively exposed but constrained in a rigid, positively charged environment.  相似文献   

2.
The enzyme kinetic studies with endonucleases specific for single-stranded DNA and the thermal denaturation analyses of DNA showed that a high mobility group (HMG) nonhistone protein fraction HMG (1 + 2), composed of HMG1 and HMG2, has an activity to unwind DNA partially at low protein-to-DNA weight ratio. Isolated HMG1 and HMG2 have the same activity. Divalent cations such as Mg++ or Ca++ were necessary for the unwinding reaction. A peptide containing high glutamic and aspartic (HGA) region, isolated from the tryptic digest of HMG (1 + 2), unwound DNA depending on the presence of Mg++ or Ca++, suggesting that the HMA region in HMG protein is the active site for the DNA unwinding reaction. Poly-L-glutamic acid, employed as a model peptide of the HGA region, showed the activity. Finally, mechanisms of the DNA unwinding reaction by the HMG protein and possible role of the divalent cations are discussed.  相似文献   

3.
A high mobility group (HMG) nonhistone protein fraction HMG(1 + 2), composed of HMG1 and HMG2, was prepared from pig thymus chromatin. In order to examine a possibility that the HMG(1 + 2) participates in the unwinding of the DNA double-helix, DNA hydrolysis assay systems with the endonucleases specific for single-stranded DNA were employed. In the presence of HMG(1 + 2), the hydrolysis of double-stranded DNA by N. crassa endonuclease was markedly promoted, while the hydrolysis of single-stranded DNA was hardly enhanced. The reaction kinetic data showed that the stimulation of the hydrolysis of double-stranded DNA in the presence of HMG(1 + 2) was due to the unwinding of the DNA double-helix by the HMG(1 + 2), and not due to stimulation of enzyme activity of the endonuclease by the protein. The unwinding reactions were dependent on the HMG protein concentration at low weight protein to DNA ratios and reached a maximum at the ratio of 0.025. The region unwound in the whole DNA was partial. Similar results were obtained for experiments with nuclease S1. Isolated HMG1 and HMG2 fractions showed DNA unwinding activity of similar extents. The association constant obtained by fluorescence quenching analysis showed that the HMG(1 + 2) has higher affinity to single-stranded DNA than to double-stranded DNA. The susceptibility to the unwinding differed with the DNA source. These results suggest that HMG(1 + 2) at a low weight protein to DNA ratio binds to some limited double-stranded region in DNA and unwinds the DNA partially.  相似文献   

4.
The effect of phosphorylation on the affinity of HMG 14 from calf thymus for single-stranded DNA (ssDNA) was studied, using a cyclic GMP-dependent protein kinase from bovine lung and a nuclear protein kinase II from rat liver. When phosphorylated by G-kinase, HMG 14 eluted at 0.27 M NaCl from the ssDNA-column, whereas the native protein eluted at 0.30 M salt concentration. In contrast, phosphorylation by nuclear protein kinase II did not alter dissociation of HMG 14 from ssDNA and the phosphoprotein consequently coeluted with the native HMG 14. Thus, addition of a negative charge by phosphorylation of the Ser-6 residue by G-kinase presumably weakens the interaction between the DNA-binding amino acids of HMG 14 and the negatively charged phosphate groups of DNA.  相似文献   

5.
A nonhistone chromosomal protein, high mobility group (HMG) 1, is ubiquitous in higher eukaryotic cells and binds preferentially to cisplatin-modified DNA. HMG1 also functions as a coactivator of p53, a tumor suppressor protein. We investigated physical interactions between HMG1 and p53 and the influence of p53 on the ability of HMG1 to recognize damaged DNA. Using immunochemical coprecipitation, we observed binding of HMG1 and p53. Interaction between HMG1 and p53 required the HMG A box of HMG1 and amino acids 363-376 of p53. Cisplatin-modified DNA binding by HMG1 was significantly enhanced by p53. An HMG1-specific antibody that recognized the A box of this protein also stimulated cisplatin-modified DNA binding. These data suggest that an interaction with either p53 or antibody may induce conformational change in the HMG1 A box that optimizes DNA binding by HMG1. Interaction of p53 with HMG1 after DNA damage may promote activation of specific HMG1 binding to damaged DNA in vivo and provide a molecular link between DNA damage and p53-mediated DNA repair.  相似文献   

6.
7.
The postsynthetic acetylation of HMG1 protein has been known for more than 20 years, but the effect of this modification on the properties of the protein has not been studied so far. Acetylated HMG1 was isolated from cells grown in the presence of sodium n-butyrate and identified as a monoacetylated protein, modified at lysine 2. Acetylated and parental forms of HMG1 were compared relative to their binding affinity to distorted DNA structures. By using mobility shift assay to determine the dissociation constants, we show that acetylation enhanced the ability of HMG1 to recognize UV light- or cisplatin-damaged DNA and four-way junctions. Since the modified lysine lies adjacent to the HMG1 DNA-binding domain, the results obtained were attributed to acetylation-induced conformational change in HMG1. The potential role of acetylation in modulating the interactions of HMG1 with both damaged DNA and other proteins is discussed.  相似文献   

8.
The distribution, quantitation, and synthesis of high mobility group (HMG) proteins during spermatogenesis in the rat have been determined. HMG1, -2, -14, and -17 were isolated from rat testes by Bio-Rex 70 chromatography combined with preparative gel electrophoresis. Amino acid analysis revealed that each rat testis HMG protein was similar to its calf thymus analogue. Tryptic peptide maps of somatic and testis HMG2 showed no differences and, therefore, failed to detect an HMG2 variant. Testis levels of HMG proteins, relative to DNA content, were equivalent to other tissues for HMG1 (13 micrograms/mg of DNA), HMG14 (3 micrograms/mg of DNA), and HMG17 (5 micrograms/mg of DNA). The testis was distinguished in that it contained a substantially higher level of HMG2 than any other rat tissue (32 micrograms/mg of DNA). HMG protein levels were determined from purified or enriched populations of testis cells representing the major stages of spermatogenesis; spermatogonia and early primary spermatocytes, pachytene spermatocytes, early spermatids, and late spermatids; and testicular somatic cells. High levels of HMG2 in the testis were due to pachytene spermatocytes and early spermatids (56 +/- 4 and 47 +/- 6 micrograms/mg of DNA, respectively). Mixtures of spermatogonia and early primary spermatocytes showed lower levels of HMG2 (12 +/- 3 micrograms/mg of DNA) similar to proliferating somatic tissues, whereas late spermatids had no detectable HMG proteins. The somatic cells of the testis, including isolated populations of Sertoli and Leydig cells, showed very low levels of HMG2 (2 micrograms/mg of DNA), similar to those in nonproliferating somatic tissues. HMG proteins were synthesized in spermatogonia and primary spermatocytes, but not in spermatids. Rat testis HMG2 exhibited two bands on acid-urea gels. A "slow" form comigrated with somatic cell HMG2, while the other "fast" band migrated ahead of the somatic form and appeared to be testis-specific. The "fast" form of HMG2 accounted for the large increase of HMG2 levels in rat testes. These results show that the very high level of HMG2 in testis is not associated with proliferative activity as previously hypothesized.  相似文献   

9.
The high mobility group (HMG) protein HMG-D from Drosophila melanogaster is a highly abundant chromosomal protein that is closely related to the vertebrate HMG domain proteins HMG1 and HMG2. In general, chromosomal HMG domain proteins lack sequence specificity. However, using both NMR spectroscopy and standard biochemical techniques we show that binding of HMG-D to a single DNA site is sequence selective. The preferred duplex DNA binding site comprises at least 5 bp and contains the deformable dinucleotide TG embedded in A/T-rich sequences. The TG motif constitutes a common core element in the binding sites of the well-characterized sequence-specific HMG domain proteins. We show that a conserved aromatic residue in helix 1 of the HMG domain may be involved in recognition of this core sequence. In common with other HMG domain proteins HMG-D binds preferentially to DNA sites that are stably bent and underwound, therefore HMG-D can be considered an architecture-specific protein. Finally, we show that HMG-D bends DNA and may confer a superhelical DNA conformation at a natural DNA binding site in the Drosophila fushi tarazu scaffold-associated region.  相似文献   

10.
We have used affinity chromatography to study the effects of phosphorylation of calf thymus high-mobility-group proteins HMG 14 and HMG 17 on their binding properties towards calf thymus single- and double-stranded DNA and histone H1. Without in vitro phosphorylation, HMG 14 and HMG17 eluted from doble-stranded DNA-columns at 200 mM NaCl. HMG 14 was released from single-stranded DNA-column at 300 mM NaCl and from H1-column at 130 mM NaCl, whereas the corresponding values for HMG 17 were 230 mM and 20 mM, respectively. Phosphorylation of HMG 14 and HMG 17 by cAMP-dependent protein kinase (A-kinase) decreased markedly their affinity (270 mM and 200 mM NaCl, respectively) for single-stranded DNA, whereas HMG 14 phosphorylated by nuclear protein kinase II (NII-kinase) eluted only slightly (290 mM NaCl) ahead of the unphosphorylated protein. HMG 14 phosphorylated by both A-kinase and NII-kinase eluted from double-stranded DNA-columns almost identically (190 mM NaCl) with the unphosphorylated protein. Interestingly, phosphorylation of HMG 14 by NII-kinase increased considerably its affinity for histone H1 and the phosphorylated protein eluted at 200 mM NaCl. Phosphorylation of HMG 14 by A-kinase did not alter its interaction towards histone H1. These results indicate that modification of HMG 14 by phosphorylation at specific sites may have profound effects on its binding properties towards DNA and histone H1, and that HMG 17 has much weaker affinity for single-stranded DNA and histone H1 than HMG 14.  相似文献   

11.
Nuclear accumulation of HMG1 protein is correlated to DNA synthesis   总被引:2,自引:0,他引:2  
The subcellular localization of HMG1 protein was studied by immunoelectron microscopy during growth of CV1 cells in culture and in confluent CV1 cells subsequently lytically infected with SV40. HMG1 was always detected in the cytoplasm of both non-infected and infected cells. On the other hand, this protein displayed a nuclear localization only in those cells active in cellular and/or viral DNA replication, that is, in actively dividing non-infected cells and in confluent cells following SV40 infection. The combination of electron microscope immunocytochemistry and autoradiography revealed that during SV40 lytic infection, HMG1 accumulates at sites of active viral DNA replication. Since HMG1 is a single-stranded DNA binding protein and acts in vitro as a physiological nucleosome assembly factor, we suggest that its presence in the nucleus is related to its requirement in the DNA replication process.  相似文献   

12.
Rep protein as a helicase combines its actions with those of gene A protein and single-stranded DNA binding protein to separate the strands of phi X174 duplex DNA and thereby can generate and advance a replication fork (Scott, J. F., Eisenberg, S., Bertsch, L. L., and Kornberg, A. (1977) Proc. Natl. Acad. Sci. U. S. A. 74, 193-197). Tritium-labeled rep protein is bound in an active gene A protein. phi X174 closed circular duplex supercoiled DNA complex in a 1:1 ratio. Catalytic separation of the strands of the duplex by rep protein, as measured by incorporation of tritium-labeled single-stranded DNA binding protein, requires ATP at a Km value of 8 microM, and hydrolyzes two molecules of ATP for every base pair melted. When coupled to replication in the synthesis of single-strand viral circles, a "looped" rolling-circle intermediate is formed that can be isolated in an active form containing gene A protein, rep protein, single-stranded DNA binding protein, and DNA polymerase III holoenzyme. Unlike the binding of rep protein to single-stranded DNA, where its ATPase activity is distributive, binding to the replicating fork is not affected by ATP, further suggesting a processive action linked to gene A protein. Limited tryptic hydrolysis of rep protein abolishes its replicative activity without affecting significantly its binding of ATP and its ATPase action on single-stranded DNA. These results augment earlier findings by describing the larger role of rep proteins as a helicase, linked in a complex ith other proteins, at the replication fork of a duplex DNA.  相似文献   

13.
The bacteriophage T4 gene 59 helicase assembly protein is required for recombination-dependent DNA replication, which is the predominant mode of DNA replication in the late stage of T4 infection. T4 gene 59 helicase assembly protein accelerates the loading of the T4 gene 41 helicase during DNA synthesis by the T4 replication system in vitro. T4 gene 59 helicase assembly protein binds to both T4 gene 41 helicase and T4 gene 32 single-stranded DNA binding protein, and to single and double-stranded DNA. We show here that T4 gene 59 helicase assembly protein binds most tightly to fork DNA substrates, with either single or almost entirely double-stranded arms. Our studies suggest that the helicase assembly protein is responsible for loading T4 gene 41 helicase specifically at replication forks, and that its binding sites for each arm must hold more than six, but not more than 12 nucleotides. The 1.45 A resolution crystal structure of the full-length 217-residue monomeric T4 gene 59 helicase assembly protein reveals a novel alpha-helical bundle fold with two domains of similar size. Surface residues are predominantly basic (pI 9.37) with clusters of acidic residues but exposed hydrophobic residues suggest sites for potential contact with DNA and with other protein molecules. The N-terminal domain has structural similarity to the double-stranded DNA binding domain of rat HMG1A. We propose a speculative model of how the T4 gene 59 helicase assembly protein might bind to fork DNA based on the similarity to HMG1, the location of the basic and hydrophobic regions, and the site size of the fork arms needed for tight fork DNA binding. The fork-binding model suggests putative binding sites for the T4 gene 32 single-stranded DNA binding protein and for the hexameric T4 gene 41 helicase assembly.  相似文献   

14.
15.
The ROX1 gene of Saccharomyces cerevisiae encodes a protein required for the repression of genes expressed under anaerobic conditions. ROX1 belongs to a family of DNA binding proteins which contain the high mobility group motif (HMG domain). To ascertain whether the HMG domain of ROX1 is required for specific DNA binding we synthesized a series of ROX1 protein derivatives, either in vitro or in Escherichia coli as fusions to glutathione S-transferase (GST) protein, and tested them for their ability to bind to DNA. Both ROX1 proteins that were synthesized in vitro and GST-ROX1 fusion proteins containing the intact HMG domain were able to bind to specific target DNA sequences. In contrast, ROX1 proteins which contained deletions within the HMG domain were no longer capable of binding to DNA. The oligomerization of ROX1 in vitro was demonstrated using affinity-purified GST-ROXI protein and ROX1 labelled with [35S]methionine. Using various ROX1 protein derivatives we were able to demonstrate that the domain required for ROX1-ROX1 interaction resides within the N-terminal 100 amino acids which constitute the HMG domain. Therefore, the HMG domain is required for both DNA binding activity and oligomerization of ROX1.  相似文献   

16.
We established a simple and efficient method for gene transfer in vitro (to cultured cells) and in vivo (to an adult organ) using liposomes. Plasmid DNA and proteins were efficiently co-encapsulated in liposomes by agitation and sonication, and were co-introduced into cells by hemagglutinating virus of Japan (HVJ)-mediated membrane fusion. Introduction of the Escherichia coli beta-galactosidase gene with non-histone chromosomal protein high mobility group 1 (HMG1) into LLCMK2 cells resulted in about 3 times higher beta-galactosidase activity than that on introduction of the gene alone. Two days after injection of HVJ-liposomes containing the beta-galactosidase gene and HMG1 under the perisplanchnic membrane of adult rat liver, hepatic cells near the injection site were found by 5-bromo-4-chloro-3-indolyl beta-D-galactoside staining to have beta-galactosidase activity. After similar injection of HVJ-liposomes containing the hepatitis B virus surface antigen (HBsAg) gene and HMG1, HBsAg was detected in the serum for 9 days with a maximum of 25-45 ng/ml on day 2 after the injection.  相似文献   

17.
A number of criteria were used—chromatography on columns with single-stranded and double-stranded DNA, electrophoresis, peptide analysis, immunological tests and thermal denaturation of DNA—to show that protein (high mobility group) HMG1 and an unwinding protein from calf thymus are two distinct, unrelated proteins. While both proteins are thought to be related to DNA replication this might involve different mechanisms of action.  相似文献   

18.
We have used an electrophoretic retardation assay to investigate the interactions of wheat high mobility group (HMG) proteins with DNA and with isolated trimmed mononucleosomes (complexes which contain a histone octamer and approximately 146 base pairs of DNA). In order to characterize these interactions, we have compared the binding of each of the wheat HMG proteins, HMGa, b, c, and d, with those of the low molecular weight chicken HMG proteins HMG14 and 17. These vertebrate animal HMG proteins have previously been shown to occupy two specific binding sites on animal nucleosomes and to have a greater affinity for nucleosomes than for naked DNA (Mardian, J. K. W., Paton, A. E., Bunick, G. J., and Olins, D. E. (1980) Science 209, 1534-1536; Sandeen, G., Wood, W. I., and Felsenfeld, G. (1980) Nucleic Acids Res. 8, 3757-3778). As a criterion for "specific binding," we have used the property of HMG14 and 17 binding of causing a discontinuous shift of nucleosomes to a distinct band of lower electrophoretic mobility. According to this criterion, wheat HMGb, c, and d do not bind nucleosomes specifically. These HMG proteins have approximately the same affinity for nucleosomes and naked DNA. Wheat HMGa does bind nucleosomes specifically by this criterion, but other aspects of the binding are reminiscent of histone H1-nucleosome binding. We present evidence that trimmed mononucleosomes of wheat are conformationally distinct from their animal counterparts. Despite the conformational differences, competition studies indicate that chicken and wheat mononucleosomes have essentially identical affinity for the low molecular weight animal HMG proteins.  相似文献   

19.
20.
A 29 kD soluble rat liver nucleoprotein (p29) has increased binding affinity for the hormone responsive element (RE) of the rat haptoglobin (Hp) gene during the acute-phase reaction. In this work the possibility of its structural and functional homology to the high mobility group 1 (HMG1) nonhistone protein constituent of chromatin was examined. The results of two-dimensional gel electrophoresis, Southwestern and Western immunoblot analyses, showed that p29 and HMG1 are homologous protein species. On the basis of in vitro and in vivo phosphorylation/dephosphorylation experiments, we discuss the modulatory role of phosphate groups in view of the structure and function of p29.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号