首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organophosphate hydrolases (OPHs), involved in hydrolytic cleavage of structurally diverse organophosphates are coded by a plasmid borne, highly conserved organophosphate degrading (opd) gene. An inverted repeat sequence found in the signal coding region of the opd gene was found to be responsible for inducing a stable stem loop structure with a ΔG of −23.1 kcal/mol. This stem loop structure has shown significant influence on the expression levels of organophosphate hydrolase (OPH) in E. coli. When the signal coding region comprising the inverted repeat sequence was deleted a ∼3.28 fold increase in the expression levels of OPH was noticed in E. coli BL21 cells. Mutations in the inverted repeat region, especially at the third position of the codon, to a non-complementary base destabilized the secondary structure of opd mRNA. When such opd variant, opd′ was expressed, the expression levels were found to be similar to expression levels coded by the construct generated by deleting the signal peptide coding region. Deletion of signal peptide did not influence the folding and activity of OPH. Though high level induction has resulted in accumulation of OPH as inclusion bodies, modulation of expression levels by reducing the copy number of the expression plasmid, inducer concentration and growth temperature has produced majority of the protein in soluble and active form.  相似文献   

2.
We isolated a bacterial strain, Agrobacterium radiobacter P230, which can hydrolyze a wide range of organophosphate (OP) insecticides. A gene encoding a protein involved in OP hydrolysis was cloned from A. radiobacter P230 and sequenced. This gene (called opdA) had sequence similarity to opd, a gene previously shown to encode an OP-hydrolyzing enzyme in Flavobacterium sp. strain ATCC 27551 and Brevundimonas diminuta MG. Insertional mutation of the opdA gene produced a strain lacking the ability to hydrolyze OPs, suggesting that this is the only gene encoding an OP-hydrolyzing enzyme in A. radiobacter P230. The OPH and OpdA proteins, encoded by opd and opdA, respectively, were overexpressed and purified as maltose-binding proteins, and the maltose-binding protein moiety was cleaved and removed. Neither protein was able to hydrolyze the aliphatic OP malathion. The kinetics of the two proteins for diethyl OPs were comparable. For dimethyl OPs, OpdA had a higher kcat than OPH. It was also capable of hydrolyzing the dimethyl OPs phosmet and fenthion, which were not hydrolyzed at detectable levels by OPH.  相似文献   

3.
A twin arginine translocation (Tat) motif, involved in transport of folded proteins across the inner membrane, was identified in the signal peptide of the membrane-associated organophosphate hydrolase (OPH) of Brevundimonas diminuta. Expression of the precursor form of OPH carrying a C-terminal His tag in an opd-negative background and subsequent immunoblotting with anti-His antibodies showed that only the mature form of OPH associated with the membrane and that the precursor form of OPH was entirely found in the cytoplasm. When OPH was expressed without the signal peptide, most of it remained in the cytoplasm, where it was apparently correctly folded and showed activity comparable to that of the membrane-associated OPH encoded by the wild-type opd gene. Amino acid substitutions in the invariant arginine residues of the Tat signal peptide affected both the processing and localization of OPH, confirming a critical role for the Tat system in membrane targeting of OPH in B. diminuta. The localization of OPH to the periplasmic face of the inner membrane in B. diminuta was demonstrated by proteinase K treatment of spheroplasts and also by fluorescence-activated cell sorting analysis of cells expressing OPH-green fluorescent protein fusions with and without an SsrA tag that targets cytoplasmic proteins to the ClpXP protease.Bacterial organophosphate hydrolases (OPH), also known as phosphotriesterases, have been shown to hydrolyze a structurally diverse group of phosphotriesters used as insecticides and chemical warfare agents (26, 37). The genetic information required to encode these dimeric metalloenzymes is highly conserved and often located on plasmids known as organophosphate-degrading (opd) plasmids (27). Among the opd plasmids, pPDL2 (40 kb), isolated from Flavobacterium sp. strain ATCC27551, and pCMS1 (66 kb), isolated from Brevundimonas diminuta (formerly Pseudomonas diminuta), are well characterized (27). In these two indigenous plasmids, a 7-kb region that includes the 1.5-kb organophosphate-degrading (opd) gene is highly conserved and has the features of a complex transposon (38).OPH has been crystallized from a number of sources and has been shown to be a dimeric metalloenzyme with zinc at its catalytic center (1, 2, 28). In Flavobacterium and B. diminuta, the protein has been shown to be membrane associated, and a 29-amino-acid-long signal peptide found in its precursor form has been deduced to be responsible for membrane targeting (24, 25, 36). A similar signal sequence is also encoded in opd genes identified in Agrobacterium radiobacter (15) and Sphingomonas sp. strain JK1 (GenBank accession no. ACD85809). While the conservation of a signal peptide in this group of organophosphate hydrolases has been recognized for some time, its biological role and its precise involvement in the membrane localization of OPH have not been investigated. In this study, we expressed OPH with a C-terminal His tag in opd-negative mutants of B. diminuta and established a system to differentiate and localize precursor and mature forms of OPH. We have used this system, together with mutagenesis of the signal peptide-encoding region of the opd gene, to demonstrate that membrane targeting of OPH is dependent on the twin arginine translocation (Tat) protein secretion pathway, which facilitates localization of OPH to the periplasmic face of the inner membrane.  相似文献   

4.
Chlorpyrifos is one of the most popular pesticides used for agriculture crop protection, and widespread contamination is a potential concern. However, chlorpyrifos is hydrolyzed almost 1,000-fold slower than the preferred substrate, paraoxon, by organophosphorus hydrolase (OPH), an enzyme that can degrade a broad range of organophosphate pesticides. We have recently demonstrated that directed evolution can be used to generate OPH variants with up to 25-fold improvement in hydrolysis of methyl parathion. The obvious question and challenge are whether similar success could be achieved with this poorly hydrolyzed substrate, chlorpyrifos. For this study, five improved variants were selected from two rounds of directed evolution based on the formation of clear haloes on Luria-Bertani plates overlaid with chlorpyrifos. One variant, B3561, exhibited a 725-fold increase in the kcat/Km value for chlorpyrifos hydrolysis as well as enhanced hydrolysis rates for several other OP compounds tested. Considering that wild-type OPH hydrolyzes paraoxon at a rate close to the diffusion control limit, the 39-fold improvement in hydrolysis of paraoxon by B3561 suggests that this variant is one of the most efficient enzymes available to attack a wide spectrum of organophosphate nerve agents.  相似文献   

5.
A genetically engineered Escherichia coli cell expressing both organophosphorus hydrolase (OPH) and a cellulose-binding domain (CBD) on the cell surface was constructed, enabling the simultaneous hydrolysis of organophosphate nerve agents and immobilization via specific adsorption to cellulose. OPH was displayed on the cell surface by use of the truncated ice nucleation protein (INPNC) fusion system, while the CBD was surface anchored by the Lpp-OmpA fusion system. Production of both INPNC-OPH and Lpp-OmpA-CBD fusion proteins was verified by immunoblotting, and the surface localization of OPH and the CBD was confirmed by immunofluorescence microscopy. Whole-cell immobilization with the surface-anchored CBD was very specific, forming essentially a monolayer of cells on different supports, as shown by electron micrographs. Optimal levels of OPH activity and binding affinity to cellulose supports were achieved by investigating expression under different induction levels. Immobilized cells degraded paraoxon rapidly at an initial rate of 0.65 mM/min/g of cells (dry weight) and retained almost 100% efficiency over a period of 45 days. Owing to its superior degradation capacity and affinity to cellulose, this immobilized-cell system should be an attractive alternative for large-scale detoxification of organophosphate nerve agents.  相似文献   

6.
Oil-producing fungus Mortierella alpina 1S-4 is an industrial strain. To determine its physiological properties and to clarify the biosynthetic pathways for polyunsaturated fatty acids, a transformation system for this fungus was established using a derivative of it, i.e., a ura5 mutant lacking orotate phosphoribosyl transferase (OPRTase, EC.2.4.2.10) activity. Transformation with a vector containing the homologous ura5 gene as a marker was successfully performed using microprojectile bombardment, other methods frequently used for transformation, such as the protoplasting, lithium acetate, or electroporation methods, not giving satisfactory results. As a result, two types of transformants were obtained: a few stable transformants overexpressing the ura5 gene, and many unstable transformants showing OPRTase activity comparable to that of the wild-type strain. The results of quantitative PCR indicated that the stable transformants could retain the ura5 genes originating from the transformation vector regardless of the culture conditions. On the other hand, unstable transformants easily lost the marker gene under uracil-containing conditions, as expected. In this paper, we report that an overall transformation system for this fungus was successfully established, and propose how to select useful transformants as experimental and industrial strains.  相似文献   

7.
Organophosphorus hydrolase (OPH) hydrolyzes organophosphorus esters. We constructed the yeast-displayed OPH using Flo1p anchor system. In this system, the N-terminal region of the protein was fused to Flo1p and the fusion protein was displayed on the cell surface. Hydrolytic reactions with paraoxon were carried out during 24 h of incubation of OPH-displaying cells at 30°C. p-Nitrophenol produced in the reaction mixture was detected by HPLC. The strain with highest activity showed 8-fold greater OPH activity compared with cells engineered using glycosylphosphatidylinositol anchor system, and showed 20-fold greater activity than Escherichia coli using the ice nucleation protein anchor system. These results indicate that Flo1p anchor system is suitable for display of OPH in the cell surface-expression systems.  相似文献   

8.
Organophosphorus hydrolase (OPH) is capable of hydrolyzing a wide variety of organophosphorus pesticides and chemical warfare agents. However, the hydrolytic activity of OPH against the warfare agent VX is less than 0.1% relative to its activity against parathion and paraoxon. Based on the crystal structure of OPH and the similarities it shares with acetylcholinesterase, eight OPH mutants were constructed with the goal of increasing OPH activity toward VX. The activities of crude extracts from these mutants were measured using VX, demeton-S methyl, diisopropylfluoro-phosphate, ethyl parathion, paraoxon, and EPN as substrates. One mutant (L136Y) displayed a 33% increase in the relative VX hydrolysis rate compared to wild type enzyme. The other seven mutations resulted in 55-76% decreases in the relative rates of VX hydrolysis. There was no apparent relationship between the hydrolysis rates of VX and the rates of the other organophosphorus compounds tested.  相似文献   

9.
One of the major extracellular enzymes of the white-rot fungus Coriolus versicolor is laccase, which is involved in the degradation of lignin. We constructed a homologous system for the expression of a gene for laccase III (cvl3) in C. versicolor, using a chimeric laccase gene driven by the promoter of a gene for glyceraldehyde-3-phosphate dehydrogenase (gpd) from this fungus. We transformed C. versicolor successfully by introducing both a gene for hygromycin B phosphotransferase (hph) and the chimeric laccase gene. In three independent experiments, we recovered 47 hygromycin-resistant transformants at a transformation frequency of 13 transformants g–1 of plasmid DNA. We confirmed the introduction of the chimeric laccase gene into the mycelia of transformants by a polymerase chain reaction in nine randomly selected transformants. Overproduction of extracellular laccase by the transformants was revealed by a colorimetric assay for laccase activity. We examined the transformant (T2) that had the highest laccase activity and found that its activity was significantly higher than that of the wild type, particularly in the presence of copper (II). Our transformation system should contribute to the efficient production of the extracellular proteins of C. versicolor for the accelerated degradation of lignin and aromatic pollutants.  相似文献   

10.
Summary We have developed a simple and efficient transformation system for the dimorphic fungus Histoplasma capsulatum. Mutants of H. capsulatum defective in orotidine-5-monophosphate pyrophosphorylase were transformed to prototrophy by the cloned URA5 gene of the filamentous fungus Podospora anserina. Abortive and mitotically stable transformants were obtained. The stable transformants had integrated copies of the plasmid, some in tandem head-to-tail orientation. Free plasmid identical to the transforming plasmid was present in some of the transformants. We obtained a transformation efficiency of up to 30 transformants/g DNA for plasmid pPAura5-1 (9.2 kb). pPW2001, a smaller plasmid (4.7 kb) derived from pPAura5-1, transformed H. capsulatum more efficiently (up to 155 transformants/gm DNA).  相似文献   

11.
Chlorpyrifos is one of the most popular pesticides used for agriculture crop protection, and widespread contamination is a potential concern. However, chlorpyrifos is hydrolyzed almost 1,000-fold slower than the preferred substrate, paraoxon, by organophosphorus hydrolase (OPH), an enzyme that can degrade a broad range of organophosphate pesticides. We have recently demonstrated that directed evolution can be used to generate OPH variants with up to 25-fold improvement in hydrolysis of methyl parathion. The obvious question and challenge are whether similar success could be achieved with this poorly hydrolyzed substrate, chlorpyrifos. For this study, five improved variants were selected from two rounds of directed evolution based on the formation of clear haloes on Luria-Bertani plates overlaid with chlorpyrifos. One variant, B3561, exhibited a 725-fold increase in the k(cat)/K(m) value for chlorpyrifos hydrolysis as well as enhanced hydrolysis rates for several other OP compounds tested. Considering that wild-type OPH hydrolyzes paraoxon at a rate close to the diffusion control limit, the 39-fold improvement in hydrolysis of paraoxon by B3561 suggests that this variant is one of the most efficient enzymes available to attack a wide spectrum of organophosphate nerve agents.  相似文献   

12.
Organophosphorus hydrolase (OPH) is a bacterial enzyme that has been shown to degrade a wide range of neurotoxic organophosphate nerve agents. However, the effectiveness of degradation varies dramatically, ranging from highly efficient with paraoxon to relatively slow with methyl parathion. Sequential cycles of DNA shuffling and screening were used to fine-tune and enhance the activity of OPH towards poorly degraded substrates. Because of the inaccessibility of these pesticides across the cell membrane, OPH variants were displayed on the surface of Escherichia coli using the truncated ice nucleation protein in order to isolate novel enzymes with truly improved substrate specificities. A solid-phase top agar method based on the detection of the yellow product p-nitrophenol was developed for the rapid prescreening of potential variants with improved hydrolysis of methyl parathion. Two rounds of DNA shuffling and screening were carried out, and several improved variants were isolated. One variant in particular, 22A11, hydrolyzes methyl parathion 25-fold faster than does the wild type. Because of the success that we achieved with directed evolution of OPH for improved hydrolysis of methyl parathion, we believe that we can easily extend this method in creating other OPH variants with improved activity against poorly degraded pesticides such as diazinon and chlorpyrifos and nerve agents such as sarin and soman.  相似文献   

13.
A potentiometric enzyme electrode for the direct measurement of organophosphate (OP) nerve agents was developed. The basic element of this enzyme electrode was a pH electrode modified with an immobilized organophosphorus hydrolase (OPH) layer formed by cross-linking OPH with bovine serum albumin (BSA) and glutaradehyde. OPH catalyses the hydrolysis of organophosphorus pesticides to release protons, the concentration of which is proportional to the amount of hydrolysed substrate. The sensor signal and response time was optimized with respect to the buffer pH, ionic concentration of buffer, temperature, and units of OPH immobilized using paraoxon as substrate. The best sensitivity and response time were obtained using a sensor constructed with 500 IU of OPH and operating in pH 8.5, 1 mM HEPES buffer. Using these conditions, the biosensor was used to measure as low as 2 microM of paraoxon, ethyl parathion, methyl parathion and diazinon. The biosensor was completely stable for at least one month when stored in pH 8.5, 1 mM HEPES + 100 mM NaCl buffer at 4 degrees C.  相似文献   

14.
A genetically engineered Escherichia coli cell expressing both organophosphorus hydrolase (OPH) and a cellulose-binding domain (CBD) on the cell surface was constructed, enabling the simultaneous hydrolysis of organophosphate nerve agents and immobilization via specific adsorption to cellulose. OPH was displayed on the cell surface by use of the truncated ice nucleation protein (INPNC) fusion system, while the CBD was surface anchored by the Lpp-OmpA fusion system. Production of both INPNC-OPH and Lpp-OmpA-CBD fusion proteins was verified by immunoblotting, and the surface localization of OPH and the CBD was confirmed by immunofluorescence microscopy. Whole-cell immobilization with the surface-anchored CBD was very specific, forming essentially a monolayer of cells on different supports, as shown by electron micrographs. Optimal levels of OPH activity and binding affinity to cellulose supports were achieved by investigating expression under different induction levels. Immobilized cells degraded paraoxon rapidly at an initial rate of 0.65 mM/min/g of cells (dry weight) and retained almost 100% efficiency over a period of 45 days. Owing to its superior degradation capacity and affinity to cellulose, this immobilized-cell system should be an attractive alternative for large-scale detoxification of organophosphate nerve agents.  相似文献   

15.
An improved DNA-mediated transformation system for nematode-trapping fungus Arthrobotrys oligospora based on hygromycin B resistance was developed. The transformation frequency varied between 34 and 175 transformants per μg linearized DNA and 93% of the transformants were stable for drug resistance when tested 100 randomly selected transformants. More than 2000 transformants were obtained by transformation of the fungus with pBChygro in the presence of HindIII and among them, one, YMF1.00110, which lost its ability of forming predacious structure, was isolated. Southern analysis showed that the plasmid DNA had integrated into the genome of all tested transformants (including YMF 1.00110) except one. The transformant tagged with hph gene could be re-isolated and quantified from dung samples based on the resistance of hygromycin B. All the results suggested that the method of restriction enzyme mediated integration (REMI) should facilitate not only the insertional mutagenesis for tagging and analysis genes of interest but also the ecological investigation of tagged fungi in a given environment.  相似文献   

16.
We report herein an efficient method to control pH in reactions catalyzed by hydrolytic enzymes, such as the degradation of paraoxon by phosphotriesterase (E.G. 3.1.8.1; OPH), using urease-catalyzed (E.G. 3.5.1.5) urea hydrolysis as a buffering agent. Given the distinct pH profiles of urease and OPH activities, urease produces base on demand in response to pH drop during paraoxon detoxification. As pH changes, the enzyme activities fluctuate to finally stabilize at a pH "set-point," where the rates of acid and base generation are equal. By varying the urease to OPH ratio, various pH "set-points" ranging between 6.5 and 8.5 were achieved within minutes and could be predicted theoretically. This dynamic approach for pH control was successfully applied to the development of a positive-response inhibition-based sensor.  相似文献   

17.
The β‐glucuronidase (gus) reporter gene was integrated into the phytopathogenic fungus Fusarium oxysporum f. sp. radicis‐lycopersici (FORL) in a co‐transformation experiment using the hygromycin B resistance (hph) gene as selective marker, which resulted in the generation of 10 mitotically stable transformants. One transformant, F30, was selected based on the results of prior detailed characterization of the 10 transformants for growth rate, conidia production and pathogenicity in comparison with the wild‐type strain. A strong positive correlation was found between GUS activity and accumulated biomass of in vitro‐grown fungus and therefore GUS activity was used to study fungal growth quantitatively in two tomato lines. Although a parallel increase in lesion development and GUS activity was noted for both tomato lines, a correlation between the GUS activity and disease progression was not always possible. Interestingly, the levels of GUS activity obtained for the more resistant line were higher than those obtained for the susceptible line, indicating that disease progression in tomato caused by FORL may not be related only to the amount of fungal biomass within the root tissue.  相似文献   

18.
The present studies were focused on the preparation and characterization of stericaly stabilized liposomes (SLs) encapsulating a recombinant organophosphorus hydrolyzing phosphotriesterase (OPH) enzyme for the antagonism of organophosphorus intoxication. Earlier results indicate that the liposomal carrier system provides an enhanced protective effect against the organophosphorus molecule paraoxon, presenting a more effective therapy with less toxicity than the most commonly used antidotes. Physicochemical characterization of the liposomal OPH delivery system is essential in order to get information on its in vitro stability and in vivo fate. Osmolarity, pH, viscosity, and encapsulation efficiency of the SL preparation and the surface potential of the vesicles were determined. The membrane rigidity and the impact of OPH enzyme on it was studied by electron-paramagnetic resonance spectroscopy, using spin probes. The in vitro stability of the liposomal preparations, the vesicle size distribution, and its alteration during a 3-week storage were followed by dynamic light-scattering measurements. Further, the stability of encapsulated and nonencapsulated OPH was compared in puffer and plasma.  相似文献   

19.
The thermotolerant yeast Hansenula polymorpha ferments glucose and xylose to ethanol at high temperatures. However, H. polymorpha cannot utilize starchy materials or xylans. Heterologous amylolytic and xylanolytic enzymes have to be expressed in this yeast to provide for utilization and growth on starch and xylan. Genes SWA2 and GAM1 from the yeast Schwanniomyces occidentalis, encoding α-amylase and glucoamylase, respectively, were expressed in H. polymorpha. The expression was achieved by integration of the SWA2 and GAM1 genes under the strong constitutive promoter of the H. polymorpha glyceraldehyde-3-phosphate dehydrogenase gene (HpGAP) into H. polymorpha genome. Resulting transformants acquired the ability to grow on a minimal medium containing soluble starch as a sole carbon source. Ethanol production at high-temperature fermentation from starch by the recombinant strains was up to 10 g/L. The XYN2 gene encoding endoxylanase of the fungus Trichoderma reseei was expressed in H. polymorpha. Co-expression of xlnD gene coding for β-xylosidase of the fungus Aspergillus niger and the XYN2 gene in H. polymorpha was achieved by integration of these genes under control of the HpGAP promoter. Resulting transformants were capable of growth and alcoholic fermentation on a minimal medium supplemented with birchwood xylan as a sole carbon source at 48 °C.  相似文献   

20.
A genetically engineered strain of Escherichia coli that expresses organophosphorus hydrolase (OPH) was immobilized in a polyvinyl alcohol (PVA) cryogel to form a porous biocatalyst that successfully degrades organophosphorus (OP) neurotoxins. The impacts of both diffusion and reaction on biocatalyst efficiency were determined to enable prediction and optimization of the biocatalyst performance. The kinetic rate parameters and activation energies of pure OPH, free cell suspensions, and the immobilized cell biocatalyst were compared. Diffusion was a determining factor for paraoxon hydrolysis because of the very rapid OPH kinetics for its model substrate. Both the paraoxon diffusion through the PVA matrix and the diffusion associated with microbial transport of paraoxon were shown to impact the biocatalyst reaction. However, the enhancement in storage stability resulting from diffusional limitations provides an advantage to diffusion-limited operation. This research may serve as a guide to define the influence of diffusion in biological reaction systems. The broad substrate specificity and hydrolytic efficiency of OPH coupled with the ability to genetically engineer the enzyme for specific target OP neurotoxins enhance the suitability of OPH-based technologies for detoxification of these compounds. Cryoimmobilization provides a suitable vehicle as a cost-effective, efficient technology for bioremediation of environmental media contaminated with OP compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号