首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Dinoflagellates and apicomplexans are a strongly supported monophyletic group in rDNA phylogenies, although this phylogeny is not without controversy, particularly between the two groups. Here we use concatenated protein-coding genes from expressed sequence tags or genomic data to construct phylogenies including "typical" dinophycean dinoflagellates, a parasitic syndinian dinoflagellate, Amoebophrya sp., and two related species, Oxyrrhis marina, and Perkinsus marinus. Seventeen genes encoding proteins associated with the ribosome were selected for phylogenetic analysis. The dataset was limited for the most part by data availability from the dinoflagellates. Forty-five taxa from four major lineages were used: the heterokont outgroup, ciliates, dinoflagellates, and apicomplexans. Amoebophrya sp. was included in this phylogeny as a sole representative of the enigmatic marine alveolate or syndinian lineage. The atypical dinoflagellate O. marina, usually excluded from rDNA analyses due to long branches, was also included. The resulting phylogenies were well supported in concatenated analyses with only a few unstable or weakly supported branches; most features were consistent when different lineages were pruned from the tree or different genes were concatenated. The least stable branches involved the placement of Cryptosporidium spp. within the Apicomplexa and the relationships between P. marinus, Amoebophrya sp., and O. marina. Both bootstrap and approximately unbiased test results confirmed that P. marinus, Amoebophrya sp., O. marina, and the remaining dinoflagellates form a monophyletic lineage to the exclusion of Apicomplexa.  相似文献   

3.
In an attempt to reconstruct early alveolate evolution, we have examined the phylogenetic position of colpodellids by analyzing small subunit rDNA sequences from Colpodella pontica Myl'nikov 2000 and Colpodella sp. (American Type Culture Collection 50594). All phylogenetic analyses grouped the colpodellid sequences together with strong support and placed them strongly within the Alveolata. Most analyses showed colpodellids as the sister group to an apicomplexan clade, albeit with weak support. Sequences from two perkinsids, Perkinsus and Parvilucifera, clustered together and consistently branched as the sister group to dinoflagellates as shown previously. These data demonstrate that colpodellids and perkinsids are plesiomorphically similar in morphology and help provide a phylogenetic framework for inferring the combination of character states present in the last common ancestor of dinoflagellates and apicomplexans. We can infer that this ancestor was probably a myzocytotic predator with two heterodynamic flagella, micropores, trichocysts, rhoptries, micronemes, a polar ring, and a coiled open-sided conoid. This ancestor also very likely contained a plastid, but it is presently not certain whether it was photosynthetic, and it is not clear whether extant perkinsids or colpodellids have retained the organelle.  相似文献   

4.
The taxonomic relationship between heterotrophic and parasitic dinoflagellates has not been studied extensively at the molecular level. In order to investigate these taxonomic relationships, we sequenced the small subunit (SSU) ribosomal RNA gene of Pfiesteria piscicida (Steidinger et Burkholder), a Pfiesteria -like dinoflagellate, Cryptoperidiniopsoid sp., and Amyloodinium ocellatum (Brown) and submitted those sequences to GenBank. Pfiesteria piscicida and Cryptoperidiniopsoid sp. are heterotrophic dinoflagellates, purportedly pathogenic to fish, and A. ocellatum, a major fish pathogen, has caused extensive economic losses in both the aquarium and aquaculture industries. The pathogenicity of the Pfiesteria -like dinoflagellate is unknown at this time, but its growth characteristics and in vitro food preferences are similar to those of P. piscicda. The SSU sequences of these species were aligned with the other full-length dinoflagellate sequences, as well as those of representative apicomplexans and Perkinsus species, the groups most closely related to dinoflagellates. Phylogenetic analyses indicate that Cryptoperidiniopsoid sp., P. piscicida, and the Pfiesteria -like dinoflagellate are closely related and group into the class Blastodiniphyceae, as does A. ocellatum. None of the species examined were closely related to the apicomplexans or to Perkinsus marinus, the parasite that causes "Dermo disease" in oysters. The overall phylogenetic analyses largely supported the current class and subclass groupings within the dinoflagellates.  相似文献   

5.
ABSTRACT. Perkinsids and colpodellids are lineages that diverged near the origins of dinoflagellates and apicomplexans, respectively, and provide compelling insights into the earliest stages of alveolate evolution. Perkinsids, including Perkinsus and Parvilucifera , are intracellular parasites of animals and dinoflagellates and possess traits also known in syndineans, dinokaryotes (mainly free living dinoflagellates), and colpodellids. An improved understanding of perkinsid biodiversity and phylogeny is expected to shed considerable light on the evolutionary origins of syndineans and dinokaryotes as well as the cellular identities of environmental sequences derived from marine and freshwater habitats. Accordingly, the small subunit (SSU) rDNA sequence from Parvilucifera prorocentri , a tube-forming intracellular parasite of the marine benthic dinoflagellate Prorocentrum fukuyoi , was determined. Molecular phylogenetic analyses demonstrated, with very high statistical support, that P. prorocentri branched as a sister lineage to a divergent clade consisting of Parvilucifera infectans and Parvilucifera sinerae . The entire Parvilucifera clade was nested within a more inclusive and modestly supported clade consisting of Perkinsus and several environmental sequences. Because P. prorocentri possessed a novel combination of ultrastructural features known in Perkinsus, Parvilucifera , and/or syndineans (i.e. germ tubes, trichocysts, and a syndinean-like nucleus), establishing the molecular phylogenetic position of this species enabled us to build a more comprehensive framework for understanding the earliest stages in the evolution of myzozoans.  相似文献   

6.
In alveolate evolution, dinoflagellates have developed many unique features, including the cell that has epicone and hypocone, the undulating transverse flagellum. However, it remains unclear how these features evolved. The early branching dinoflagellates so far investigated such as Hematodinium, Amoebophrya and Oxyrrhis marina differ in many ways from of core dinoflagellates, or dinokaryotes. Except those handful of well studied taxa, the vast majority of early branching dinoflagellates are known only by environmental sequences, and remain enigmatic. In this study we describe two new species of the early branching dinoflagellates, Psammosa pacifica n. g., n. sp. and P. atlantica n. sp. from marine intertidal sandy beach. Molecular phylogeny of the small subunit (SSU) ribosomal RNA and Hsp90 gene places Psammosa spp. as an early branch among the dinoflagellates. Morphologically (1) they lack the typical dinoflagellate epicone-hypocone structure, and (2) undulation in either flagella. Instead they display a mosa?c of dinokaryotes traits, i.e. (3) presence of bi-partite trychocysts; Oxyrrhis marina-like traits, i.e. (4) presence of flagellar hairs, (5) presence of two-dimensional cobweb scales ornamenting both flagella (6) transversal cell division; a trait shared with some syndineansand Parvilucifera spp. i.e. (7) a nucleus with a conspicuous nucleolus and condensed chromatin distributed beneath the nuclear envelope; as well as Perkinsus marinus -like features i.e. (8) separate ventral grooves where flagella emerge and (9) lacking dinoflagellate-type undulating flagellum. Notably Psammosa retains an apical complex structure, which is shared between perkinsids, colpodellids, chromerids and apicomplexans, but is not found in dinokaryotic dinoflagellates.  相似文献   

7.
The protozoan oyster pathogen Perkinsus marinus is classified in the phylum Apicomplexa, although molecular-genetic and ultrastructural evidence increasingly concur on its closer phylogenetic relationship with the dinoflagellates. To test for evidence of serological epitopes common to P. marinus and dinoflagellates, we probed 19 free-living and 8 parasitic dinoflagellate, or dinoflagellate-like, species for cross-reactivity with polyclonal antibodies to P. marinus. Three of 19 free-living dinoflagellates (16%), and 7 of 8 parasitic dinoflagellates (88%) were labeled by anti-P. marinus antibodies. In reciprocal immunoassays using polyclonal antibodies to the Hematodinium sp. dinoflagellate parasite of Norway lobsters, Nephrops norvegicus, P. marinus and the same 7 parasitic dinoflagellates labeled by anti-P. marinus antibodies, were again labeled. The dinoflagellate-like parasite of prawns Pandalus platyceros was not labeled by either antibody reagent. These reciprocal results confirm the presence of shared antibody-binding epitopes on cells of P. marinus and several dinoflagellates. The apparent widespread serological affinity between P. marinus and the parasitic dinoflagellates suggests a closer phylogenetic link to the syndinean dinoflagellate lineage. The consistent failure of the dinoflagellate-like prawn parasite to bind either antibody reagent shows that this parasite is serologically distinct from both P. marinus and Hematodinium-species parasitic dinoflagellates.  相似文献   

8.
Three extremely diverse groups of unicellular eukaryotes comprise the Alveolata: ciliates, dinoflagellates, and apicomplexans. The vast phenotypic distances between the three groups along with the enigmatic distribution of plastids and the economic and medical importance of several representative species (e.g. Plasmodium, Toxoplasma, Perkinsus, and Pfiesteria) have stimulated a great deal of speculation on the early evolutionary history of alveolates. A robust phylogenetic framework for alveolate diversity will provide the context necessary for understanding the basic biological properties of the group and for developing appropriate strategies for management. We addressed the earliest stages of alveolate evolution by sequencing heat shock protein 90 (hsp90) genes from several ciliates, apicomplexans, and dinoflagellates, including key species thought to represent early diverging lineages: Oxyrrhis marina, Perkinsus marinus, Cryptosporidium parvum, and the eugregarine Monocystis agilis. Moreover, by sequencing the actin gene from Monocystis, we were able to examine the sister relationship between gregarines and cryptosporidians with a three‐protein concatenated data set (hsp90, actin, and β‐tubulin). Phylogenetic analyses of the hsp90 data set provided a robust topology for alveolate relationships: Alveolates were monophyletic and apicomplexans and dinoflagellates formed sister groups to the exclusion of ciliates. Oxyrrhis formed the earliest diverging sister lineage to the “core” dinoflagellates, and Perkinsus formed the earliest diverging sister lineage to the Oxyrrhis–dinoflagellate clade. This topology was strongly supported inall analyses and by a unique indel shared by Oxyrrhis and dinoflagellates. A sister relationship between Cryptosporidium and Monocystis was weakly supported by the hsp90 data set but strongly supported by the three‐protein concatenated data set.  相似文献   

9.
Phenotypic scrutiny on the life cycle of Icthyodinium chabelardi (Perkinsoide chabelardi n. gen.) based on ultrastructural techniques, and molecular phylogenetic analysis of RNA gene sequences, were carried out in order to elucidate the taxonomic position of this parasite. The absence of plastid, presence of trichocysts, and chromosomes or chromatin condensed and low in number, suggested that this protozoan could be considered a dinoflagellate syndinial parasite. However, the life cycle, schizogonic divisions and structure of schizonts inside the host, the nuclei without the typical dinoflagellate appearance, presence of rhoptrias-like structures, a possible pseudo-conoid, and the biflagellated spore, resembled those of the genus Perkinsus. Phylogenetic analysis of genes transcribing for the RNA forming the small subunit and the large subunit suggests that this parasite has an ambiguous evolutionary position within the group formed by dinoflagellates, perkinsids and syndinials. Because of differences with dinoflagellates and similarities with perkinsids, we propose to change the generic name to P. chabelardi n. gen. High stationary infection prevalence on Sardina pilchardus eggs was observed. This protozoan parasite caused the death of all the infected sardine eggs, and therefore a high impact in the recruitment of this fishery in the Atlantic coast is expected.  相似文献   

10.
11.
Molecular data and the evolutionary history of dinoflagellates   总被引:10,自引:3,他引:7  
We have sequenced small-subunit (SSU) ribosomal RNA (rRNA) genes from 16 dinoflagellates, produced phylogenetic trees of the group containing 105 taxa, and combined small- and partial large-subunit (LSU) rRNA data to produce new phylogenetic trees. We compare phylogenetic trees based on dinoflagellate rRNA and protein genes with established hypotheses of dinoflagellate evolution based on morphological data. Protein-gene trees have too few species for meaningful in-group phylogenetic analyses, but provide important insights on the phylogenetic position of dinoflagellates as a whole, on the identity of their close relatives, and on specific questions of evolutionary history. Phylogenetic trees obtained from dinoflagellate SSU rRNA genes are generally poorly resolved, but include by far the most species and some well-supported clades. Combined analyses of SSU and LSU somewhat improve support for several nodes, but are still weakly resolved. All analyses agree on the placement of dinoflagellates with ciliates and apicomplexans (=Sporozoa) in a well-supported clade, the alveolates. The closest relatives to dinokaryotic dinoflagellates appear to be apicomplexans, Perkinsus, Parvilucifera, syndinians and Oxyrrhis. The position of Noctiluca scintillans is unstable, while Blastodiniales as currently circumscribed seems polyphyletic. The same is true for Gymnodiniales: all phylogenetic trees examined (SSU and LSU-based) suggest that thecal plates have been lost repeatedly during dinoflagellate evolution. It is unclear whether any gymnodinialean clades originated before the theca. Peridiniales appear to be a paraphyletic group from which other dinoflagellate orders like Prorocentrales, Dinophysiales, most Gymnodiniales, and possibly also Gonyaulacales originated. Dinophysiales and Suessiales are strongly supported holophyletic groups, as is Gonyaulacales, although with more modest support. Prorocentrales is a monophyletic group only in some LSU-based trees. Within Gonyaulacales, molecular data broadly agree with classificatory schemes based on morphology. Implications of this taxonomic scheme for the evolution of selected dinoflagellate features (the nucleus, mitosis, flagella and photosynthesis) are discussed.  相似文献   

12.
13.
Protozoan parasites of the genus Perkinsus are considered important pathogens responsible for mass mortalities in many wild and farmed bivalve populations. The present study was initiated to screen populations of the Indian edible oyster Crassostrea madrasensis, a promising candidate for aquaculture along the Indian coasts, for the presence of Perkinsus spp. The study reports the presence of P. beihaiensis for the first time in C. madrasensis populations from the Indian subcontinent and south Asia. Samples collected from the east and west coasts of India were subjected to Ray's fluid thioglycollate medium (RFTM) culture and histology which indicated the presence of Perkinsus spp. PCR screening of the tissues using specific primers amplified the product specific to the genus Perkinsus. The taxonomic affinities of the parasites were determined by sequencing both internal transcribed spacer (ITS) and actin genes followed by basic local alignment search tool (BLAST) analysis. Analysis based on the ITS sequences showed 98 to 100% identity to Perkinsus spp. (P. beihaiensis and Brazilian Perkinsus sp.). The pairwise genetic distance values and phylogenetic analysis confirmed that 2 of the present samples belonged to the P. beihaiensis clade while the other 4 showed close affinities with the Brazilian Perkinsus sp. clade. The genetic divergence data, close affinity with the Brazilian Perkinsus sp., and co-existence with P. beihaiensis in the same host species in the same habitat show that the remaining 4 samples exhibit some degree of variation from P. beihaiensis. As expected, the sequencing of actin genes did not show any divergence among the samples studied. They probably could be intraspecific variants of P. beihaiensis having a separate lineage in the process of evolution.  相似文献   

14.
Chromera velia is a recently discovered, photosynthetic, marine alveolate closely related to apicomplexan parasites, and more distantly to perkinsids and dinoflagellates. To date, there are no published studies on the sterols of C. velia. Because apicomplexans and perkinsids are not known to synthesize sterols de novo, but rather obtain them from their host organisms, our objective was to examine the composition of the sterols of C. velia to assess whether or not there is any commonality with dinoflagellates as the closest taxonomic group capable of synthesizing sterols de novo. Furthermore, knowledge of the sterols of C. velia may provide insight into the sterol biosynthetic capabilities of apicomplexans prior to loss of sterol biosynthesis. We have found that C. velia possesses two primary sterols, 24-ethylcholesta-5,22E-dien-3β-ol, and 24-ethylcholest-5-en-3β-ol, not common to dinoflagellates, but rather commonly found in other classes of algae and plants. In addition, we have identified computationally three genes, SMT1 (sterol-24C-methyltransferase), FDFT1 (farnesyl diphosphate farnesyl transferase, squalene synthase), and IDI1 (isopentenyl diphosphate Δ-isomerase), predicted to be involved in sterol biosynthesis by their similarity to analogous genes in other sterol-producing eukaryotes, including a number of algae.  相似文献   

15.
16.
Gile GH  Patron NJ  Keeling PJ 《Protist》2006,157(4):435-444
EFL (EF-like protein) is a member of the GTPase superfamily that includes several translation factors. Because it has only been found in a few eukaryotic lineages and its presence correlates with the absence of the related core translation factor EF-1alpha, its distribution is hypothesized to be the result of lateral gene transfer and replacement of EF-1alpha. In one supergroup of eukaryotes, the chromalveolates, two major lineages were found to contain EFL (dinoflagellates and haptophytes), while the others encode EF-1alpha (apicomplexans, ciliates, heterokonts and cryptomonads). For each of these groups, this distribution was deduced from whole genome sequence or expressed sequence tag (EST) data from several species, with the exception of cryptomonads from which only a single EF-1alpha PCR product from one species was known. By sequencing ESTs from two cryptomonads, Guillardia theta and Rhodomonas salina, and searching for all GTPase translation factors, we revealed that EFL is present in both species, but, contrary to expectations, we found EF-1alpha in neither. On balance, we suggest the previously reported EF-1alpha from Rhodomonas salina is likely an artefact of contamination. We also identified EFL in EST data from two members of the dinoflagellate lineage, Karlodinium micrum and Oxyrrhis marina, and from an ongoing genomic sequence project from a third, Perkinsus marinus. Karlodinium micrum is a symbiotic pairing of two lineages that would have both had EFL (a dinoflagellate and a haptophyte), but only the dinoflagellate gene remains. Oxyrrhis marina and Perkinsus marinus are early diverging sister-groups to dinoflagellates, and together show that EFL originated early in this lineage. Phylogenetic analysis confirmed that these genes are all EFL homologues, and showed that cryptomonad genes are not detectably related to EFL from other chromalveolates, which collectively form several distinct groups. The known distribution of EFL now includes a third group of chromalveolates, cryptomonads. Of the six major subgroups of chromalveolates, EFL is found in half and EF-1alpha in the other half, and none as yet unambiguously possess both genes. Phylogenetic analysis indicates EFL likely arose early within each subgroup where it is found, but suggests it may have originated multiple times within chromalveolates as a whole.  相似文献   

17.
Plastids are widespread in plant and algal lineages. They are also exploited by some nonphotosynthetic protists, including malarial parasites, to support their diverse modes of life. However, cryptic plastids may exist in other nonphotosynthetic protists, which could be important in studies on the diversity and evolution of plastids. The parasite Perkinsus marinus, which causes mass mortality in oyster farms, is a nonphotosynthetic protist that is phylogenetically related to plastid-bearing dinoflagellates and apicomplexans. In this study, we searched for P. marinus methylerythritol phosphate (MEP) pathway genes, responsible for de novo isoprenoid synthesis in plastids, and determined the full-length gene sequences for 6 of 7 of these genes. Phylogenetic analyses revealed that each P. marinus gene clusters with orthologs from plastid-bearing eukaryotes, which have MEP pathway genes with essentially the same mosaic pattern of evolutionary origin. A new analytical method called sliding-window iteration of TargetP was developed to examine the distribution of targeting preferences. This analysis revealed that the sequenced genes encode bipartite targeting peptides that are characteristic of proteins targeted to secondary plastids originating from endosymbiosis of eukaryotic algae. These results support our idea that Perkinsus is a cryptic algal group containing nonphotosynthetic secondary plastids. In fact, immunofluorescent microscopy indicated that 1 of the MEP pathway enzymes, 1-deoxy-D-xylulose 5-phosphate reductoisomerase, was localized to small compartments near mitochondrion, which are possibly plastids. This tiny organelle seems to contain very low quantities of DNA or may even lack DNA entirely. The MEP pathway genes are a useful tool for investigating plastid evolution in both of the photosynthetic and nonphotosynthetic eukaryotes and led us to propose the hypothesis that ancestral "chromalveolates" harbored plastids before a secondary endosymbiotic event.  相似文献   

18.
Prokaryotic histone-like proteins (Hlps) are abundant proteins found in bacterial and plastid nucleoids. Hlps are also found in the eukaryotic dinoflagellates and the apicomplexans, two major lineages of the Alveolata. It may be expected that Hlps of both groups were derived from the same ancestral Alveolates. However, our phylogenetic analyses suggest different origins for the dinoflagellate and the apicomplexan Hlps. The apicomplexan Hlps are affiliated with the cyanobacteria and probably originated from Hlps of the plastid genome. The dinoflagellate Hlps and the proteobacterial long Hlps form a clade that branch off from the node with the proteobacterial short Hlps.  相似文献   

19.
Ellobiopsids are multinucleate protist parasites of aquatic crustaceans that possess a nutrient absorbing 'root' inside the host and reproductive structures that protrude through the carapace. Ellobiopsids have variously been affiliated with fungi, 'colorless algae', and dinoflagellates, although no morphological character has been identified that definitively allies them with any particular eukaryotic lineage. The arrangement of the trailing and circumferential flagella of the rarely observed bi-flagellated 'zoospore' is reminiscent of dinoflagellate flagellation, but a well-organized 'dinokaryotic nucleus' has never been observed. Using small subunit ribosomal RNA gene sequences from two species of Thalassomyces, phylogenetic analyses robustly place these ellobiopsid species among the alveolates (ciliates, apicomplexans, dinoflagellates and relatives) though without a clear affiliation to any established alveolate lineage. Our trees demonstrate that Thalassomyces fall within a dinoflagellate + apicomplexa + Perkinsidae + "marine alveolate group 1" clade, clustering most closely with dinoflagellates. However, the poor statistical support for branches within this region indicates that additional data will be needed to resolve relationships among these taxa.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号