首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Transmissible spongiform encephalopathy strains demonstrate specific prion characteristics, each with specific incubation times, and strain-specific patterns of deposition of the misfolded isoform of prion, PrPSc, in the brains of infected individuals. Different biochemical properties, including glycosylation profiles and the degree of proteinase resistance, have been shown to be strain-specific. However, no relationship between these properties and the phenotypic differences in the subsequent diseases has as yet been determined. Here we explore the utility of gene expression profiles to identify differences in the host response to different strains of prion agent. We identify 114 genes that exhibit significantly different levels of expression in mice infected with three strains of scrapie. These genes represent a pool of genes involved in a strain-specific response to prion disease. We have identified the most discriminatory genes from this list utilizing a wrapper-based feature selection algorithm with external cross-validation.  相似文献   

4.
5.
The existence of different strains of infectious agents involved in scrapie, a transmissible spongiform encephalopathy (TSE) of sheep and goats, remains poorly explained. These strains can, however, be differentiated by characteristics of the disease in mice and also by the molecular features of the protease-resistant prion protein (PrP(res)) that accumulates into the infected tissues. For further analysis, we first transmitted the disease from brain samples of TSE-infected sheep to ovine transgenic [Tg(OvPrP4)] and to wild-type (C57BL/6) mice. We show that, as in sheep, molecular differences of PrP(res) detected by Western blotting can differentiate, in both ovine transgenic and wild-type mice, infection by the bovine spongiform encephalopathy (BSE) agent from most scrapie sources. Similarities of an experimental scrapie isolate (CH1641) with BSE were also likewise found following transmission in ovine transgenic mice. Secondly, we transmitted the disease to ovine transgenic mice by inoculation of brain samples of wild-type mice infected with different experimental scrapie strains (C506M3, 87V, 79A, and Chandler) or with BSE. Features of these strains in ovine transgenic mice were reminiscent of those previously described for wild-type mice, by both ratios and by molecular masses of the different PrP(res) glycoforms. Moreover, these studies revealed the diversity of scrapie strains and their differences with BSE according to labeling by a monoclonal antibody (P4). These data, in an experimental model expressing the prion protein of the host of natural scrapie, further suggest a genuine diversity of TSE infectious agents and emphasize its linkage to the molecular features of the abnormal prion protein.  相似文献   

6.
To gain insight into early embryo development, we utilized microarray technology to compare gene expression profiles in four-cell (4C), morula (MO), and blastocyst (BL) stage embryos. Differences in spot intensities were normalized, and grouped by using Avadis Prophetic software platform (version 3.3, Strand Genomics Ltd.) and categories were based on the PANTHER and gene ontology (GO) classification system. This technique identified 622 of 7,927 genes as being more highly expressed in MO when compared to 4C (P < 0.05); similarly, we identified 654 of 9,299 genes as being more highly expressed in BL than in MO (P < 0.05). Upregulation of genes for cytoskeletal, cell adhesion, and cell junction proteins were identified in the MO as compared to the 4C stage embryos, this means they could be involved in the cell compaction necessary for the development to the MO. Genes thought to be involved in ion channels, membrane traffic, transfer/carrier proteins, and lipid metabolism were also identified as being expressed at a higher level in the BL stage embryos than in the MO. Real-time RT-PCR was performed to confirm differential expression of selected genes. The identification of the genes being expressed in here will provide insight into the complex gene regulatory networks effecting compaction and blastocoel formation.  相似文献   

7.
Prion diseases are transmissible fatal neurodegenerative diseases of humans and animals, characterised by the presence of an abnormal isoform (scrapie prion protein; PrPSc) of the endogenous cellular prion protein (PrPC). The pathological mechanisms at the basis of prion diseases remain elusive, although the accumulation of PrPSc has been linked to neurodegeneration. Different genomic approaches have been applied to carry out large-scale expression analysis in prion-infected brains and cell lines, in order to define factors potentially involved in pathogenesis. However, the general lack of overlap between the genes found in these studies prompted us to carry an analysis of gene expression using an alternative approach. Specifically, in order to avoid the complexities of shifting gene expression in a heterogeneous cell population, we used a single clone of GT1 cells that was de novo infected with mouse prion-infected brain homogenate and then treated with quinacrine to clear PrPSc. By comparing the gene expression profiles of about 15 000 genes in quinacrine-cured and not cured prion-infected GT1 cells, we investigated the influence of the presence or the absence of PrPSc. By real-time PCR, we confirmed that the gene encoding for laminin was down-regulated as a consequence of the elimination of PrPSc by the quinacrine treatment. Thus, we speculate that this protein could be a specific candidate for further analysis of its role in prion infection and pathogenesis.  相似文献   

8.
We produced transgenic mice expressing the sheep prion protein to obtain a sensitive model for sheep spongiform encephalopathies (scrapie). The complete open reading frame, with alanine, arginine, and glutamine at susceptibility codons 136, 154, and 171, respectively, was inserted downstream from the neuron-specific enolase promoter. A mouse line, Tg(OvPrP4), devoid of the murine PrP gene, was obtained by crossing with PrP knockout mice. Tg(OvPrP4) mice were shown to selectively express sheep PrP in their brains, as demonstrated in mRNA and protein analysis. We showed that these mice were susceptible to infection by sheep scrapie following intracerebral inoculation with two natural sheep scrapie isolates, as demonstrated not only by the occurrence of neurological signs but also by the presence of the spongiform changes and abnormal prion protein accumulation in their brains. Mean times to death of 238 and 290 days were observed with these isolates, but the clinical course of the disease was strikingly different in the two cases. One isolate led to a very early onset of neurological signs which could last for prolonged periods before death. Independently of the incubation periods, some of the mice inoculated with this isolate showed low or undetectable levels of PrPsc, as detected by both Western blotting and immunohistochemistry. The development of experimental scrapie in these mice following inoculation of the scrapie infectious agent further confirms that neuronal expression of the PrP open reading frame alone is sufficient to mediate susceptibility to spongiform encephalopathies. More importantly, these mice provide a new and promising tool for studying the infectious agents in sheep spongiform encephalopathies.  相似文献   

9.
It is well established that natural polymorphisms in the coding sequence of the PrP protein can control the expression of prion disease. Studies with a cell model of sheep prion infection have shown that ovine PrP allele associated with resistance to sheep scrapie may confer resistance by impairing the multiplication of the infectious agent. To further explore the biochemical and cellular mechanisms underlying the genetic control of scrapie susceptibility, we established permissive cells expressing two different PrP variants. In this study, we show that PrP variants with opposite effects on prion multiplication exhibit distinct cell biological features. These findings indicate that cell biological properties of ovine PrP can vary with natural polymorphisms and raise the possibility that differential interactions of PrP variants with the cellular machinery may contribute to permissiveness or resistance to prion multiplication.  相似文献   

10.
ABSTRACT: BACKGROUND: The United States control program for classical ovine scrapie is based in part on the finding that infection is typically spread through exposure to shed placentas from infected ewes. Transmission from goats to sheep is less well described. A suitable rodent model for examining the effect of caprine scrapie isolates in the ovine host will be useful in the ovine scrapie eradication effort. In this study, we describe the incubation time, brain lesion profile, glycoform pattern and PrPSc distribution patterns in a well characterized transgenic mouse line (Tg338) expressing the ovine VRQ prion allele, following inoculation with brain from scrapie infected goats. RESULTS: First passage incubation times of caprine tissue in Tg338 ovinized mice varied widely but second passage intervals were shorter and consistent. Vacuolation profiles, glycoform patterns and paraffin-embedded tissue blots from terminally ill second passage mice derived from sheep or goat inocula were similar. Proteinase K digestion products of murine tissue were slightly smaller than the original ruminant inocula, a finding consistent with passage of several ovine strains in previous reports. CONCLUSIONS: These findings demonstrate that Tg338 mice propagate prions of caprine origin and provide a suitable baseline for examination of samples identified in the expanded US caprine scrapie surveillance program.  相似文献   

11.

Background

Sheep scrapie is caused by multiple prion strains, which have been classified on the basis of their biological characteristics in inbred mice. The heterogeneity of natural scrapie prions in individual sheep and in sheep flocks has not been clearly defined.

Methodology/Principal Findings

In this study, we intravenously injected 2 sheep (Suffolk and Corriedale) with material from a natural case of sheep scrapie (Suffolk breed). These 3 sheep had identical prion protein (PrP) genotypes. The protease-resistant core of PrP (PrPres) in the experimental Suffolk sheep was similar to that in the original Suffolk sheep. In contrast, PrPres in the Corriedale sheep differed from the original PrPres but resembled the unusual scrapie isolate, CH1641. This unusual PrPres was not detected in the original sheep. The PrPres distributions in the brain and peripheral tissues differed between the 2 breeds of challenged sheep. A transmission study in wild-type and TgBoPrP mice, which overexpressing bovine PrP, led to the selection of different prion strains. The pathological features of prion diseases are thought to depend on the dominantly propagated strain.

Conclusions/Significance

Our results indicate that prion strain selection occurs after both inter- and intraspecies transmission. The unusual scrapie prion was a hidden or an unexpressed component in typical sheep scrapie.  相似文献   

12.
13.
Natural scrapie transmission from infected ewes to their lambs is thought to occur by the oral route around the time of birth. However the hypothesis that scrapie transmission can also occur before birth (in utero) is not currently favoured by most researchers. As scrapie is an opportunistic infection with multiple infection routes likely to be functional in sheep, definitive evidence for or against transmission from ewe to her developing fetus has been difficult to achieve. In addition the very early literature on maternal transmission of scrapie in sheep was compromised by lack of knowledge of the role of the PRNP (prion protein) gene in control of susceptibility to scrapie. In this study we experimentally infected pregnant ewes of known PRNP genotype with a distinctive scrapie strain (SSBP/1) and looked for evidence of transmission of SSBP/1 to the offspring. The sheep were from the NPU Cheviot flock, which has endemic natural scrapie from which SSBP/1 can be differentiated on the basis of histology, genetics of disease incidence and strain typing bioassay in mice. We used embryo transfer techniques to allow sheep fetuses of scrapie-susceptible PRNP genotypes to develop in a range of scrapie-resistant and susceptible recipient mothers and challenged the recipients with SSBP/1. Scrapie clinical disease, caused by both natural scrapie and SSBP/1, occurred in the progeny but evidence (including mouse strain typing) of SSBP/1 infection was found only in lambs born to fully susceptible recipient mothers. Progeny were not protected from transmission of natural scrapie or SSBP/1 by washing of embryos to International Embryo Transfer Society standards or by caesarean derivation and complete separation from their birth mothers. Our results strongly suggest that pre-natal (in utero) transmission of scrapie may have occurred in these sheep.  相似文献   

14.
Xu L  Zhang Z  Zhou X  Yin X  Yang L  Zhao D 《Gene》2011,485(2):102-105
The resistance or susceptibility of sheep to scrapie is associated with polymorphisms of the prion protein gene (PRNP), particularly, single nucleotide polymorphisms (SNPs) in amino acid positions 136, 154 and 171. The prion protein (PrP) gene sequence and the deduced amino acid alignment of prion protein in Tan sheep, a local Chinese sheep breed traditionally raised in Ningxia, northwestern China, were determined and variability of the PrP amino acids sequence was analyzed in this study. The PrP nucleic acids and amino acids sequences of 112 Tan sheep were highly homogenous, although polymorphism of the PrP gene was detected at several sites, particularly codons 106, 154, and 171. The analysis of both sequences revealed that the most predominant allele at codons 136, 154 and 171 in Tan sheep was ARQ, which was known to be associated with high susceptibility to scrapie in sheep. The result suggests that Tan sheep is potentially susceptible to scrapie. Our findings provide valuable information for future breeding projects to scrapie resistance in Tan sheep.  相似文献   

15.
Classical scrapie is a prion disease in sheep and goats. In sheep, susceptibility to disease is genetically influenced by single amino acid substitutions. Genetic breeding programs aimed at enrichment of arginine-171 (171R) prion protein (PrP), the so-called ARR allele, in the sheep population have been demonstrated to be effective in reducing the occurrence of classical scrapie in the field. Understanding the molecular basis for this reduced prevalence would serve the assessment of ARR adaptation. The prion formation mechanism and conversion of PrP from the normal form (PrP(C)) to the scrapie-associated form (PrP(Sc)) could play a key role in this process. Therefore, we investigated whether the ARR allele substantially contributes to scrapie prion formation in naturally infected heterozygous 171Q/R animals. Two methods were applied to brain tissue of 171Q/R heterozygous sheep with natural scrapie to determine the relative amount of the 171R PrP fraction in PrP(res), the proteinase K-resistant PrP(Sc) core. An antibody test differentiating between 171Q and 171R PrP fragments showed that PrP(res) was mostly composed of the 171Q allelotype. Furthermore, using a novel tool for prion research, endoproteinase Lys-C-digested PrP(res) yielded substantial amounts of a nonglycosylated and a monoglycosylated PrP fragment comprising codons 114 to 188. Following two-dimensional gel electrophoresis, only marginal amounts (<9%) of 171R PrP(res) were detected. Enhanced 171R(res) proteolytic susceptibility could be excluded. Thus, these data support a nearly zero contribution of 171R PrP in PrP(res) of 171R/Q field scrapie-infected animals. This is suggestive of a poor adaptation of classical scrapie to this resistance allele under these natural conditions.  相似文献   

16.
Expression of the cellular prion protein (PrP(C)) is crucial for susceptibility to prions. In vivo, ectopic expression of PrP(C) restores susceptibility to prions and transgenic mice that express heterologous PrP on a PrP knock-out background have been used extensively to study the role of PrP alterations for prion transmission and species barriers. Here we report that prion protein knock-out cells can be rendered permissive to scrapie infection by the ectopic expression of PrP. The system was used to study the influence of sheep PrP-specific residues in mouse PrP on the infection process with mouse adapted scrapie. These studies reveal several critical residues previously not associated with species barriers and demonstrate that amino acid residue alterations at positions known to have an impact on the susceptibility of sheep to sheep scrapie also drastically influence PrP(Sc) formation by mouse-adapted scrapie strain 22L. Furthermore, our data suggest that amino acid polymorphisms located on the outer surfaces of helix 2 and 3 drastically impact conversion efficiency. In conclusion, this system allows for the fast generation of mutant PrP(Sc) that is entirely composed of transgenic PrP and is, thus, ideally suited for testing if artificial PrP molecules can affect prion replication. Transmission of infectivity generated in HpL3-4 cells expressing altered PrP molecules to mice could also help to unravel the potential influence of mutant PrP(Sc) on host cell tropism and strain characteristics in vivo.  相似文献   

17.
Scrapie, the prion disease of sheep and goats, is a devastating malady of small ruminants. Due to its infectious nature, epidemic outbreaks may occur in flocks/herds consisting of highly susceptible animals. Field studies identified scrapie-protective caprine PrP variants, harboring specific single amino acid changes (Met-142, Arg-143, Asp-146, Ser-146, His-154, Gln-211 and Lys-222). Their effects are under further evaluation, and aim to determine the most protective allele. We assessed some of these variants (Asp-146, His-154, Gln-211 and Lys-222), after their exogenous expression as murine-caprine chimeras in a scrapie- infected murine cell line. We report that exogenously expressed PrPs undergo conformational conversion upon interaction with the endogenous pathological murine prion protein (PrPSC), which results in the detection of goat-specific and partially PK-resistant moieties. These moieties display a PK-resistance pattern distinct from the one detected in natural goat scrapie cases. Within this cellular model, distinct conformational conversion potentials were assigned to the tested variants. Molecules carrying the Asp-146, His-154 and Gln-211 alleles showed significantly lower conversion levels compared to wild type, confirming their protective effects against scrapie. Although we utilized a heterologous conversion system, this is to our knowledge, the first study of caprine PrP variants in a cellular context of scrapie, that confirms the protective effects of some of the studied alleles.  相似文献   

18.
Many studies demonstrated that there are several type bands of prion protein in cells. However, the formation of different prion protein bands is elusive. After several low molecular weight bands of prion protein appeared in SMB-S15 cells infected with scrapie agent Chandler, we think that IRES-dependent translation mechanism induced by prion is involved in the formation of prion protein bands. Then we designed a series of pPrP-GFP fusing plasmids and bicistronic plasmids to identify the IRES sites of prion protein gene and found 3 IRES sites inside of PrP mRNA. We also demonstrated that cap-independent translation of PrP was associated with the ER stress through Tunicamycin treatment. We still found that only IRE1 and PERK pathway regulated the IRES-dependent translation of PrP in this study. Our results indicated, we found that PrP gene had an IRES-dependent translation initiation mechanism and we successfully identified the IRESs inside of the prion protein gene.  相似文献   

19.
20.
Prion infections, causing neurodegenerative conditions such as Creutzfeldt-Jakob disease and kuru in humans, scrapie in sheep and BSE in cattle are characterised by prolonged and variable incubation periods that are faithfully reproduced in mouse models. Incubation time is partly determined by genetic factors including polymorphisms in the prion protein gene. Quantitative trait loci studies in mice and human genome-wide association studies have confirmed that multiple genes are involved. Candidate gene approaches have also been used and identified App, Il1-r1 and Sod1 as affecting incubation times. In this study we looked for an association between App, Il1-r1 and Sod1 representative SNPs and prion disease incubation time in the Northport heterogeneous stock of mice inoculated with the Chandler/RML prion strain. No association was seen with App, however, significant associations were seen with Il1-r1 (P = 0.02) and Sod1 (P<0.0001) suggesting that polymorphisms at these loci contribute to the natural variation observed in incubation time. Furthermore, following challenge with Chandler/RML, ME7 and MRC2 prion strains, Sod1 deficient mice showed highly significant reductions in incubation time of 20, 13 and 24%, respectively. No differences were detected in Sod1 expression or activity. Our data confirm the protective role of endogenous Sod1 in prion disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号