首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
报道了一种利用直线电机连续-步进的扫描方式进行光声显微成像的系统,该系统在运动时走弓字型路线,其中直线电机在X轴方向上连续运动,在Y轴方向上以步进的方式运动,采集卡只在X轴电机运动的过程中连续采集。该成像系统较之前振镜扫描的方式扫描的范围更大,可达到厘米尺度范围内的生物组织光声成像;较之前的步进电机逐点扫描的方式扫描速度明显提高。同时本文采用电机带动光和超声换能器一同扫描的方式,较光和超声换能器不动电机带动样品扫描的方式更灵活。另外利用包埋碳丝的模拟样品和在体小鼠耳朵血管来验证系统的成像能力。实验结果表明,这种快速光声显微成像方法及其系统可以实现在体组织的高分辨率成像,有望成为一种无创、实时的光声显微镜应用于生物医学当中。  相似文献   

2.
Optical imaging can advance knowledge of cellular biology and disease at the molecular level in vitro and, more recently, in vivo. In vivo optical imaging has enabled real-time study to track cell movement, cell growth, and even some cell functions. Thus, it can be used in intact animals for disease detection, screening, diagnosis, drug development, and treatment evaluation. This review includes a brief introduction to fluorescence imaging, fluorescent probes, imaging devices, and in vivo applications in animal models. It also describes a quantitative fluorescence detection method with a reconstruction algorithm for determining the location of fluorophores in tissue and addresses future applications of in vivo fluorescence imaging.  相似文献   

3.
The assessment of physiological changes associated with brain activity has become possible by optical methods, such as near-infrared spectroscopy (NIRS). NIRS is a useful neuroimaging technique based on haemodynamic principles for the non-invasive investigation of brain in motion. Due to its properties, the near-infrared light can penetrate biological tissue reasonably well to assess brain activity and two types of measurements are possible according to the number of channels used: dynamic changes in a localized brain region or functional brain imaging. The theoretical and technological advances of the past 10–15 years have opened the door to a range of applications in the human movement sciences, including some that involve imaging of the adult brain during motor and cognitive tasks, which for many years had been inaccessible to NIRS. This article examines the perturbation methods for measuring cerebral haemodynamic responses within resting and exercise conditions in humans and how NIRS can be used to image the moving brain. Methodological challenges of NIRS technique are presented, while the advantages and pitfalls of NIRS compared to other neuroimaging methods are discussed. Actual and future uses for NIRS in the field of sport sciences are outlined for a better understanding of brain processes during movement.  相似文献   

4.
We report noncontact optical measurement of fast transient structural changes in the crustacean nerve during action potential propagation without the need for exogenous chemicals or reflection coatings. The technique, spectral domain optical coherence tomography, provides real-time cross-sectional images of the nerve with micron-scale resolution to select a specific region for functional assessment and interferometric phase sensitivity for subnanometer-scale motion detection. Noncontact optical measurements demonstrate nanometer-scale transient movement on a 1-ms timescale associated with action potential propagation in crayfish and lobster nerves.  相似文献   

5.
Novel optoelectronic instrumentation has been developed for the multispectral imaging of autofluorescence emitted by metabolic fluorophores. The images resolve individual cells while spectra are collected for each pixel in the images. These datacubes are generated at a rate of 10 per second—fast enough for surgical guidance. The data is processed in real time to provide a single color-coded image to the surgeon. To date, the system has been applied to fresh, ex vivo, human surgical specimens and has distinguished breast cancer from benign tissue. The approach is applicable to in vivo measurements of surgical margins and needle-based optical biopsies. Ongoing work demonstrates that the system has great potential for translation to a hand-held probe with high sensitivity and specificity.  相似文献   

6.
Pressure ulcer formation is a common problem among patients confined to bed or restricted to wheelchairs. The ulcer forms when the affected skin and underlying tissues go through repeated cycles of ischemia and reperfusion, leading to inflammation. This theory is evident by intravital imaging studies performed in immune cell–specific, fluorescent reporter mouse skin with induced ischemia‐reperfusion (I‐R) injuries. However, traditional confocal or multiphoton microscopy cannot accurately monitor the progression of vascular reperfusion by contrast agents, which leaks into the interstitium under inflammatory conditions. Here, we develop a dual‐wavelength micro electro mechanical system (MEMS) scanning–based optical resolution photoacoustic microscopy (OR‐PAM) system for continuous label‐free functional imaging of vascular reperfusion in an IR mouse model. This MEMS‐OR‐PAM system provides fast scanning speed for concurrent dual‐wavelength imaging, which enables continuous monitoring of the reperfusion process. During reperfusion, the revascularization of blood vessels and the oxygen saturation (sO2) changes in both arteries and veins are recorded, from which the local oxygen extraction ratios of the ischemic tissue and the unaffected tissue can be quantified. Our MEMS‐OR‐PAM system provides novel perspectives to understand the I‐R injuries. It solves the problem of dynamic label‐free functional monitoring of the vascular reperfusion at high spatial resolution.   相似文献   

7.
Near-infrared (NIR) optical imaging is a noninvasive and nonionizing modality that is emerging as a diagnostic tool for breast cancer. The handheld optical devices developed to date using the NIR technology are predominantly developed for spectroscopic applications. A novel handheld probe-based optical imaging device has been recently developed toward area imaging and tomography applications. The three-dimensional (3D) tomographic imaging capabilities of the device have been demonstrated from previous fluorescence studies on tissue phantoms. In the current work, fluorescence imaging studies are performed on tissue phantoms, in vitro, and in vivo tissue models to demonstrate the fast two-dimensional (2D) surface imaging capabilities of this flexible handheld-based optical imaging device, toward clinical breast imaging studies. Preliminary experiments were performed using target(s) of varying volume (0.23 and 0.45 cm3) and depth (1–2 cm), using indocyanine green as the fluorescence contrast agent in liquid phantom, in vitro, and in vivo tissue models. The feasibility of fast 2D surface imaging (∼5 seconds) over large surface areas of 36 cm2 was demonstrated from various tissue models. The surface images could differentiate the target(s) from the background, allowing a rough estimate of the target''s location before extensive 3D tomographic analysis (future studies).  相似文献   

8.
Light energy from a laser source that is delivered into body tissue via a fiber-optic probe with minimal invasiveness has been used to ablate solid tumors. This thermal coagulation process can be guided and monitored accurately by continuous magnetic resonance imaging (MRI) since the laser energy delivery system does not interfere with MRI. This report deals with mathematical modeling and analysis of laser coagulation of tissue. This model is intended for "real-time" analysis of magnetic resonance images obtained during the coagulation process to guide clinical treatment. A mathematical model is developed to simulate the thermal response of tissue to a laser light heating source. For fast simulation, an approximate solution of the thermal model is used to predict the dynamics of temperature distribution and tissue damage induced by a laser energy line source. The validity of these simulations is tested by comparison with MRI-based temperature data acquired from in vivo experiments in rabbits. The model-simulated temperature distribution and predicted lesion dynamics correspond closely with MRI-based data. These results demonstrate the potential for using this combination of fast modeling and MRI technologies during laser heating of tissue for online prediction of tumor lesion size during laser heating.  相似文献   

9.
The survival of many animals hinges upon their ability to avoid collisions with other animals or objects, or to precisely control the timing of collisions. Optical expansion provides a compelling impression of object approach and in principle can provide the basis for judgments of time to collision (TTC) [1]. It has been demonstrated that pigeons [2] and houseflies [3] have neural systems that can initiate rapid coordinated actions on the basis of optical expansion. In the case of humans, the linkage between judgments of TTC and coordinated action has not been established at a cortical level. Using functional magnetic resonance imaging (fMRI), we identified superior-parietal and motor-cortex areas that are selectively active during perceptual TTC judgments, some of which are normally involved in producing reach-to-grasp responses. These activations could not be attributed to actual movement of participants. We demonstrate that networks involved in the computational problem of extracting TTC from expansion information have close correspondence with the sensorimotor systems that would be involved in preparing a timed motor response, such as catching a ball or avoiding collision.  相似文献   

10.
Adesnik H  Nicoll RA  England PM 《Neuron》2005,48(6):977-985
AMPA receptors mediate the majority of the fast excitatory transmission in the central nervous system. Much evidence suggests that the fast trafficking of AMPA receptors into and out of the postsynaptic membrane underlies changes in synaptic strength thought to be necessary for higher cognitive functions such as learning and memory. Despite the abundance of research conducted in this area, a direct, real-time functional assay that measures the trafficking of native AMPA receptors has been lacking. Toward this aim, we use a photoreactive, irreversible antagonist of AMPA receptors, ANQX, to rapidly silence surface AMPA receptors and investigate directly the trafficking of native AMPA receptors in real time. We find that the most dynamic movement of AMPA receptors occurs by lateral movement across the surface of neurons. Fast cycling of surface AMPA receptors with receptors from internal stores does occur but exclusively at extrasynaptic somatic sites. The cycling of synaptic AMPA receptors only occurs on a much longer timescale with complete exchange requiring at least 16 hr. This cycling is not dependent on protein synthesis or action potential driven network activity. These data suggest a revised model of AMPA receptor trafficking wherein a large internal store of AMPA receptors exchanges rapidly with extrasynaptic somatic AMPA receptors, and these newly inserted AMPA receptors then travel laterally along dendrites to reside stably at synapses.  相似文献   

11.
Despite the continuous improvement in medical imaging technology, visualizing the spinal cord poses severe problems due to structural or incidental causes, such as small access space and motion artifacts. In addition, positional guidance on the spinal cord is not commonly available during surgery, with the exception of neuronavigation techniques based on static pre-surgical data and of radiation-based methods, such as fluoroscopy. A fast, bedside, intraoperative real-time imaging, particularly necessary during the positioning of endoscopic probes or tools, is an unsolved issue. The objective of our work, performed on experimental rats, is to demonstrate potential intraoperative spinal cord imaging and probe guidance by optical coherence tomography (OCT). Concurrently, we aimed to demonstrate that the electromagnetic OCT irradiation exerted no particular effect at the neuronal and synaptic levels. OCT is a user-friendly, low-cost and endoscopy-compatible photonics-based imaging technique. In particular, by using a Fourier-domain OCT imager, operating at 850 nm wavelength and scanning transversally with respect to the spinal cord, we have been able to: 1) accurately image tissue structures in an animal model (muscle, spine bone, cerebro-spinal fluid, dura mater and spinal cord), and 2) identify the position of a recording microelectrode approaching and inserting into the cord tissue 3) check that the infrared radiation has no actual effect on the electrophysiological activity of spinal neurons. The technique, potentially extendable to full three-dimensional image reconstruction, shows prospective further application not only in endoscopic intraoperative analyses and for probe insertion guidance, but also in emergency and adverse situations (e.g. after trauma) for damage recognition, diagnosis and fast image-guided intervention.  相似文献   

12.
Gliomas are the most common types of brain tumors. Although sophisticated regimens of conventional therapies are being carried out to treat patients with gliomas, the disease invariably leads to death over months or years. Before new and potentially more effective treatment strategies, such as gene- and cell-based therapies, can be effectively implemented in the clinical application, certain prerequisites have to be established. First of all, the exact localization, extent, and metabolic activity of the glioma must be determined to identify the biologically active target tissue for a biological treatment regimen; this is usually performed by imaging the expression of up-regulated endogenous genes coding for glucose or amino acid transporters and cellular hexokinase and thymidine kinase genes, respectively. Second, neuronal function and functional changes within the surrounding brain tissue have to be assessed in order to save this tissue from therapy-induced damage. Third, pathognomonic genetic changes leading to disease have to be explored on the molecular level to serve as specific targets for patient-tailored therapies. Last, a concerted noninvasive analysis of both endogenous and exogenous gene expression in animal models as well as the clinical setting is desirable to effectively translate new treatment strategies from experimental into clinical application. All of these issues can be addressed by multi-modal radionuclide and magnetic resonance imaging techniques and fall into the exciting and fast growing field of molecular and functional imaging. Noninvasive imaging of endogenous gene expression by means of positron emission tomography (PET) may reveal insight into the molecular basis of pathogenesis and metabolic activity of the glioma and the extent of treatment response. When exogenous genes are introduced to serve for a therapeutic function, PET imaging may reveal the assessment of the "location," "magnitude," and "duration" of therapeutic gene expression and its relation to the therapeutic effect. Detailed reviews on molecular imaging have been published from the perspective of radionuclide imaging (Gambhir et al., 2000; Blasberg and Tjuvajev, 2002) as well as magnetic resonance and optical imaging (Weissleder, 2002). The present review focuses on molecular imaging of gliomas with special reference on the status and perspectives of imaging of endogenous and exogenously introduced gene expression in order to develop improved diagnostics and more effective treatment strategies of gliomas and, in that, to eventually improve the grim prognosis of this devastating disease.  相似文献   

13.
In vivo cytometry: a spectrum of possibilities.   总被引:1,自引:0,他引:1  
BACKGROUND: We investigate whether optical imaging can reliably detect abnormalities in tissue, in a range of specimens (live cells in vitro; fixed, fresh ex-vivo and in vivo tissue), without the use of added contrast agents, and review our promising spectral methods for achieving quantitative, real-time, high resolution intrasurgical optical diagnostics. METHODS: We use reflectance, fluorescence, two-photon, and Mie scattering imaging, performed with instrumentation we developed or modified, to detect intrinsic tissue signatures. Emphasis is on spectral/hyperspectral imaging approaches allowing the equivalent of in vivo pathology. RESULTS: With experimental focus on unstained specimens, we demonstrate the ability to segment tissue images for cancer detection. Spectral reflectance imaging, coupled with advanced analysis, typically yields 90% specificity and sensitivity. Autofluorescence is also shown to be diagnostically useful, with lymph nodes results highlighted here. Elastic scattering hyperspectral imaging endoscopy, using a new instrument we designed and built, shows promise in bronchoscopic detection of dysplasia and early cancer in patients. CONCLUSIONS: The results demonstrate that advanced optical imaging can detect and localize cellular signatures of cancer in real-time, in vivo, without the use of contrast agents, in animals and humans. This is an important step towards tight spatio-temporal coupling between such detection and clinical intervention.  相似文献   

14.
Since its introduction three decades ago, computed tomography (CT) has been regarded as an imaging technique that is good at providing structural information but poor at providing physiological (functional) data to help with diagnosis. For instance, although it can reveal an abnormal mass present in the lung or liver, it cannot always differentiate a benign mass from a malignant growth. The introduction of fast CT scanners in the past decade, together with the development of better analysis techniques, has helped to launch functional CT as a new method to investigate the physiological basis of function and disease in the human body.  相似文献   

15.
Current knowledge about developmental processes in complex organisms has relied almost exclusively on analyses of fixed specimens. However, organ growth is highly dynamic, and visualization of such dynamic processes, e.g., real-time tracking of cell movement and tissue morphogenesis, is becoming increasingly important. Here, we use live imaging to investigate expansion of the embryonic pancreatic epithelium in mouse. Using time-lapse imaging of tissue explants in culture, fluorescently labeled pancreatic epithelium was found to undergo significant expansion accompanied by branching. Quantification of the real-time imaging data revealed lateral branching as the predominant mode of morphogenesis during epithelial expansion. Live imaging also allowed documentation of dynamic beta-cell formation and migration. During in vitro growth, appearance of newly formed beta-cells was visualized using pancreatic explants from MIP-GFP transgenic animals. Migration and clustering of beta-cells were recorded for the first time using live imaging. Total beta-cell mass and concordant aggregation increased during the time of imaging, demonstrating that cells were clustering to form "pre-islets". Finally, inhibition of Hedgehog signaling in explant cultures led to a dramatic increase in total beta-cell mass, demonstrating application of the system in investigating roles of critical embryonic signaling pathways in pancreas development including beta-cell expansion. Thus, pancreas growth in vitro can be documented by live imaging, allowing visualization of the developing pancreas in real-time.  相似文献   

16.
Techniques for fast, noninvasive measurement of neuronal excitability within a broad area will be of major importance for analyzing and understanding neuronal networks and animal behavior in neuroscience field. In this research, a novel implantable imaging system for fluorescence potentiometry was developed using a complementary metal-oxide semiconductor (CMOS) technology, and its application to the analysis of cultured brain slices and the brain of a living mouse is described. A CMOS image sensor, small enough to be implanted into the brain, with light-emitting diodes and an absorbing filter was developed to enable real-time fluorescence imaging. The sensor, in conjunction with a voltage-sensitive dye, was certainly able to visualize the potential statuses of neurons and obtain physiological responses in both right and left visual cortex simultaneously by using multiple sensors for the first time. This accomplished multiplanar and multipoint measurement provides multidimensional information from different aspects. The light microsensors do not disturb the animal behavior. This implies that the imaging system can combine functional fluorescence imaging in the brain with behavioral experiments in a freely moving animal.  相似文献   

17.
ABSTRACT: Epithelial cancers account for substantial mortality and are an important public health concern. With the need for earlier detection and treatment of these malignancies, the ability to accurately detect precancerous lesions has an increasingly important role in controlling cancer incidence and mortality. New optical technologies are capable of identifying early pathology in tissues or organs in which cancer is known to develop through stages of dysplasia, including the esophagus, colon, pancreas, liver, bladder, and cervix. These diagnostic imaging advances, together as a field known as optical endomicroscopy, are based on confocal microscopy, spectroscopy-based imaging, and optical coherence tomography (OCT), and function as "optical biopsies," enabling tissue pathology to be imaged in situ and in real time without the need to excise and process specimens as in conventional biopsy and histopathology. Optical biopsy techniques can acquire high-resolution, cross-sectional images of tissue structure on the micron scale through the use of endoscopes, catheters, laparoscopes, and needles. Since the inception of these technologies, dramatic technological advances in accuracy, speed, and functionality have been realized. The current paradigm of optical biopsy, or single-area, point-based images, is slowly shifting to more comprehensive microscopy of larger tracts of mucosa. With the development of Fourier-domain OCT, also known as optical frequency domain imaging or, more recently, volumetric laser endomicroscopy, comprehensive surveillance of the entire distal esophagus is now achievable at speeds that were not possible with conventional OCT technologies. Optical diagnostic technologies are emerging as clinically useful tools with the potential to set a new standard for real-time diagnosis. New imaging techniques enable visualization of high-resolution, cross-sectional images and offer the opportunity to guide biopsy, allowing maximal diagnostic yields and appropriate staging without the limitations and risks inherent with current random biopsy protocols. However, the ability of these techniques to achieve widespread adoption in clinical practice depends on future research designed to improve accuracy and allow real-time data transmission and storage, thereby linking pathology to the treating physician. These imaging advances are expected to eventually offer a see-and-treat paradigm, leading to improved patient care and potential cost reduction. Virtual Slide The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5372548637202968.  相似文献   

18.
Observation of molecular dynamics is often biased by the optical very heterogeneous environment of cells and complex tissue. Here, we have designed an algorithm that facilitates molecular dynamic analyses within brain slices. We adjust fast astigmatism-based three-dimensional single-particle tracking techniques to depth-dependent optical aberrations induced by the refractive index mismatch so that they are applicable to complex samples. In contrast to existing techniques, our online calibration method determines the aberration directly from the acquired two-dimensional image stream by exploiting the inherent particle movement and the redundancy introduced by the astigmatism. The method improves the positioning by reducing the systematic errors introduced by the aberrations, and allows correct derivation of the cellular morphology and molecular diffusion parameters in three dimensions independently of the imaging depth. No additional experimental effort for the user is required. Our method will be useful for many imaging configurations, which allow imaging in deep cellular structures.  相似文献   

19.
20.
光学相干断层成像(optical coherence tomography,OCT)技术在成像过程中具有极大的数据量和计算量,传统的基于中央处理器(central processing unit,CPU)的计算平台难以满足OCT实时成像的需求。图形处理器(graphics processing unit,GPU)在通用计算方面具有强大的并行处理能力和数值计算能力,可以突破OCT实时成像的瓶颈。本文对GPU做了简要介绍并阐述了GPU在OCT实时成像及功能成像中的应用及研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号