首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Artemisinin derivatives used in recently introduced combination therapies (ACTs) for Plasmodium falciparum malaria significantly lower patient infectiousness and have the potential to reduce population-level transmission of the parasite. With the increased interest in malaria elimination, understanding the impact on transmission of ACT and other antimalarial drugs with different pharmacodynamics becomes a key issue. This study estimates the reduction in transmission that may be achieved by introducing different types of treatment for symptomatic P. falciparum malaria in endemic areas.

Methods and Findings

We developed a mathematical model to predict the potential impact on transmission outcomes of introducing ACT as first-line treatment for uncomplicated malaria in six areas of varying transmission intensity in Tanzania. We also estimated the impact that could be achieved by antimalarials with different efficacy, prophylactic time, and gametocytocidal effects. Rates of treatment, asymptomatic infection, and symptomatic infection in the six study areas were estimated using the model together with data from a cross-sectional survey of 5,667 individuals conducted prior to policy change from sulfadoxine-pyrimethamine to ACT. The effects of ACT and other drug types on gametocytaemia and infectiousness to mosquitoes were independently estimated from clinical trial data. Predicted percentage reductions in prevalence of infection and incidence of clinical episodes achieved by ACT were highest in the areas with low initial transmission. A 53% reduction in prevalence of infection was seen if 100% of current treatment was switched to ACT in the area where baseline slide-prevalence of parasitaemia was lowest (3.7%), compared to an 11% reduction in the highest-transmission setting (baseline slide prevalence = 57.1%). Estimated percentage reductions in incidence of clinical episodes were similar. The absolute size of the public health impact, however, was greater in the highest-transmission area, with 54 clinical episodes per 100 persons per year averted compared to five per 100 persons per year in the lowest-transmission area. High coverage was important. Reducing presumptive treatment through improved diagnosis substantially reduced the number of treatment courses required per clinical episode averted in the lower-transmission settings although there was some loss of overall impact on transmission. An efficacious antimalarial regimen with no specific gametocytocidal properties but a long prophylactic time was estimated to be more effective at reducing transmission than a short-acting ACT in the highest-transmission setting.

Conclusions

Our results suggest that ACTs have the potential for transmission reductions approaching those achieved by insecticide-treated nets in lower-transmission settings. ACT partner drugs and nonartemisinin regimens with longer prophylactic times could result in a larger impact in higher-transmission settings, although their long term benefit must be evaluated in relation to the risk of development of parasite resistance.  相似文献   

2.

Background

Past experience and modelling suggest that, in most cases, mass treatment strategies are not likely to succeed in interrupting Plasmodium falciparum malaria transmission. However, this does not preclude their use to reduce disease burden. Mass screening and treatment (MSAT) is preferred to mass drug administration (MDA), as the latter involves massive over-use of drugs. This paper reports simulations of the incremental cost-effectiveness of well-conducted MSAT campaigns as a strategy for P. falciparum malaria disease-burden reduction in settings with varying receptivity (ability of the combined vector population in a setting to transmit disease) and access to case management.

Methods

MSAT incremental cost-effectiveness ratios (ICERs) were estimated in different sub-Saharan African settings using simulation models of the dynamics of malaria and a literature-based MSAT cost estimate. Imported infections were simulated at a rate of two per 1,000 population per annum. These estimates were compared to the ICERs of scaling up case management or insecticide-treated net (ITN) coverage in each baseline health system, in the absence of MSAT.

Results

MSAT averted most episodes, and resulted in the lowest ICERs, in settings with a moderate level of disease burden. At a low pre-intervention entomological inoculation rate (EIR) of two infectious bites per adult per annum (IBPAPA) MSAT was never more cost-effective than scaling up ITNs or case management coverage. However, at pre-intervention entomological inoculation rates (EIRs) of 20 and 50 IBPAPA and ITN coverage levels of 40 or 60%, respectively, the ICER of MSAT was similar to that of scaling up ITN coverage further.

Conclusions

In all the transmission settings considered, achieving a minimal level of ITN coverage is a “best buy”. At low transmission, MSAT probably is not worth considering. Instead, MSAT may be suitable at medium to high levels of transmission and at moderate ITN coverage. If undertaken as a burden-reducing intervention, MSAT should be continued indefinitely and should complement, not replace, case management and vector control interventions.  相似文献   

3.

Introduction

The RTS,S/AS01 pre-erythrocytic malaria vaccine is in phase III clinical trials. It is critical to anticipate where and how it should be implemented if trials are successful. Such planning may be complicated by changing levels of malaria transmission.

Methods/results

Computer simulations were used to examine RTS,S/AS01 impact, using a vaccine profile based on phase II trial results, and assuming that protection decays only slowly. Settings were simulated in which baseline transmission (in the absence of vaccine) was fixed or varied between 2 and 20 infectious mosquito bites per person per annum (ibpa) over ten years. Four delivery strategies were studied: routine infant immunization (EPI), EPI plus infant catch-up, EPI plus school-based campaigns, and EPI plus mass campaigns. Impacts in changing transmission settings were similar to those in fixed settings. Assuming a persistent effect of vaccination, at 2 ibpa, the vaccine averted approximately 5–7 deaths per 1000 doses of vaccine when delivered via mass campaigns, but the benefit was less at higher transmission levels. EPI, catch-up and school-based strategies averted 2–3 deaths per 1000 doses in settings with 2 ibpa. In settings where transmission was decreasing or increasing, EPI, catch-up and school-based strategies averted approximately 3–4 deaths per 1000 doses.

Discussion

Where transmission is changing, it appears to be sufficient to consider simulations of pre-erythrocytic vaccine impact at a range of initial transmission levels. At 2 ibpa, mass campaigns averted the most deaths and reduced transmission, but this requires further study. If delivered via EPI, RTS,S/AS01 could avert approximately 6–11 deaths per 1000 vaccinees in all examined settings, similar to estimates for pneumococcal conjugate vaccine in African infants. These results support RTS,S/AS01 implementation via EPI, for example alongside vector control interventions, providing that the phase III trials provide support for our assumptions about efficacy.  相似文献   

4.
Emergence of resistance to artemisinin and partner drugs in the Greater Mekong Subregion has made elimination of malaria from this region a global priority; it also complicates its achievement. Novel drug strategies such as triple artemisinin combination therapies (ACTs) and chemoprophylaxis have been proposed to help limit resistance and accelerate elimination. The objective of this study was to better understand the potential impacts of triple ACTs and chemoprophylaxis, using a mathematical model parameterized using data from Cambodia. We used a simple compartmental model to predict trends in malaria incidence and resistance in Cambodia from 2020–2025 assuming no changes in transmission since 2018. We assessed three scenarios: a status quo scenario with artesunate-mefloquine (ASMQ) as treatment; a triple ACT scenario with dihydroartemisinin-piperaquine (DP) plus mefloquine (MQ) as treatment; and a chemoprophylaxis scenario with ASMQ as treatment plus DP as chemoprophylaxis. We predicted MQ resistance to increase under the status quo scenario. Triple ACT treatment reversed the spread of MQ resistance, but had no impact on overall malaria incidence. Joint MQ-PPQ resistance declined under the status quo scenario for the baseline parameter set and most sensitivity analyses. Compared to the status quo, triple ACT treatment limited spread of MQ resistance but also slowed declines in PPQ resistance in some sensitivity analyses. The chemoprophylaxis scenario decreased malaria incidence, but increased the spread of strains resistant to both MQ and PPQ; both effects began to reverse after the intervention was removed. We conclude that triple ACTs may limit spread of MQ resistance in the Cambodia, but would have limited impact on malaria incidence and might slow declines in PPQ resistance. Chemoprophylaxis could have greater impact on incidence but also carries higher risks of resistance. Aggressive strategies to limit transmission the GMS are needed to achieve elimination goals, but any intervention should be accompanied by monitoring for drug resistance.  相似文献   

5.
Mosquitoes, which evade contact with long-lasting insecticidal nets and indoor residual sprays, by feeding outdoors or upon animals, are primary malaria vectors in many tropical countries. They can also dominate residual transmission where high coverage of these front-line vector control measures is achieved. Complementary strategies, which extend insecticide coverage beyond houses and humans, are required to eliminate malaria transmission in most settings. The overwhelming diversity of the world's malaria transmission systems and optimal strategies for controlling them can be simply conceptualized and mapped across two-dimensional scenario space defined by the proportion of blood meals that vectors obtain from humans and the proportion of human exposure to them which occurs indoors.  相似文献   

6.
Malaria remains a major health burden especially for the developing countries. Despite concerted efforts at using the current control tools, such as bed nets, anti malarial drugs and vector control measures, the disease is accountable for close to a million deaths annually. Vaccines have been proposed as a necessary addition to the armamentarium that could work towards elimination and eventual eradication of malaria in view of their historical significance in combating infectious diseases. However, because malaria vaccines would work differently depending on the targeted parasite stage, this review addresses the potential impact various malaria vaccine types could have on transmission. Further, because of the wide variation in the epidemiology of malaria across the endemic regions, this paper proposes that the ideal approach to malaria control ought to be tailor-made depending on the specific context. Finally, it suggests that although it is highly desirable to anticipate and aim for malaria elimination and eventual eradication, many affected regions should prioritize reduction of mortality and morbidity before aspiring for elimination.  相似文献   

7.
As the most widespread viral infection transmitted by the Aedes mosquitoes, dengue has been estimated to cause 51 million febrile disease cases globally each year. Although sustained vector control remains key to reducing the burden of dengue, current understanding of the key factors that explain the observed variation in the short- and long-term vector control effectiveness across different transmission settings remains limited. We used a detailed individual-based model to simulate dengue transmission with and without sustained vector control over a 30-year time frame, under different transmission scenarios. Vector control effectiveness was derived for different time windows within the 30-year intervention period. We then used the extreme gradient boosting algorithm to predict the effectiveness of vector control given the simulation parameters, and the resulting machine learning model was interpreted using Shapley Additive Explanations. According to our simulation outputs, dengue transmission would be nearly eliminated during the early stage of sustained and intensive vector control, but over time incidence would gradually bounce back to the pre-intervention level unless the intervention is implemented at a very high level of intensity. The time point at which intervention ceases to be effective is strongly influenced not only by the intensity of vector control, but also by the pre-intervention transmission intensity and the individual-level heterogeneity in biting risk. Moreover, the impact of many transmission model parameters on the intervention effectiveness is shown to be modified by the intensity of vector control, as well as to vary over time. Our study has identified some of the critical drivers for the difference in the time-varying effectiveness of sustained vector control across different dengue endemic settings, and the insights obtained will be useful to inform future model-based studies that seek to predict the impact of dengue vector control in their local contexts.  相似文献   

8.

Malaria remains a major health burden especially for the developing countries. Despite concerted efforts at using the current control tools, such as bed nets, anti malarial drugs and vector control measures, the disease is accountable for close to a million deaths annually. Vaccines have been proposed as a necessary addition to the armamentarium that could work towards elimination and eventual eradication of malaria in view of their historical significance in combating infectious diseases. However, because malaria vaccines would work differently depending on the targeted parasite stage, this review addresses the potential impact various malaria vaccine types could have on transmission. Further, because of the wide variation in the epidemiology of malaria across the endemic regions, this paper proposes that the ideal approach to malaria control ought to be tailor-made depending on the specific context. Finally, it suggests that although it is highly desirable to anticipate and aim for malaria elimination and eventual eradication, many affected regions should prioritize reduction of mortality and morbidity before aspiring for elimination.

  相似文献   

9.
Evaluating the effectiveness of malaria control interventions on the basis of their impact on transmission as well as impact on morbidity and mortality is becoming increasingly important as countries consider pre-elimination and elimination as well as disease control. Data on prevalence and transmission are traditionally obtained through resource-intensive epidemiological and entomological surveys that become difficult as transmission decreases. This work employs mathematical modeling to examine the relationships between malaria indicators allowing more easily measured data, such as routine health systems data on case incidence, to be translated into measures of transmission and other malaria indicators. Simulations of scenarios with different levels of malaria transmission, patterns of seasonality and access to treatment were run with an ensemble of models of malaria epidemiology and within-host dynamics, as part of the OpenMalaria modeling platform. For a given seasonality profile, regression analysis mapped simulation results of malaria indicators, such as annual average entomological inoculation rate, prevalence, incidence of uncomplicated and severe episodes, and mortality, to an expected range of values of any of the other indicators. Results were validated by comparing simulated relationships between indicators with previously published data on these same indicators as observed in malaria endemic areas. These results allow for direct comparisons of malaria transmission intensity estimates made using data collected with different methods on different indicators. They also address key concerns with traditional methods of quantifying transmission in areas of differing transmission intensity and sparse data. Although seasonality of transmission is often ignored in data compilations, the models suggest it can be critically important in determining the relationship between transmission and disease. Application of these models could help public health officials detect changes of disease dynamics in a population and plan and assess the impact of malaria control interventions.  相似文献   

10.
Anti-malarial drugs can make a significant contribution to the control of malaria in endemic areas when used for prevention as well as for treatment. Chemoprophylaxis is effective in preventing deaths and morbidity from malaria, but it is difficult to sustain for prolonged periods, may interfere with the development of naturally acquired immunity and will facilitate the emergence and spread of drug resistant strains if applied to a whole community. However, chemoprophylaxis targeted to groups at high risk, such as pregnant women, or to periods of the year when the risk from malaria is greatest, can be an effective and cost effective malaria control tool and has fewer drawbacks. Intermittent preventive treatment, which involves administration of anti-malarials at fixed time points, usually when a subject is already in contact with the health services, for example attendance at an antenatal or vaccination clinic, is less demanding of resources than chemoprophylaxis and is now recommended for the prevention of malaria in pregnant women and infants resident in areas with medium or high levels of malaria transmission. Intermittent preventive treatment in older children, probably equivalent to targeted chemoprophylaxis, is also highly effective but requires the establishment of a specific delivery system. Recent studies have shown that community volunteers can effectively fill this role. Mass drug administration probably has little role to play in control of mortality and morbidity from malaria but may have an important role in the final stages of an elimination campaign.  相似文献   

11.
In this paper, a malaria transmission model with sterile mosquitoes is considered. We first formulate a simple SEIR malaria transmission model as our baseline model. Then sterile mosquitoes are introduced into the baseline model. We consider the case that the release rate of sterile mosquitoes is proportional to the wild mosquito population size. To investigate the impact of releasing sterile mosquitoes on the malaria transmission, the dynamics of the baseline model and the models with the sterile mosquitoes are discussed. We derive formulas of the reproductive numbers and explore the existence of endemic equilibrium as the reproductive number is more than unity for these models. It is shown that both the baseline model and the models with the sterile mosquitoes undergo backward bifurcations. Based on theoretical analysis and numerical simulation, we investigate the impact of releasing sterile mosquitoes on malaria transmission.  相似文献   

12.
Schistosomiasis causes severe morbidity in many countries with endemic infection with the schistosome digenean parasites in Africa and Asia. To control and eliminate the disease resulting from infection, regular mass drug administration (MDA) is used, with a focus on school-aged children (SAC; 5–14 years of age). In some high transmission settings, the World Health Organization (WHO) also recommends the inclusion of at-risk adults in MDA treatment programmes. The question of whether ecology (age-dependant exposure) or immunity (resistance to reinfection), or some combination of both, determines the form of observed convex age-intensity profile is still unresolved, but there is a growing body of evidence that the human hosts acquire some partial level of immunity after a long period of repeated exposure to infection. In the majority of past research modelling schistosome transmission and the impact of MDA programmes, the effect of acquired immunity has not been taken into account. Past work has been based on the assumption that age-related contact rates generate convex horizontal age-intensity profiles. In this paper, we use an individual based stochastic model of transmission and MDA impact to explore the effect of acquired immunity in defined MDA programmes. Compared with scenarios with no immunity, we find that acquired immunity makes the MDA programme less effective with a slower decrease in the prevalence of infection. Therefore, the time to achieve morbidity control and elimination as a public health problem is longer than predicted by models with just age-related exposure and no build-up of immunity. The level of impact depends on the baseline prevalence prior to treatment (the magnitude of the basic reproductive number R0) and the treatment frequency, among other factors. We find that immunity has a larger impact within moderate to high transmission settings such that it is very unlikely to achieve morbidity and transmission control employing current MDA programmes.  相似文献   

13.
A simple, visual representation of spatial aspects of malaria transmission in successive snap-shots in time, is presented. The spatial components of the simulation involve (i) the identification of mosquito vector breeding sites of defined shape and area, (ii) the identification of a zone of malaria transmission determined by the shapes and areas of the vector breeding sites and the distance from these sites that the mosquitoes disperse, (iii) a human population dispersed in relation to the malaria transmission zone, (iv) perimeters around each individual human within which his or her infection can be transmitted by the local vector mosquitoes. The intensity of transmission within a malaria transmission zone is given by a number which is the number of new cases of malaria that each existing case will distribute through the human population within the duration of an infection. The simulation has been used here to examine the effects of vaccination against malaria transmission. Different levels of vaccine coverage are represented under endemic and epidemic malaria. The consequences of full or partial coverage of a zone of malaria transmission are also examined. The results are numerically compatible with the predictions of previous simple mathematical simulations of malaria transmission and interventions. The present simulation allows the nature of malaria transmission and the effects of interventions to be communicated easily and directly to an audience. It could have practical value in discussions of malaria control strategies with health planners.  相似文献   

14.

Background

Mass treatment with ivermectin controls onchocerciasis as a public health problem, but it was not known if it could also interrupt transmission and eliminate the parasite in endemic foci in Africa where vectors are highly efficient. A longitudinal study was undertaken in three hyperendemic foci in Mali and Senegal with 15 to 17 years of annual or six-monthly ivermectin treatment in order to assess residual levels of infection and transmission, and test whether treatment could be safely stopped. This article reports the results of the final evaluations up to 5 years after the last treatment.

Methodology/Principal Findings

Skin snip surveys were undertaken in 131 villages where 29,753 people were examined and 492,600 blackflies were analyzed for the presence of Onchocerca volvulus larva using a specific DNA probe. There was a declining trend in infection and transmission levels after the last treatment. In two sites the prevalence of microfilaria and vector infectivity rate were zero 3 to 4 years after the last treatment. In the third site, where infection levels were comparatively high before stopping treatment, there was also a consistent decline in infection and transmission to very low levels 3 to 5 years after stopping treatment. All infection and transmission indicators were below postulated thresholds for elimination.

Conclusion/Significance

The study has established the proof of principle that onchocerciasis elimination with ivermectin treatment is feasible in at least some endemic foci in Africa. The study results have been instrumental for the current evolution from onchocerciasis control to elimination in Africa.  相似文献   

15.
Standard entomological methods for evaluating the impact of vector control lack sensitivity in low-malaria-risk areas. The detection of human IgG specific to Anopheles gSG6-P1 salivary antigen reflects a direct measure of human–vector contact. This study aimed to assess the effectiveness of a range of vector control measures (VCMs) in urban settings by using this biomarker approach. The study was conducted from October to December 2008 on 2,774 residents of 45 districts of urban Dakar. IgG responses to gSG6-P1 and the use of malaria VCMs highly varied between districts. At the district level, specific IgG levels significantly increased with age and decreased with season and with VCM use. The use of insecticide-treated nets, by drastically reducing specific IgG levels, was by far the most efficient VCM regardless of age, season or exposure level to mosquito bites. The use of spray bombs was also associated with a significant reduction of specific IgG levels, whereas the use of mosquito coils or electric fans/air conditioning did not show a significant effect. Human IgG response to gSG6-P1 as biomarker of vector exposure represents a reliable alternative for accurately assessing the effectiveness of malaria VCM in low-malaria-risk areas. This biomarker tool could be especially relevant for malaria control monitoring and surveillance programmes in low-exposure/low-transmission settings.  相似文献   

16.

Background

A wide range of possible malaria vaccines is being considered and there is a need to identify which vaccines should be prioritized for clinical development. An important element of the information needed for this prioritization is a prediction of the cost-effectiveness of potential vaccines in the transmission settings in which they are likely to be deployed. This analysis needs to consider a range of delivery modalities to ensure that clinical development plans can be aligned with the most appropriate deployment strategies.

Methods

The simulations are based on a previously published individual-based stochastic model for the natural history and epidemiology of Plasmodium falciparum malaria. Three different vaccine types: pre-erythrocytic vaccines (PEV), blood stage vaccines (BSV), mosquito-stage transmission-blocking vaccines (MSTBV), and combinations of these, are considered each delivered via a range of delivery modalities (Expanded Programme of Immunization – EPI-, EPI with booster, and mass vaccination combined with EPI). The cost-effectiveness ratios presented are calculated for four health outcomes, for assumed vaccine prices of US$ 2 or US$ 10 per dose, projected over a 10-year period.

Results

The simulations suggest that PEV will be more cost-effective in low transmission settings, while BSV at higher transmission settings. Combinations of BSV and PEV are more efficient than PEV, especially in moderate to high transmission settings, while compared to BSV they are more cost-effective in moderate to low transmission settings. Combinations of MSTBV and PEV or PEV and BSV improve the effectiveness and the cost-effectiveness compared to PEV and BSV alone only when applied with EPI and mass vaccinations. Adding booster doses to the EPI is unlikely to be a cost-effective alternative to delivering vaccines via the EPI for any vaccine, while mass vaccination improves effectiveness, especially in low transmission settings, and is often a more efficient alternative to the EPI. However, the costs of increasing the coverage of mass vaccination over 50% often exceed the benefits.

Conclusion

The simulations indicate malaria vaccines might be efficient malaria control interventions, and that both transmission setting and vaccine delivery modality are important to their cost-effectiveness. Alternative vaccine delivery modalities to the EPI may be more efficient than the EPI. Mass vaccination is predicted to provide substantial health benefits at low additional costs, although achieving high coverage rates can lead to substantial incremental costs.  相似文献   

17.

Background

Sub-Saharan Africa harbors the majority of the global burden of malaria and schistosomiasis infections. The co-endemicity of these two tropical diseases has prompted investigation into the mechanisms of coinfection, particularly the competing immunological responses associated with each disease. Epidemiological studies have shown that infection with Schistosoma mansoni is associated with a greater malaria incidence among school-age children.

Methodology

We developed a co-epidemic model of malaria and S. mansoni transmission dynamics which takes into account key epidemiological interaction between the two diseases in terms of elevated malaria incidence among individuals with S. mansoni high egg output. The model was parameterized for S. mansoni high-risk endemic communities, using epidemiological and clinical data of the interaction between S. mansoni and malaria among children in sub-Saharan Africa. We evaluated the potential impact of the S. mansoni–malaria interaction and mass treatment of schistosomiasis on malaria prevalence in co-endemic communities.

Principal Findings

Our results suggest that in the absence of mass drug administration of praziquantel, the interaction between S. mansoni and malaria may reduce the effectiveness of malaria treatment for curtailing malaria transmission, in S. mansoni high-risk endemic communities. However, when malaria treatment is used in combination with praziquantel, mass praziquantel administration may increase the effectiveness of malaria control intervention strategy for reducing malaria prevalence in malaria- S. mansoni co-endemic communities.

Conclusions/Significance

Schistosomiasis treatment and control programmes in regions where S. mansoni and malaria are highly prevalent may have indirect benefits on reducing malaria transmission as a result of disease interactions. In particular, mass praziquantel administration may not only have the direct benefit of reducing schistosomiasis infection, it may also reduce malaria transmission and disease burden.  相似文献   

18.
ABSTRACT: BACKGROUND: Malaria is endemic on Bioko Island, Equatorial Guinea, with year-round transmission. In 2004 an intensive malaria control strategy primarily based on indoor residual spraying (IRS) was launched. The limited residual life of IRS poses particular challenges in a setting with year-round transmission, such as Bioko. Recent reports of outdoor biting by Anopheles gambiae are an additional cause for concern. In this study, the effect of the short residual life of bendiocarb insecticide and of children spending time outdoors at night, on malaria infection prevalence was examined. METHODS: Data from the 2011 annual malaria indicator survey and from standard WHO cone bioassays were used to examine the relationship between time since IRS, mosquito mortality and prevalence of infection in children. How often children spend time outside at night and the association of this behaviour with malaria infection were also examined. RESULTS: Prevalence of malaria infection in two to 14 year-olds in 2011 was 18.4 %, 21.0 % and 28.1 % in communities with median time since IRS of three, four and five months respectively. After adjusting for confounders, each extra month since IRS corresponded to an odds ratio (OR) of 1.44 (95 % CI 1.15-1.81) for infection prevalence in two to 14 year-olds. Mosquito mortality was 100 %, 96 %, 81 % and 78 %, at month 2, 3, 4 and 5 respectively after spraying. Only 4.1 % of children spent time outside the night before the survey between the hours of 22.00 and 06.00 and those who did were not at a higher risk of infection (OR 0.87, 95 % CI 0.50-1.54). Sleeping under a mosquito net provided additive protection (OR 0.68, 95 % CI 0.54-0.86). CONCLUSIONS: The results demonstrate the epidemiological impact of reduced mosquito mortality with time since IRS. The study underscores that in settings of year-round transmission there is a compelling need for longer-lasting IRS insecticides, but that in the interim, high coverage of long-lasting insecticidal nets (LLINs) may ameliorate the loss of effect of current shorterlasting IRS insecticides. Moreover, continued use of IRS and LLINs for indoor-oriented vector control is warranted given that there is no evidence that spending time outdoors at night increases infection prevalence in children.  相似文献   

19.

Background

A number of different malaria vaccine candidates are currently in pre-clinical or clinical development. Even though they vary greatly in their characteristics, it is unlikely that any of them will provide long-lasting sterilizing immunity against the malaria parasite. There is great uncertainty about what the minimal vaccine profile should be before registration is worthwhile; how to allocate resources between different candidates with different profiles; which candidates to consider combining; and what deployment strategies to consider.

Methods and Findings

We use previously published stochastic simulation models, calibrated against extensive epidemiological data, to make quantitative predictions of the population effects of malaria vaccines on malaria transmission, morbidity and mortality. The models are fitted and simulations obtained via volunteer computing. We consider a range of endemic malaria settings with deployment of vaccines via the Expanded program on immunization (EPI), with and without additional booster doses, and also via 5-yearly mass campaigns for a range of coverages. The simulation scenarios account for the dynamic effects of natural and vaccine induced immunity, for treatment of clinical episodes, and for births, ageing and deaths in the cohort. Simulated pre-erythrocytic vaccines have greatest benefits in low endemic settings (EIR of 84) PEV may lead to increased incidence of severe disease in the long term, if efficacy is moderate to low (<70%). Blood stage vaccines (BSV) are most useful in high transmission settings, and are comparable to PEV for low transmission settings. Combinations of PEV and BSV generally perform little better than the best of the contributing components. A minimum half-life of protection of 2–3 years appears to be a precondition for substantial epidemiological effects. Herd immunity effects can be achieved with even moderately effective (>20%) malaria vaccines (either PEV or BSV) when deployed through mass campaigns targeting all age-groups as well as EPI, and especially if combined with highly efficacious transmission-blocking components.

Conclusions

We present for the first time a stochastic simulation approach to compare likely effects on morbidity, mortality and transmission of a range of malaria vaccines and vaccine combinations in realistic epidemiological and health systems settings. The results raise several issues for vaccine clinical development, in particular appropriateness of vaccine types for different transmission settings; the need to assess transmission to the vector and duration of protection; and the importance of deployment additional to the EPI, which again may make the issue of number of doses required more critical. To test the validity and robustness of our conclusions there is a need for further modeling (and, of course, field research) using alternative formulations for both natural and vaccine induced immunity. Evaluation of alternative deployment strategies outside EPI needs to consider the operational implications of different approaches to mass vaccination.  相似文献   

20.
ABSTRACT: BACKGROUND: The success of community case management in improving access to effective malaria treatment for young children relies on broad utilization of community health workers (CHWs) to diagnose and treat fever cases. A better understanding of the factors associated with CHW utilization is crucial in informing national malaria control policy and strategy in Kenya. Specifically, little is known in Kenya on the extent to which CHWs are utilized, the characteristics of families who report utilizing CHWs and whether utilization is associated with improved access to prompt and effective malaria treatment. This paper examines factors associated with utilization of CHWs in improving access to malaria treatment among children under five years of age by women caregivers in two malaria endemic districts in Kenya. METHODS: This study was conducted in 113 hard-to-reach and poor villages in Malindi and Lamu districts in the coastal region classified as having endemic transmission of malaria. A crosssectional household survey was conducted using a standardized malaria indicator questionnaire at baseline (n = 1,187) and one year later at endline assessment (n = 1,374) using two-stage cluster sampling. RESULTS: There was an increase in reported utilization of CHWs as source of advice/treatment for child fevers from 2% at baseline to 35% at endline, accompanied by a decline in care-seeking from government facilities (from 67% to 48%) and other sources (26% to 2%) including shops. The most poor households and poor households reported higher utilization of CHWs at 39.4% and 37.9% respectively, compared to the least poor households (17.0%). Households in villages with less than 200 households reported higher CHWs utilization as compared to households in villages having >200 households. Prompt access to timely and effective treatment was 5.7 times higher (95% CI 3.4-9.7) when CHWs were the source of care sought. Adherence was high regardless of whether source was CHWs (73.1%) or public health facility (66.7%). CONCLUSIONS: The potential for utilization of CHWs in improving access to malaria treatment at the community level is promising. This will not only enhance access to treatment by the poorest households but also provide early and appropriate treatment to vulnerable individuals, especially those living in hard to reach areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号