首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A phospholipase A2 with an arachidonoyl residue preference was purified about 11,700-fold from human platelet soluble fraction to near homogeneity. The purified phospholipase A2 exhibited a molecular mass of about 90 kDa on SDS polyacrylamide gel electrophoresis and hydrolyzed phospholipids with an arachidonoyl residue more effectively than those with a linoleoyl residue. The catalytic activity of the purified enzyme detected with phosphatidylcholine as a substrate increased sharply between 3 x 10(-7) and 10(-6) M free calcium ion. Thus, the 90-kDa phospholipase A2 is considered to be a novel enzyme, distinct from the 14-kDa one previously purified from human platelets. The 90-kDa phospholipase A2 may participate mainly in arachidonate metabolism of platelets.  相似文献   

2.
Phospholipase A2 activity in lysates of mast cells such as rat mastocytoma RBL-2H3 cells and mouse bone marrow-derived IL-3-dependent mast cells (BMMC) was measured using phosphatidylcholine (PC), phosphatidylethanolamine (PE), or phosphatidylserine (PS) as a substrate. Both types of cells exhibited phospholipase A2 activity with a similar pH profile; the optimum pH observed with PS as a substrate was 5.5-7.4, whereas that with PE or PC was 8.0-9.0. PE and PC bearing an arachidonate at the sn-2 position were cleaved more efficiently by PE, PC-hydrolyzing phospholipase A2 than phospholipids with a linoleate. A monoclonal antibody raised against rabbit platelet 85-kDa cytosolic phospholipase A2 absorbed the PE, PC-hydrolyzing activity. PS-hydrolyzing activity was purified from RBL-2H3 cells and BMMC by sequential heparin-Sepharose, butyl-Toyo-pearl, and reverse-phase HPLC. On reverse-phase HPLC, the PS-hydrolyzing activity of RBL cells was separated into two peaks, A and B. The peak B activity was inhibited by the anti-rat 14-kDa group II phospholipase A2 antibody, while the peak A activity was not. The partially purified peak A activity hydrolyzed PS about 10-fold more efficiently than PE at optimum pH of 5.5-7.4. No appreciable hydrolysis was observed with PC or phosphatidylinositol (PI). Thus, mast cells may express at least three distinct phospholipases A2; 14-kDa group II phospholipase A2, 85-kDa cytosolic arachidonate preferential phospholipase A2, and a novel phospholipase A2 that shows high substrate specificity for PS.  相似文献   

3.
It was reported previously that rat platelets release phospholipase A2 upon in vitro stimulation by thrombin, ADP, or A23187 (Horigome, K., Hayakawa, M., Inoue, K., & Nojima, S. (1987) J. Biochem. 101, 53-61). Secretion of phospholipase A2 was also observed with rabbit platelets. Rabbit platelets seem to release phospholipase A2 upon stimulation in vivo, because the rabbit plasma taken immediately after intravenous injection of PAF contained an appreciable level of phospholipase A2 activity and fewer platelets. Rabbit platelet phospholipase A2 released in vitro was purified by column chromatography using Sepharose CL-4B conjugated with anti-rat platelet derived phospholipase A2 monoclonal antibody, followed by reversed-phase HPLC. The purified enzyme was subjected to structural analysis by HPLC peptide mapping and primary sequence determination of the separated peptides. Based on the homology with rat platelet secretory phospholipase A2 (Hayakawa, M., Kudo, I., Tomita, M., Nojima, S., & Inoue, K. (1988) J. Biochem. 104, 767-772), a partial primary structure (62 amino acid residues) of the rabbit enzyme was tentatively determined; the two sequences were highly homologous (72%). The rabbit sequence was also nearly identical to that of rabbit ascitic fluid phospholipase A2, which was determined by Forst et al. (Forst, S., Weiss, J., Elsbach, P., Maraganore, J.M., Reardon, I., & Heinrikson, R.L. (1986) Biochemistry 25, 8381-8385). Phospholipase A2 from the membrane fraction of rabbit platelets was also purified; it had the same characteristics and th same amino-terminal sequence as the purified secretory enzyme. Secretory and membrane-bound phospholipase A2 of rabbit platelets may in fact be identical.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Monoclonal antibodies were raised against rabbit platelet cytosolic arachidonoyl-preferential phospholipase A2. The antibodies precipitated the arachidonoyl-preferential phospholipase A2 activity in the soluble fraction of a rabbit platelet lysate in combination with an immobilized anti-mouse immunoglobulin antibody, and reacted predominantly with a protein exhibiting a molecular weight of approximately 88,000 on immunoblotting analysis. All three antibodies established so far reacted with human platelet arachidonoyl-preferential phospholipase A2 as effectively as the rabbit platelet enzyme. One of them reacted with the rat platelet arachidonoyl-preferential enzyme, whereas none of them reacted with rabbit platelet secretory 14-kDa group II phospholipase A2. The existence of an immunologically related phospholipase A2 was further shown in rabbit granulocytes, brain, lung, and liver, rat and mouse mast cells, and human monocytoma U937 cells. Thus, an arachidonoyl-preferential phospholipase A2 with similar structural properties appeared to be expressed in a variety of cells and tissues.  相似文献   

5.
A phospholipase A2 hydrolyzing arachidonic-acid-containing phospholipids has been purified 5600-fold from mouse spleen and to near homogeneity from the macrophage cell line J774. A molecular mass of 100 kDa for the enzyme was estimated by SDS/PAGE, while it migrated as a 70-kDa protein upon gel chromatography. The enzyme from both sources showed the same characteristics as that previously identified in murine peritoneal macrophages [Wijkander, J. & Sundler, R. (1989), FEBS Lett. 244, 51-56], i.e. it was totally dependent on Ca2+ with half-maximal activity at approximately 0.7 microM and hydrolyzed arachidonoyl phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol equally well. Also, the platelet-activating-factor precursor, 1-O-alkyl-2-arachidonoylglycerophosphocholine, was hydrolyzed to a similar extent. A preference for arachidonoylphosphatidylcholine over oleoylphosphatidylcholine was seen both with sonicated vesicles and labeled macrophage membranes as substrate. Ca(2+)-dependent interaction of the enzyme with sonicated vesicles composed of neutral phospholipids led to rapid initial hydrolysis, followed by loss of catalytic activity. Such inactivation did not occur with vesicles of pure anionic phospholipids, or with membranes prepared from macrophages. Phospholipase A2, purified from J774 cells, was rapidly phosphorylated by protein kinase C type-II, leading to incorporation of approximately 0.5 mol phosphate/mol enzyme.  相似文献   

6.
Human erythrocyte (Ca2+ + Mg2+)-ATPase and calcium ATPase of rabbit platelets were compared by their responses to a variety of treatments. These included three purified phospholipases A2 (acidic, neutral and basic) from Agkistrodon halys blomhoffii, as well as several phospholipids and lysophospholipids. The erythrocyte enzyme was stimulated 2-3-fold by all three phospholipases with maximal stimulation occurring at different concentrations of the three enzymes. The basic phospholipase was the most potent, followed by the neutral and acidic enzymes in that order. The calcium ATPase activity of the platelet was also stimulated by phospholipase treatment, but only by 10-20%. The stimulatory activity was attributable to hydrolysis of a very small portion of the total membrane phospholipid. Inactivation of the phospholipases by heating or chemical modification with p-bromophenacyl bromide abolished their ability to stimulate. Addition of polyphosphoinositides stimulated both ATPases. However, another acidic phospholipid, lysophosphatidic acid, stimulated only the erythrocyte enzyme and failed to affect the platelet calcium ATPase. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) had no effect on either enzyme, while the platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine), its lyso compound and lysoPC inhibited both ATPases. Calmodulin stimulated the erythrocyte enzyme, but did not affect the platelet calcium ATPase. These results demonstrate that the protein-lipid interactions operative in the erythrocyte and platelet calcium ATPases are quite different.  相似文献   

7.
Rat kidney contains a soluble phospholipase A2 (PLA2), which is chromatographically identical with a previously identified hormonally regulated form of the enzyme in rat renal mesangial cells. This kidney enzyme has been purified by sequential column fractionation. The purified enzyme is a 110 kDa polypeptide which can hydrolyse arachidonoyl phosphatidylcholine and arachidonoyl phosphatidylethanolamine, but has low activity towards arachidonoyl phosphatidylinositol. The enzyme is considerably larger than most previously isolated forms of secretory or intracellular PLA2, and is stimulated by physiological concentrations of Ca2+, with half-maximal activation occurring at 500 nM-Ca2+. The hormonal regulation and Ca2(+)-dependency of this enzyme strongly suggest that it plays a role in hormonally regulated arachidonic acid release and prostaglandin production in the kidney.  相似文献   

8.
We tested the effects of calmodulin, two types of calmodulin antagonists, and various phospholipids on the phospholipase A2 activities of intact platelets, platelet membranes, and partially purified enzyme preparations. Trifluoperazine, chlorpromazine (phenothiazines) and N-(6-amino-hexyl)-5-chloro-1-naphthalenesulfonamide (W-7), at concentrations which antagonize the effects of calmodulin, significantly inhibited thrombin- and Ca2+ ionophore-induced production of arachidonic acid metabolites by suspensions of rabbit platelets and Ca2+-induced arachidonic acid release from phospholipids of membrane fractions, but not phospholipase A2 activity in purified enzyme preparations. The addition of acidic phospholipids, but not calmodulin, stimulated phospholipase A2 activity in purified enzyme preparations while decreasing its Km for Ca2+. The dose-response and kinetics of inhibition by calmodulin antagonists of acidic phospholipid-activated phospholipase A2 activity in purified preparations were similar to those of Ca2+-induced arachidonic acid release from membrane fractions. Calmodulin antagonists were also found to inhibit Ca2+ binding to acidic phospholipids in a similar dose-dependent manner. Our results suggest that the platelet phospholipase A2 is the key enzyme involved in arachidonic acid mobilization in platelets and is regulated by acidic phospholipids in a Ca2+-dependent manner and that calmodulin antagonists inhibit phospholipase A2 activity via an action on acidic phospholipids.  相似文献   

9.
Guinea pig lung cytosolic phospholipase A2 was purified to near homogeneity by chromatography on a phosphocellulose column, followed by Q-Sepharose, S-Sepharose, gel filtration chromatography and reverse-phase HPLC. The purified enzyme exhibited an apparent molecular weight of 16,700 by SDS-polyacrylamide gel electrophoresis. Active enzyme eluted from the gel at an apparent molecular weight of 16,700. The purified enzyme exhibited a pH optimum of 9.0 and was calcium-dependent. Guinea pig lung phospholipase A2 hydrolyzed phosphatidylcholine and phosphatidylethanolamine equally well. Substrates containing unsaturated fatty acids in the sn-2 position were hydrolyzed preferentially to those containing saturated fatty acids. Anionic detergents stimulated enzyme activity while nonionic detergents inhibited the enzyme. Disulfide reducing agents dithiothreitol, glutathione and 2-mercaptoethanol modestly stimulated enzyme activity. The sulfhydryl aklylating agent n-ethylmaleimide had no effect on enzyme activity and only high concentrations of p-hydroxymercuribenzoic acid inhibited enzyme activity. The histidine modifying agent, bromophenacyl bromide did not inhibit guinea pig lung phospholipase A2 under conditions in which Crotalus adamanteus phospholipase A2 was inhibited 80%. Manoalide inhibited guinea pig lung phospholipase A2 in a concentration-dependent manner (IC50 = 2 microM). Antibodies prepared against porcine pancreatic phospholipase A2 specifically immunoprecipitated guinea pig lung phospholipase A2 suggesting that the major phospholipase A2 in guinea pig lung cytosol is immunologically related to pancreatic phospholipase A2 in agreement with the biochemical properties of the enzyme.  相似文献   

10.
Two phospholipase enzymes NN1 and NN2 were purified from the venom of Naja nigricolis nigricolis Reinhardt to apparent homogeneity. NN1 was purified by a two-step anion-exchange chromatography on DEAE-cellulose column while NN2 was purified by a combination of anion-exchange chromatography and gel filtration on Sephadex G-150. The enzyme NN1 moved homogenously on acrylamide gel as a monomer with a molecular weight of 65 kDa while NN2 was a dimer of 71 kDa. Both enzymes were clearly separated. Both enzymes hydrolyzed L-alpha-phosphatidyl choline with activities of 345.5 for NN1 and 727.8 micromol min(-1) x mg(-1) for NN2. The dimeric 71-kDa enzyme has a higher haemolytic and anticoagulant activity than the monomeric 65-kDa enzyme. It is apparent that the dimeric enzyme has a more pronounced activity than the monomer has, thus toxic activity may be related to the hydrolysis of phospholipids.  相似文献   

11.
A phospholipase A2 activity directed against phosphatidylcholine was previously described in brush-border membrane from guinea pig intestine (Diagne, A., Mitjavila, S., Fauvel, J., Chap, H., and Douste-Blazy, L. (1987) Lipids 22, 33-40). In the present study, this enzyme was solubilized either with Triton X-100 or upon papain treatment, suggesting a structural similarity with other intestinal hydrolases such as leucine aminopeptidase, sucrase, or trehalase. The papain-solubilized form, which is thought to lack the short hydrophobic tail responsible for membrane anchoring, was purified 1800-fold to about 90% purity by ion exchange chromatography on DEAE-Sephacel, gel filtration on Ultrogel AcA44, and hydrophobic chromatography on phenyl-Sepharose. Upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, a main band with an apparent molecular mass of 97 kDa was detected under reducing and nonreducing conditions. In the latter case, phospholipase A2 activity could be recovered from the gel and was shown to coincide with the 97-kDa protein detected by silver staining. The enzyme activity was unaffected by EGTA and slightly inhibited by CaCl2. The purified enzyme displayed a similar activity against phosphatidylcholine and phosphatidylethanolamine, whereas 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine hydrolysis was reduced by 50% compared to diacylglycerophospholipids. Using phosphatidylcholine labeled with either [3H]palmitic acid or [14C]linoleic acid in the 1- or 2-positions, respectively, the purified enzyme catalyzed the removal of [3H]palmitic acid, although at a lower rate compared to [14C]linoleic acid. This resulted in the formation of sn-glycero-3-phosphocholine, but only 1-[3H]palmitoyl-sn-glycero-3-phosphocholine was detected as an intermediary product. In agreement with this, 1-acyl-2-lyso-sn-[14C]glycero-3-phosphocholine was deacylated at almost the same rate as the sn-2-position of phosphatidylcholine. Since upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the two hydrolytic activities were detected at the same position as 97-kDa protein, the enzyme is thus considered as a phospholipase A2 with lysophospholipase activity (phospholipase B), which might be involved in phospholipid digestion.  相似文献   

12.
Phospholipase A2 was solubilized from rat platelet membrane by 1 M KCl and purified to near homogeneity on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and HPLC. The characteristics of the purified membrane-bound enzyme were compared with those of phospholipase A2 released from thrombin-stimulated rat platelets (Horigome, K., Hayakawa, M., Inoue, K., & Nojima, S. (1987) J. Biochem. 101, 625-631). The molecular weights, elution profiles on reversed-phase HPLC, and NH2-terminal sequences were identical for the two enzymes. Other characteristics of the two enzymes, such as specific activity, substrate specificity, pH optimum, Ca2+ requirement, heat lability, and sensitivity to p-bromophenacyl bromide were also indistinguishable. These findings suggest that both enzymes share a common structure.  相似文献   

13.
It has been generally considered that highly specific liberation of arachidonic acid is induced upon the stimulation of the platelets, although the molecular mechanism of the regulation of its action has not been well understood. An aim of the present study is to clarify the role of phospholipase A2 in the arachidonic acid metabolism within human platelets. Phosphatidylcholine or phosphatidylethanolamine with arachidonate at the sn-2 position of glycerol was cleaved efficiently by phospholipase A2 activity in homogenates as well as in the cytoplasmic fraction of human platelets, leading to the selective liberation of free arachidonate, whereas phospholipids with linoleate were hardly hydrolyzed under the same conditions. Double-reciprocal plots of kinetic data further strengthened the conclusion that human platelet phospholipase A2 showed high selectivity for arachidonoyl residue. This enzyme may play a crucial role in the intracellular metabolism of the arachidonate of phospholipids.  相似文献   

14.
The intestinal brush-border membranes of rats and guinea pigs possess a high molecular weight, calcium-independent phospholipase B (phospholipase A2 - lysophospholipase activities) with the characteristics of a digestive ectoenzyme. A combination of subcellular fractionation, Triton X-114 phase partitioning, chromatofocusing, and preparative sodium dodecyl sulphate - polyacrylamide gel electrophoresis was used to purify a full-length, although denatured, form of this enzyme from the rat. Renaturation of the gel-purified fraction confirmed that both enzyme activities were associated with this protein. Gel slices containing the purified phospholipase B were used to generate a polyclonal antiserum in rabbits that could be used for immunoblotting. The relative mobility of the phospholipase B during electrophoresis in sodium dodecyl sulphate gels was dramatically affected by the percentage of acrylamide and the presence or absence of reducing agents in the gels. This was true for both the purified protein visualized by silver-staining and following electrophoresis of the total proteins of the membrane, with the phospholipase visualized by immunoblotting. Estimates for the molecular mass of the enzyme varied from 130 to 170 kDa in 7.5% gels and from 120 to 130 kDa in 5-10% gradient gels (with a best estimate of 120 kDa). Upon solubilization from the brush-border membrane by papain digestion, the major immunoreactive band migrated with an apparent mass of 80 kDa in both the 7.5% and 5-10% gradient gels. A major cross-reactive band was detected at 97 kDa following immunoblotting of the papain-solubilized proteins from guinea pig brush-border membranes, in agreement with the size of the purified fragment reported in the literature and at 140 kDa following immunoblotting of the intact proteins. Similar immunoblotting produced reaction with a 135-kDa protein from the rabbit brush-border membrane, as well as 95-kDa protein following papain solubilization. These results suggest that while there are species-specific apparent molecular weights, the intestinal brush-border membrane phospholipase B is conserved among species.  相似文献   

15.
Two phospholipase A2 isozymes have been purified from leaf-nosed viper by gel permeation chromatography followed by reverse-phase HPLC and cation-exchange FPLC. Both enzymes contain seven pairs of half-cystine, typical of group II phospholipase A2. Surprisingly large differences, affecting both N- and C-terminal regions, exist between the two isozymes purified from the same snake venom. Exchanges occur at no less than 27 of 121 positions (22%), suggesting the possible existence of two genes for phospholipase A2. The residue identity with the enzymes from other Viperidae species is also low, only 44-48%, indicating extensive variations of this protein structure at large. Functionally, the present isozymes do not possess the cationic regions ascribed to myotoxicity and anti-coagulant effects of the enzyme.  相似文献   

16.
Vitamin E inhibits platelet phospholipase A2   总被引:4,自引:0,他引:4  
One of the most important functions of phospholipase A2 is the release of arachidonic acid from membrane phospholipids for the synthesis of biologically active eicosanoids. We have demonstrated in our laboratory that vitamin E inhibits platelet phospholipase A2 in a dose-dependent manner. Rats fed a 100 ppm or a 1000 ppm vitamin E diet exhibit diminished phospholipase A2 activity compared to those fed a vitamin E-free diet. Addition of vitamin E to a sonicated platelet suspension resulted in further suppression of the phospholipase A2 activity in all groups of rats. In order to gain insight into the mechanism of vitamin E inhibition of platelet phospholipase A2, we partially purified this enzyme by gel filtration chromatography. Enzyme activity was localized in the soluble supernatant fraction of a high-speed spin. This partially purified rat platelet phospholipase A2 had an absolute requirement for Ca2+ and was inhibited by various forms of tocopherol. Tocol inhibited the enzyme to a greater extent than either D- or DL-alpha-tocopherol, while there was little or no effect from DL-alpha-tocopherol acetate. These results emphasize the importance of the hydroxyl moiety on the chromanol of the vitamin E molecule for its inhibitory action, compared to that of the methyl groups which are absent in tocol. This inhibitory action of vitamin E on platelet phospholipase A2 suggests a crucial function for vitamin E in regulating arachidonate release from the membrane phospholipids and its subsequent metabolism.  相似文献   

17.
A 150-kDa phospholipase C has previously been purified from turkey erythrocytes and has been shown by reconstitution with turkey erythrocyte membranes to be a receptor- and G-protein-regulated enzyme (Morris, A. J., Waldo, G. L., Downes, C.P., and Harden, T. K. (1990) J. Biol. Chem. 265, 13501-13507; Morris, A.J., Waldo, G.L., Downes, C.P., and Harden, T.K. (1990) J. Biol. Chem. 265, 13508-13514). Combination of this 150-kDa protein with phosphoinositide substrate-containing phospholipid vesicles prepared with a cholate extract from purified turkey erythrocyte plasma membranes resulted in conferrence of AlF4- sensitivity to the purified phospholipase C. Guanosine 5'-3-O-(thio)triphosphate also activated the reconstituted phospholipase C in a manner that was inhibited by guanosine 5'-2-O-(thio)-diphosphate. The magnitude of the AlF4- stimulation was increased with increasing amounts of plasma membrane extract, and was also dependent on the concentration of purified phospholipase C. Using reconstitution of AlF4- sensitivity as an assay, the putative G-protein conferring regulation to the 150-kDa phospholipase C was purified to near homogeneity by sequential chromatography over Q-Sepharose, Sephacryl S-300, octyl-Sepharose, hydroxylapatite, and Mono-Q. Reconstituting activity co-purified with an approximately 43-kDa protein identified by silver staining; lesser amounts of a 35-kDa protein was present in the final purified fractions, as was a minor 40-kDa protein. The 43-kDa protein strongly reacted with antiserum against a 12-amino acid sequence found at the carboxyl terminus of Gq and G11, the 35-kDa protein strongly reacted with G-protein beta-subunit antiserum, and the 40-kDa protein reacted with antiserum that recognizes Gi3. Immunoprecipitation of the 43-kDa protein resulted in loss of phospholipase C-stimulating activity of the purified fraction. The idea that this is a phospholipase C-regulating G-protein is further supported by the observation that co-reconstitution of G-protein beta gamma-subunit with the purified phospholipase C-activating fraction resulted in a beta gamma-subunit-dependent inhibition of AlF(4-)-stimulated phospholipase C activity in the reconstituted preparation.  相似文献   

18.
An intracellular form of phospholipase A2 was purified about 47,500-fold to near homogeneity from bovine platelets 100,000 x g supernatant by sequential use of column chromatographies on Heparin-Sepharose, DEAE-Sephacel, Butyl-Toyopearl, Sephacryl S-300, DEAE-5PW HPLC, TSK G 3000 SW HPLC and Mono Q FPLC. The final preparation showed a single band on SDS-polyacrylamide gel, and its molecular mass was estimated to be approximately 100,000 daltons. The purified PLA2 showed maximal activity at alkaline pH(pH 9.0-10.0) and considerable activity at 0.3-1.0 microM calcium concentration. It hydrolyzed phosphatidylcholine containing arachidonate at sn-2 position with high selectivity in comparison to linoleate.  相似文献   

19.
Sterile peritoneal exudates produced in rabbits injected with 1% glycogen contain a phospholipase A activity in a cell-free supernatant fraction that hydrolyzed a synthetic phospholipid (1,2-diacyl-sn-glycero-3-phospho-ethanolamine) and phospholipids of autoclaved Escherichia coli. This phospholipase activity (phosphatidylacylhydrolase EC 3.1.1.4) exhibited an apparent bimodal pH optimum (pH 6.0 and pH 7.5) and was Ca(2+)-dependent; Mg(2+) and monovalent cations (Na(+) and K(+)) did not substitute for Ca(2+) in the reaction; EDTA was a potent inhibitor. The phospholipase hydrolyzed 1-[1-(14)C]palmitoyl-2-acyl-sn-glycero-3-phosphoethanolamine to form only radio-active lysophosphatidylethanolamine as the product, indicating that the enzyme had phospholipase A(2) specificity. The phospholipase A(2) was purified 302-fold by two successive chromatographic steps on carboxymethyl Sephadex. Gel filtration (Sephadex G75) of the purified enzyme resulted in a single peak of biological activity with a molecular weight of approximately 14,800. The same estimate of molecular weight was obtained by SDS-polyacrylamide gel electrophoresis, which yielded a single band. Polyacrylamide gel electrophoresis of this fraction at pH 4.3 revealed a single protein band migrating beyond lysozyme, with the dye front, suggesting that this protein was more basic than lysozyme (pI 10.5). The enzymatic and physical-chemical characteristics of this soluble enzyme were remarkably similar to a recently described phospholipase A(2) of rabbit polymorphonuclear leukocytes derived from glycogen-induced peritoneal exudates. The possible origin and physiological role of this soluble enzyme are discussed.  相似文献   

20.
Membrane-bound phospholipase B was purified to a homogeneous state from Torulaspora delbrueckii cell homogenate. Cell homogenate was extracted with Triton X-100, and the enzyme was precipitated with acetone. The acetone powder was washed repeatedly with Tris-HCl buffer (pH 8.0) until no phospholipae B activity was detected in the soluble fraction. The enzyme was extracted with Triton X-100 from the final residue and purified about 1,390-fold by sequential chromatofocusing, Sepharose 6B, and DEAE-Sephadex A-50 column chromatography. The final preparation showed a single broad protein band on SDS-polyacrylamide gel electrophoresis when stained with silver stain reagent and PAS-reagent. The molecular weight of phospholipase B was about 390,000 and 140,000-190,000 as estimated by gel filtration on Sepharose 6B and SDS-polyacrylamide gel electrophoresis, respectively, suggesting that phospholipase B is an oligomeric protein. The isoelectric point was at pH 4.5. Phospholipase B has two pH optima, one acidic (pH 2.5-3.0) and the other alkaline (pH 7.2-8.0). At acidic pH the phospholipase B activity was greatly increased in the presence of divalent metal ions, although metal ions are not a factor for enzyme activity. On the other hand, at alkaline pH the enzyme required Ca2+ or Mn2+ for activity. The pH- and thermal-stabilities at both pHs were similar. The phospholipase B hydrolyzed all diacylphospholipids tested at acidic pH, but hydrolyzed only phosphatidylcholine at alkaline pH. The hydrolysis rates of lysophospholipids were much higher (about 10-fold) than those of diacylphospholipids at both pHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号