首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Messenger RNAs for mouse embryonic globins were purified from yolk sac derived eyrthroid cells in mouse fetuses. Double stranded DNAs complementary to these messengers were synthesized and blunt end ligated to a EcoRI digested and DNA polymerase I repaired pBR322 plasmid. Of the ampicillin resistant transformants, one contained a plasmid with globin-specific cDNA. The inserted sequence is about 350 base pairs long. It contains one restriction site for EcoRI and one restriction site for HinfI about 170 and 80 base pairs from one end. The insert is not cleaved by HindIII, HindII, BamHI, PstI, SalI, AvaI, TaqI, HpaII, BglI. A mixture of purified messengers coding for alpha chains and for x, y and z embryonic chains was incubated with the recombinant plasmid and the hybridized messenger was translated in a mRNA depleted reticulocyte lysate protein synthesizing system. The product of translation was identified as a z chain by carboxymethylcellulose cromatography. The recombinant plasmid is named "pBR322-egz" after embryonic globin z.  相似文献   

2.
3.
4.
We have constructed a cDNA encoding the entire human pro-alpha 2(I) collagen molecule. Sequence determination for 2196 base pairs at the 5' end of the cDNA clone, and comparison with previously characterized human alpha 2(I) sequences, identified a number of nucleotide and amino acid polymorphisms. Functionality of the cDNA clone, under control of the long terminal repeat of Rous sarcoma virus, was demonstrated by its introduction into the W8 cell line. The W8 line, a chemically transformed variant of K16 rat liver epithelial cells, has been previously shown to lack detectable levels of alpha 2(I) RNA, but to secrete alpha 1(I) homotrimers. Introduction of the human cDNA into W8 cells, resulted in secretion of chimeric type I collagen comprised of rat alpha 1(I) and human alpha 2(I) chains. Availability of a functional full-length clone of human alpha 2(I) cDNA, combined with the W8 cell line as expression system, will allow detailed analysis, through site-directed mutagenesis, of domains on the pro-alpha 2(I) molecule involved in assembly, transport, secretion, and fibrillogenesis.  相似文献   

5.
F Fuller  H Boedtker 《Biochemistry》1981,20(4):996-1006
Three pro-alpha 1 collagen cDNA clones, pCg1, pCg26, and pCg54, and two pro-alpha 2 collagen cDNA clones, pCg 13 and pCg45, were subjected to extensive DNA sequence determination. The combined sequences specified the amino acid sequences for chicken pro-alpha 1 and pro-alpha 2 type I collagens starting at residue 814 in the collagen triple-helical region and continuing to the procollagen C-termini as determined by the first in-phase termination codon. Thus, the sequences of 272 pro-alpha 1 C-terminal, 260 pro-alpha 2 C-terminal, 201 pro-alpha 1 helical, and 201 pro-alpha 2 helical amino acids were established. In addition, the sequences of several hundred nucleotides corresponding to noncoding regions of both procollagen mRNAs were determined. In total, 1589 pro-alpha 1 base pairs and 1691 pro-alpha 2 base pairs were sequenced, corresponding to approximately one-third of the total length of each mRNA. Both procollagen mRNA sequences have a high G+C content. The pro-alpha 1 mRNA is 75% G+C in the helical coding region sequenced and 61% G&C in the C-terminal coding region while the pro-alpha 2 mRNA is 60% and 48% G+C, respectively, in these regions. The dinucleotide sequence pCG occurs at a higher frequence in both sequences than is normally found in vertebrate DNAs and is approximately 5 times more frequent in the pro-alpha 1 sequence than in the pro-alpha 2 sequence. Nucleotide homology in the helical coding regions is very limited given that these sequences code for the repeating Gly-X-Y tripeptide in a region where X and Y residues are 50% conserved. These differences are clearly reflected in the preferred codon usages of the two mRNAs.  相似文献   

6.
We have previously shown that type I procollagen pro-alpha1(I) chains from an osteogenesis imperfecta patient (OI26) with a frameshift mutation resulting in a truncated C-propeptide, have impaired assembly, and are degraded by an endoplasmic reticulum-associated pathway (Lamandé, S. R., Chessler, S. D., Golub, S. B., Byers, P. H., Chan, D., Cole, W. G., Sillence, D. O. and Bateman, J. F. (1995) J. Biol. Chem. 270, 8642-8649). To further explore the degradation of procollagen chains with mutant C-propeptides, mouse Mov13 cells, which produce no endogenous pro-alpha1(I), were stably transfected with a pro-alpha1(I) expression construct containing a frameshift mutation that predicts the synthesis of a protein 85 residues longer than normal. Despite high levels of mutant mRNA in transfected Mov13 cells, only minute amounts of mutant pro-alpha1(I) could be detected indicating that the majority of the mutant pro-alpha1(I) chains synthesized are targeted for rapid intracellular degradation. Degradation was not prevented by brefeldin A, monensin, or NH(4)Cl, agents that interfere with intracellular transport or lysosomal function. However, mutant pro-alpha1(I) chains in both transfected Mov13 cells and OI26 cells were protected from proteolysis by specific proteasome inhibitors. Together these data demonstrate for the first time that procollagen chains containing C-propeptide mutations that impair assembly are degraded by the cytoplasmic proteasome complex, and that the previously identified endoplasmic reticulum-associated degradation of mutant pro-alpha1(I) in OI26 is mediated by proteasomes.  相似文献   

7.
8.
9.
The synthetic DNA fragment (formula, see text) (corresponding to nucleotides 4299-4314 of the phi X DNA sequence) was cloned into either the AmpR gene or the KmR gene of plasmid pACYC 177. The DNA sequence of the KmR gene around the insertion site was determined by nucleotide sequence analysis of the pACYC 177 FnudII restriction DNA fragment N6 (345 b.p.). Of five selected plasmid DNAs, which contained inserted DNA sequences in the antibiotic resistance genes, the nucleotide sequences at and around these insertions were determined. Two recombinant plasmids (pFH 704 and pFH 614) contain the hexadecamer sequence in tandem (tail-to-tail and tail-to-head). In the recombinant plasmids pFH 812, pFH 903 and pFH 807 the DNA sequence homology with the phi X origin region was 14 (No. 4300-4313), 16 (No. 4299-4314) and 20 nucleotides (No. 4299-4318), respectively. None of the supercoiled recombinant plasmid DNAs is nicked upon incubation with phi X gene A protein. Moreover, the recombinant plasmid RFI DNAs cannot act as substitutes for phi X RFI DNA in the in vitro (+) strand synthesizing system. It has been shown earlier that single-stranded DNA, which contains the decamer sequence CAACTTGATA is efficiently nicked by the phi X gene A protein. The present results indicate that for nicking of double-stranded supercoiled DNA nucleotide sequence homology with the phi X origin region of more than 20 nucleotides is required. These results suggest a model for initiation of phi X RF DNA replication, which involves the presence of the recognition sequence CAACTTGATA of the phi X gene A protein as well as a second specific nucleotide sequence which is required for the binding of the phi X gene A protein. This binding causes local unwinding of the DNA double helix and exposure of the recognition sequence in a single-stranded form, which then can be nicked by phi X gene A protein.  相似文献   

10.
11.
12.
13.
The collagen phenotype of a 4-nitroquinoline-1-oxide-transformed line of Syrian hamster embryo fibroblasts, NQT-SHE, was markedly altered from that of normal Syrian hamster embryo cells, which synthesized mainly type I procollagen [pro-alpha 1(I)]2 pro-alpha 2(I). Total collagen synthesis in the transformant was reduced to about 30% of the control level primarily because synthesis of the pro-alpha 1(I) subunit was completely suppressed. The major collagenous products synthesized consisted of two polypeptides, designated as N-33 and N-50, which could be completely separated by precipitation with ammonium sulfate at 33 and 50% saturation, respectively. N-33 migrated similarly to pro-alpha 2(I) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and N-50 migrated slightly more slowly. The collagenous regions of these chains were more sensitive to protease than the analogous region of procollagen I, but alpha-chains could be obtained by digestion for 2 h at 4 degrees C with high ratios of protein:pepsin. Staphylococcus V8 protease and cyanogen bromide peptide maps of N-33 alpha and N-50 alpha chains indicated that the chains were homologous with, but different than, alpha 2(I) chains and that they differed from each other. Considering their similarity to pro-alpha 2(I), it was surprising to find that the N-collagens were secreted to the same extent as was type I procollagen from Syrian hamster embryo cells and that there were no disulfide bonds between N-collagen chains. Intrachain disulfides were present. One possible explanation for the unusual collagen phenotype of NQT-SHE cells is that transformation induced one or more mutations in the pro-alpha 2(I) structural gene while suppression of synthesis of the pro-alpha 1(I) subunit may be due to a mutation in the regulatory region of its gene or in a general regulatory gene.  相似文献   

14.
15.
Skin fibroblasts from a patient with a lethal form of osteogenesis imprefecta were found to synthesize equal amounts of normal pro-alpha 1(I) chains and pro-alpha 1(I) chains which are about 10% shorter because of a deletion of about 100 amino acids in the middle of the alpha chain domain. The pro-alpha 1(I) chains were incorporated into three different kinds of trimers: a normal type I trimer with normal length pro-alpha 1(I) chains; a type Is trimer with one shortened pro-alpha 1(I) chain and two normal length chains; and a type Iss trimer containing two shortened pro-alpha 1(I) chains and one normal length pro-alpha 2(I) chain. As judged by resistance to digestion by chymotrypsin and trypsin, the type Is and Iss trimers denatured at a temperature at least 3 degrees C lower than normal type I procollagen. Procollagen containing the shortened pro-alpha 1(I) chains was slowly secreted by the cells but was degraded by extracellular proteinases within 6 h of chase into the medium. The results indicated that the presence of the shortened pro-alpha 1(I) chains in procollagen trimers produces a delay in rate of helix formation, overmodification of the polypeptides by post-translational enzymes, a decrease in the thermal stability of the trimers, and increased susceptibility of the protein to endogenous proteinases. Additionally, the fibroblasts of this patient synthesized and secreted a type III-like species of procollagen with unusual chromatographic properties.  相似文献   

16.
J Song  F Dong  J W Lilly  R M Stupar  J Jiang 《Génome》2001,44(3):463-469
The cloning and propagation of large DNA fragments as bacterial artificial chromosomes (BACs) has become a valuable technique in genome research. BAC clones are highly stable in the host, Escherichia coli, a major advantage over yeast artificial chromosomes (YACs) in which recombination-induced instability is a major drawback. Here we report that BAC clones containing tandemly repeated DNA elements are not stable and can undergo drastic deletions during routine library maintenance and DNA preparation. Instability was observed in three BAC clones from sorghum, rice, and potato, each containing distinct tandem repeats. As many as 46% and 74% of the single colonies derived from a rice BAC clone containing 5S ribosomal RNA genes had insert deletions after 24 and 120 h of growth, respectively. We also demonstrated that BAC insert rearrangement can occur in the early stage of library construction and duplication. Thus, a minimum growth approach may not avoid the instability problem of such clones. The impact of BAC instability on genome research is discussed.  相似文献   

17.
《The Journal of cell biology》1995,129(5):1421-1432
The genes coding for the two type I collagen chains, which are active selectively in osteoblasts, odontoblasts, fibroblasts, and some mesenchymal cells, constitute good models for studying the mechanisms responsible for the cell-specific activity of genes which are expressed in a small number of discrete cell types. To test whether separate genetic elements could direct the activity of the mouse pro-alpha 1(I) collagen gene to different cell types in which it is expressed, transgenic mice were generated harboring various fragments of the proximal promoter of this gene cloned upstream of the Escherichia coli beta-galactosidase gene. During embryonic development, X-gal staining allows for the precise identification of the different cell types in which the beta-galactosidase gene is active. Transgenic mice harboring 900 bp of the pro-alpha 1(I) proximal promoter expressed the transgene at relatively low levels almost exclusively in skin. In mice containing 2.3 kb of this proximal promoter, the transgene was also expressed at high levels in osteoblasts and odontoblasts, but not in other type I collagen-producing cells. Transgenic mice harboring 3.2 kb of the proximal promoter showed an additional high level expression of the transgene in tendon and fascia fibroblasts. The pattern of expression of the lacZ transgene directed by the 0.9- and 2.3-kb pro-alpha 1(I) proximal promoters was confirmed by using the firefly luciferase gene as a reporter gene. The pattern of expression of this transgene, which can be detected even when it is active at very low levels, paralleled that of the beta-galactosidase gene. These data strongly suggest a modular arrangement of separate cell-specific cis-acting elements that can activate the mouse pro-alpha(I) collagen gene in different type I collagen-producing cells. At least three different types of cell- specific elements would be located in the first 3.2 kb of the promoter: (a) an element that confers low level expression in dermal fibroblasts; (b) a second that mediates high level expression in osteoblasts and odontoblasts; and (c) one responsible for high level expression in tendon and fascia fibroblasts. Our data also imply that other cis- acting cell-specific elements which direct activity of the gene to still other type I collagen-producing cells remain to be identified.  相似文献   

18.
Two plasmids containing rat thyroglobulin cDNA sequences have been constructed and characterized. A plasmid with a 500-bp insert (pRT6) was isolated and identified as thyroglobulin-specific on the basis of the tissue specificity of the inserted sequence and of its ability to retain thyroglobulin mRNA on a nitrocellulose filter. The cDNA insert in pRT6 was subsequently used to screen a rat thyroid cDNA library constructed with large cDNA. A plasmid was found containing a 1700-bp insert. The polarity and the fidelity of the insert is demonstrated by S1 mapping.  相似文献   

19.
The low abundance fibrillar collagen type V is incorporated into and regulates the diameters of type I collagen fibrils. Bone morphogenetic protein-1 (BMP-1) is a metalloprotease that plays key roles in regulating formation of vertebrate extracellular matrix; it cleaves the C-propeptides of the major fibrillar procollagens I-III and processes precursors to produce the mature forms of the cross-linking enzyme prolysyl oxidase, the proteoglycan biglycan, and the basement membrane protein laminin 5. Here we have successfully produced recombinant pro-alpha1(V)(2)pro-alpha2(V) heterotrimers, and we have used these to characterize biosynthetic processing of the most prevalent in vivo form of type V procollagen. In addition, we have compared the processing of endogenous pro-alpha1(V) chains by wild type mouse embryo fibroblasts and by fibroblasts derived from embryos doubly homozygous null for the Bmp-1 gene and for a gene encoding the closely related metalloprotease mammalian Tolloid-like 1. Together, results presented herein indicate that within pro-alpha1(V)(2)pro-alpha2(V) heterotrimers, pro-alpha1(V) N-propeptides and pro-alpha2(V) C-propeptides are processed by BMP-1-like enzymes, and pro-alpha1(V) C-propeptides are processed by furin-like proprotein convertases in vivo.  相似文献   

20.
Synthesis of type I procollagen was examined in skin fibroblasts from a proband with a lethal variant of osteogenesis imperfecta. The fibroblasts synthesized shortened pro-alpha 2(I) chains and these shortened chains accounted for all the pro-alpha 2(I) chains synthesized by the cells. In addition, there was a decrease in the relative rate of synthesis of pro-alpha 2(I) chains. Fragmentation of the shortened pro-alpha 2(I) chains with vertebrate collagenase and cyanogen bromide demonstrated that the shortening was in alpha 2(I)-CB3,5A, a fragment from about the middle of the chain containing amino acid residues 361 to 775. Based on the relative mobility in electrophoretic gels, the shortening was about 20 amino acid residues. The decreased synthesis of pro-alpha 2(I) chains was demonstrated by an increase in the ratio for the rates of synthesis of pro-alpha 1(I):pro-alpha 2(I) chains. It was associated with an increase in the ratio of mRNAs for pro-alpha 1(I):pro-alpha 2(I) in the cells. Fibroblasts from the father also demonstrated a decreased synthesis of pro-alpha 2(I) chains as reflected by an increase in the ratio of newly synthesized pro-alpha 1(I):pro-alpha 2(I) chains. No shortened pro-alpha 2(I) chains were seen in fibroblasts from either the father or the mother. The observations suggested that the proband inherited a nonfunctioning pro-alpha 2(I) gene from her father and that the gene for the shortened pro-alpha 2(I) chain probably arose from a sporadic mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号