首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The telencephalon (basal ganglia, septum, cerebral cortex and olfactory bulb) contains two general classes of neurons: those that project axons to distant targets and those that make only local connections. While projection neurons can be either excitatory (such as those in the olfactory bulb and cortex) or inhibitory (such as those in the striatum), local circuit neurons (interneurons) are usually inhibitory. Within these two general classes of neurons there are a myriad of cell subtypes based upon axonal and dendritic morphology, chemical markers, neurotransmitters, connectivity and physiology. A crucial issue regarding the development of the telencephalon is the molecular determination of neuronal subtypes. Since important aspects of neuronal fate determination occur within the proliferative zone, the consideration of determinants of a mature neuron's fate requires consideration of that cell's origin.  相似文献   

3.
4.
5.
GABAergic interneurons have major roles in hippocampal function and dysfunction. Here we provide evidence that, in mice, virtually all of these cells originate from progenitors in the basal telencephalon. Immature interneurons tangentially migrate from the basal telencephalon through the neocortex to take up their final positions in the hippocampus. Disrupting differentiation in the embryonic basal telencephalon (lateral and medial ganglionic eminences) through loss of Dlx1/2 homeobox function blocks the migration of virtually all GABAergic interneurons to the hippocampus. On the other hand, disrupting specification of the medial ganglionic eminence through loss of Nkx2.1 homeobox function depletes the hippocampus of a distinct subset of hippocampal interneurons. Loss of hippocampal interneurons does not appear to have major effects on the early development of hippocampal projection neurons nor on the pathfinding of afferrent tracts.  相似文献   

6.
In this mini-review we present recent data about origin of GABA-ergic (gama-aminobutyric acid) neurons in the mammalian forebrain, including the diencephalon and telencephalon. The interest in GABA-ergic neurons, which in cerebral cortex mostly correspond to local circuit neurons (interneurons), has increased in the past decade. Many studies have shown that in lower mammals all hippocampal and almost all neo-cortical GABA-ergic neurons are born in the specific region named ganglionic eminence, and not locally in proliferative layers all around telencephalic vesicle. The ganglionic eminence, that represents a region with thick proliferative-subventricular layer in the ventral (basal) part of telencephalon, was classically thought to give neurons to basal ganglia and septal nuclei, whereas proliferative layers of dorsal telencephalon give neurons to cerebral cortex including hippocampus. It was thought that neurons migrate from proliferative layer to their target region following a radial orientation. However, data in lower mammals showed that this is the case only for glutamatergic principal cells, i.e. projection neurons. GABA-ergic neurons use long distance tangentional migration, parallel to pial surface to reach, from ganglionic eminence, their targeting layer in the cerebral cortex. Especially intriguing, but frequently neglecting, several studies suggest that mammalian evolution might use different developmental rules to provide GABA-ergic neurons to an expending brain. In this review we focus on specific events underlying GABA-ergic neuron development in human and non-human primates. Disturbances of the GABAergic network are found in many neurological and psychiatric disorders, some of them might result from altered production or migration of these neurons during development. Therefore, it is crucial to understand human-specific mechanisms that regulate the development of GABA-ergic neurons.  相似文献   

7.
8.
The motor symptoms of Parkinson's disease are associated with abnormal, correlated, low frequency, rhythmic burst activity in the subthalamic nucleus and connected nuclei. Research into the mechanisms controlling the pattern of subthalamic activity has intensified because therapies that manipulate the pattern of subthalamic activity, such as deep brain stimulation and levodopa administration, improve motor function in Parkinson's disease. Recent findings suggest that dopamine denervation of the striatum and extrastriatal basal ganglia profoundly alters the transmission and integration of glutamatergic cortical and GABAergic pallidal inputs to subthalamic neurons, leading to pathological activity that resonates throughout the basal ganglia and wider motor system.  相似文献   

9.
10.
Vicente AM  Costa RM 《Neuron》2012,74(6):967-969
The glopus pallidus is a central nucleus of the basal ganglia, pivotal to their function in health and disease. In this issue of Neuron, Mallet et?al. (2012) reveal that this structure is more diverse than previously thought, and identify a novel cell type that projects from pallidum to striatum providing massive GABAergic innervation. These findings invite new views on basal ganglia processing.  相似文献   

11.
The topography and chemoarchitecture of the striatum and pallidum in a monotreme, the short-beaked echidna (Tachyglossus aculeatus) have been studied using Nissl staining in conjunction with myelin staining, enzyme reactivity to acetylcholinesterase and NADPH diaphorase, and immunoreactivity to parvalbumin, calbindin, calretinin, tyrosine hydroxylase, neuropeptide Y, and neurofilament protein (SMI-32 antibody). All those components of the striatum and pallidum found in eutherian mammals could also be identified in the echidna's brain, with broad chemoarchitectural similarities to those regions in eutherian brains also apparent. There was a clear chemoarchitectural gradient visible with parvalbumin immunoreactivity of neurons and fibers, suggesting a subdivision of the echidna caudatoputamen into weakly reactive rostrodorsomedial and strongly reactive caudoventrolateral components. This may, in turn, relate to subdivision into associative versus sensorimotor CPu and reflect homology to the caudate and putamen of primates. Moreover, the chemoarchitecture of the echidna striatum suggested the presence of striosome-matrix architecture. The morphology of identified neuronal groups (i.e., parvalbumin, calbindin, and neuropeptide Y immunoreactive) in the echidna striatum and pallidum showed many similarities to those seen in eutherians, although the pattern of distribution of calbindin immunoreactive neurons was more uniform in the caudatoputamen of the echidna than in therians. These observations indicate that the same broad features of striatal and pallidal organization apply across all mammals and suggest that these common features may have arisen before the divergence of the monotreme and therian lineages.  相似文献   

12.
A hypothetical mechanism of the basal ganglia involvement in the occurrence of paradoxical sleep dreams and rapid eye movements is proposed. According to this mechanism, paradoxical sleep is provided by facilitation of activation of cholinergic neurons in the pedunculopontine nucleus as a result of suppression of their inhibition from the output basal ganglia nuclei. This disinhibition is promoted by activation of dopaminergic cells by pedunculopontine neurons, subsequent rise in dopamine concentration in the input basal ganglia structure. striatum, and modulation of the efficacy of cortico-striatal inputs. In the absence of signals from retina, a disinhibition of neurons in the pedunculopontine nucleus and superior colliculus allows them to excite neurons in the lateral geniculate body and other thalamic nuclei projecting to the primary and higher visual cortical areas, prefrontal cortex and back into the striatum. Dreams as visual images and "motor hallucinations" are the result of an increase in activity of definitely selected groups of thalamic and neocortical neurons. This selection is caused by modifiable action of dopamine on long-term changes in the efficacy of synaptic transmission during circulation of signals in closed interconnected loops, each of which includes one of the visual cortical areas (motor cortex), one of the thalamic nuclei, limbic and one of the visual areas (motor area) of the basal ganglia. pedunculopontine nucleus, and superior colliculus. Simultaneous modification and modulation of synapses in diverse units of neuronal loops is provided by PGO waves. Disinhibition of superioir colliculus neurons and their excitation by pedunculopontine nucleus lead to an appearance of rapid eye movements during paradoxical sleep.  相似文献   

13.
This study addresses the role of Sonic hedgehog (Shh) in promoting the generation of oligodendrocytes in the mouse telencephalon. We show that in the forebrain, expression of the early oligodendrocyte markers Olig2, plp/dm20 and PDGFR(alpha) corresponds to regions of Shh expression. To directly test if Shh can induce the development of oligodendrocytes within the telencephalon, we use retroviral vectors to ectopically express Shh within the mouse embryonic telencephalon. We find that infections with Shh-expressing retrovirus at embryonic day 9.5, result in ectopic Olig2 and PDGFR(alpha) expression by mid-embryogenesis. By postnatal day 21, cells expressing ectopic Shh overwhelmingly adopt an oligodendrocyte identity. To determine if the loss of telencephalic Shh correspondingly results in the loss of oligodendrocyte production, we studied Nkx2.1 mutant mice in which telencephalic expression of Shh is selectively lost. In accordance with Shh playing a role in oligodendrogenesis, within the medial ganglionic eminence of Nkx2.1 mutants, the early expression of PDGFR(alpha) is absent and the level of Olig2 expression is diminished in this region. In addition, in these same mutants, expression of both Shh and plp/dm20 is lost in the hypothalamus. Notably, in the prospective amygdala region where Shh expression persists in the Nkx2.1 mutant, the presence of plp/dm20 is unperturbed. Further supporting the idea that Shh is required for the in vivo establishment of early oligodendrocyte populations, expression of PDGFR(alpha) can be partially rescued by virally mediated expression of Shh in the Nkx2.1 mutant telencephalon. Interestingly, despite the apparent requirement for Shh for oligodendrocyte specification in vivo, all regions of either wild-type or Nkx2.1 mutant telencephalon are competent to produce oligodendrocytes in vitro. Furthermore, analysis of CNS tissue from Shh null animals definitively shows that, in vitro, Shh is not required for the generation of oligodendrocytes. We propose that oligodendrocyte specification is negatively regulated in vivo and that Shh generates oligodendrocytes by overcoming this inhibition. Furthermore, it appears that a Shh-independent pathway for generating oligodendrocytes exists.  相似文献   

14.
15.
16.
Neuronal or glial progeny: regional differences in radial glia fate   总被引:27,自引:0,他引:27  
The precursor function of the ubiquitous glial cell type in the developing central nervous system (CNS), the radial glia, is largely unknown. Using Cre/loxP in vivo fate mapping studies, we found that radial glia generate virtually all cortical projection neurons but not the interneurons originating in the ventral telencephalon. In contrast to the cerebral cortex, few neurons in the basal ganglia originate from radial glia, and in vitro lineage analysis revealed intrinsic differences in the potential of radial glia from the dorsal and ventral telencephalon. This shows that the progeny of radial glia not only differs profoundly between brain regions but also includes the majority of neurons in some parts of the CNS.  相似文献   

17.
18.
19.
On the basis of the functional model of the basal ganglia developed in the 1980s and the neuropathological findings in Huntington's disease (HD), changes in the neuronal activity of the basal ganglia have previously been proposed to explain the abnormal movements observed in this pathology. In particular, it has been stated that the neurodegenerative process affecting the basal ganglia in the disease should provoke a hypoactivity in the internal segment of the pallidum (GPi) that could explain choreic movements observed in the disease. To test this functional hypothesis, we performed an in situ hybridization study on control and HD brains postmortem, taking cytochrome oxidase subunit I (COI) mRNAs expression as index of neuronal activity. As most of the HD patients studied were under chronic neuroleptic (NL) treatment, we also studied the brains of non-HD patients under chronic NL treatment. Our results show that in HD brain the number of neurons expressing COI mRNA tends to be lower in the striatum, GPe and GPi, suggesting a severe involvement of these structures during the neurodegenerative process. Moreover, COI mRNA level of expression was markedly reduced within neurons of the putamen and GPe. Surprisingly, COI mRNA expression was not modified in the GPi in HD brains compared with controls. This paradoxical result in the GPi may be explained by the antagonistic effect of GPe hypoactivity and the degenerative process involving neurons of GPi. Our results indicate that the functional modifications, and consequently the pathophysiology of abnormal movements, observed in HD basal ganglia are more complex than expected from the currently accepted model of the basal ganglia organization.  相似文献   

20.
The striatum is the main input station of the basal ganglia and is strongly associated with motor and cognitive functions. Anatomical evidence suggests that individual striatal neurons are unlikely to share their inputs from the cortex. Using a biologically realistic large-scale network model of striatum and cortico-striatal projections, we provide a functional interpretation of the special anatomical structure of these projections. Specifically, we show that weak pairwise correlation within the pool of inputs to individual striatal neurons enhances the saliency of signal representation in the striatum. By contrast, correlations among the input pools of different striatal neurons render the signal representation less distinct from background activity. We suggest that for the network architecture of the striatum, there is a preferred cortico-striatal input configuration for optimal signal representation. It is further enhanced by the low-rate asynchronous background activity in striatum, supported by the balance between feedforward and feedback inhibitions in the striatal network. Thus, an appropriate combination of rates and correlations in the striatal input sets the stage for action selection presumably implemented in the basal ganglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号