首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tyrosine hydroxylase (EC1.14.16.2), presumably the rate-limiting enzyme in the biosynthesis of catecholamines, is known to catalyze the hydroxylation of both phenylalanine and tyrosine. Using both an isolated enzyme preparation and a synaptosomal preparation, where some architectural integrity of the tissue has been preserved, we have attempted to evaluate the manner in which these two substrates are hydroxylated by rat brain tyrosine hydroxylase. In the presence of tetrahydrobiopterin the isolated enzyme catalyzes the hydroxylation of phenylalanine to 3,4-dihydroxyphenylalanine with the release of free tyrosine as an obligatory intermediate. In contrast, the rat brain striatal synaptosomal preparation in the presence of endogenous cofactor converts phenylalanine to 3,4-dihydroxyphenylalanine without the release of free tyrosine.  相似文献   

2.
Deoxyribonucleic acid (DNA) was isolated from four day old, dark grown corn seedlings according to the procedure of Bonner for the isolation of chromatin followed by separation and purification according to Marmur. The purified DNA was dissolved in dilute saline-citrate and the absorbance at 260 nm of the solution measured as the solution was slowly heated in a quartz cuvette. The degree of increase in absorbance of the DNA in solution as it is thermally denatured was used to assess the interaction of the DNA with plant hormones. Concentrations of 4 x 10-5M NAA, IAA, 2,4-D, and GA3 increased the hyperchromicity of the DNA when added to the DNA. Conversely, the same concentrations of CCC, AMO 1618, TIBA, and ABA decreased the hyperchromicity of the DNA. Kinetin, IAN, and tryptophan at 4 x 10-5M had no measurable effect on the hyperchromicity of the DNA. Deoxyribonucleic acid from Escherichia coli and salmon sperm showed no change in hyperchromicity with added NAA at 4 x 10-5M. The effect of these plant growth substances is most likely either on the thermally disrupted single strands or on the process in which the double strand opens up to single strands since only the high temperature portion was affected. It is postulated that if the plant growth substances act to alter the binding of the double strands of DNA in an isolated system and if this effect has a relationship to the DNA in an intact cell then this effect may be important in the control of plant growth and development.  相似文献   

3.
GTP cyclohydrolase I (GTPCHI) is the rate-limiting enzyme involved in the biosynthesis of tetrahydrobiopterin, a key cofactor necessary for nitric oxide synthase and for the hydroxylases that are involved in the production of catecholamines and serotonin. In animals, the GTPCHI feedback regulatory protein (GFRP) binds GTPCHI to mediate feed-forward activation of GTPCHI activity in the presence of phenylalanine, whereas it induces feedback inhibition of enzyme activity in the presence of biopterin. Here, we have reported the crystal structure of the biopterin-induced inhibitory complex of GTPCHI and GFRP and compared it with the previously reported phenylalanine-induced stimulatory complex. The structure reveals five biopterin molecules located at each interface between GTPCHI and GFRP. Induced fitting structural changes by the biopterin binding expand large conformational changes in GTPCHI peptide segments forming the active site, resulting in inhibition of the activity. By locating 3,4-dihydroxy-phenylalanine-responsive dystonia mutations in the complex structure, we found mutations that may possibly disturb the GFRP-mediated regulation of GTPCHI.  相似文献   

4.
Incubation of bovine chromaffin cells with L-[14C]phenylalanine resulted in label accumulation in catecholamines at about 30% of the rate seen with L-tyrosine as precursor. Studies with purified tyrosine hydroxylase (EC 1.14.16.2) showed that the enzyme catalysed the hydroxylation of L-phenylalanine first to L-p-tyrosine and then to 3,4-dihydroxyphenylalanine (DOPA). No evidence for a significant involvement of an L-m-tyrosine intermediate in DOPA formation was found.  相似文献   

5.
6.
Abstract— The transamination between amino acids and aliphatic and aromatic keto acids has been investigated in homogenates of human and rat brain. Tryptophan, phenylalanine and 3,4-dihydroxyphenylalanine (DOPA) at concentrations of 3.6 min and below trans-aminated aromatic keto acids more rapidly than α-ketoglutarate; lower Km values were found for tryptophan and phenylalanine in the presence of the aromatic keto acid. Rat brain and liver arninotransferases exhibited similar affinities for tryptophan in the presence of different keto acids. Branched chain keto acids were also acceptors of the amino groups of tryptophan and DOPA. In brain homogenates α-ketoglutarate and p -hydroxyphenyl-pyruvate were transaminated by tyrosine and 5-hydroxytryptophan at about equal rates, whereas a-ketoglutarate was transaminated more rapidly with aliphatic amino acids. At concentrations of 1.6 m DOPA and 0.8 mM p -hydroxyphenylpyruvate, transamination was 6-fold greater than the rate of formation of dopamine. The dihydroxyphenylpyruvate formed during arninotransfer from DOPA by brain tissue was not readily decarboxylated, whereas 65–70 per cent of the indolepyruvate formed from tryptophan was decarboxylated. We suggest that an increased rate or degree of transamination between tryptophan and aromatic and branched chain keto acids may explain the increased excretion of non-hydroxylated indolic acids in phenylketonuria and'maple syrup urine'disease, respectively. Increased aminotransfers from tryptophan and DOPA may reduce the amounts of precursors available for the synthesis of serotonin and catecholamines, both of which are at low levels in the sera of untreated phenylketonurics.  相似文献   

7.
Bacteriophage T4 gene 32 protein, a model for single-strand specific nucleic acid-binding proteins, consists of three structurally and functionally distinct domains. We have studied the effects of the N and C domains on the protein structure and its nucleic acid-interactive properties. Although the presence of the C domain decreases the proteolytic susceptibility of the core (central) domain, quenching of the core tryptophan fluorescence by iodide is unaltered by the presence of the terminal domains. These results suggest that the overall conformation of the core domain remains largely independent of the flanking domains. Removal of the N or the C terminus does not abolish the DNA renaturation activity of the protein. However, intact protein and its three truncated forms differ in DNA helix-destabilizing activity. The C domain alone is responsible for the kinetic barrier to natural DNA helix destabilization seen with intact protein. Intact protein and core domain potentiate the DNA helix-destabilizing activity of truncated protein lacking only the C domain (*I), enhancing the observed hyperchromicity while increasing the melting temperature. Proteolysis experiments suggest that the affinity of core domain for single-stranded DNA is increased in the presence of *I. We propose that *I can "mingle" with intact protein or core domain while bound to single-stranded DNA.  相似文献   

8.
Reactions of reducing sugars with free amino groups of proteins can form advanced glycation end products (AGEs). While the formation of nucleoside AGEs has been studied in detail, no extensive work has been carried out to assess DNA Amadori and DNA advanced glycation end products. In this study, we report biophysical/chemical characterization of glucose-induced changes in DNA, as well as DNA Amadori and DNA advanced glycation end products. Glucose treated DNA exhibited hyperchromicity, decrease in melting temperature, and enhanced emission intensity in a time dependent manner. Formation of DNA Amadori product and DNA advanced glycation end products, mainly CEdG (N(2)-carboxyethyl-2'-deoxyguanosine), were the major outcome of the study.  相似文献   

9.
Oxidation of catecholamines may contribute to the pathogenesis of Parkinson's disease (PD). The effect of the oxidized products of catecholamines on the modification of Cu,Zn-superoxide dismutase (SOD) was investigated. When Cu,Zn-SOD was incubated with the oxidized 3,4-dihydroxyphenylalanine (DOPA) or dopamine, the protein was induced to be aggregated. The deoxyribose assay showed that hydroxyl radicals were generated during the oxidation of catecholamines in the presence of copper ion. Radical scavengers, azide, N-acetylcysteine, and catalase inhibited the oxidized catecholamine-mediated Cu,Zn-SOD aggregation. Therefore, the results indicate that free radicals may play a role in the aggregation of Cu,Zn-SOD. When Cu,Zn-SOD that had been exposed to catecholamines was subsequently analyzed by an amino acid analysis, the glycine and histidine residues were particularly sensitive. These results suggest that the modification of Cu,Zn-SOD by oxidized catecholamines might induce the perturbation of cellular antioxidant systems and led to a deleterious cell condition.  相似文献   

10.
The bacteriophage T4 helix destabilizing protein (hdp) gp32 and its complexes with poly(rA) and poly(dA) were studied with ultra-violet resonant Raman spectroscopy. The UV-resonant Raman (UV-RR) spectrum of the complex of gp5, the coat protein of bacteriophage M13, with poly(dA) was also measured and is compared with the spectrum of the gp 32/poly(dA) complex. The excitation wavelength was 245.1 nm. This is on the far UV-side of the first absorption bands of adenine and near a "window" in the protein absorption spectrum. The overlap of fluorescence due to chromophores present in the protein and resonance Raman scattering was prevented by this choice of wavelength. The spectra of the protein/polynucleotide complexes are compared with the native nucleotide spectra measured at varying temperatures. The hyperchromicity which is expected when a nucleotide changes from a stacked to an unstacked conformation was not observed for poly(rA), neither upon temperature increase nor on protein binding. In both cases poly(dA) revealed a clear hyperchromicity. This different behavior of poly(rA) and poly(dA) is probably a consequence of their different conformations. The contributions of the proteins to the spectra is weak except for two bands, at 1550 and 1610 cm-1 due to tryptophan (in case of gp32) and one band near 1610 cm-1 due to tyrosine and phenylalanine.  相似文献   

11.
To see whether phenylalanine serves as a substrate in melanogenesis, hanging drop explants of neural crest from amphibian (Ambystoma maculatum and A. mexicanum) embryos were subjected on the seventh day in vitro to treatment with phenylalanine-3H and studied by means of light microscopic radioautography. All melanin-containing cells showed label. On the other hand, when puromycin, an inhibitor of protein synthesis, together with the labeled amino acid was administered to the cultures, no radioactivity was incorporated by pigmented cells. Comparable results were obtained when leucine was substituted for phenylalanine. In control experiments, puromycin and labeled tyrosine or 3,4-dihydroxyphenylalanine (DOPA), both known precursors for melanin synthesis, were administered to the neural crest cultures. In these experiments, puromycin had no effect on the incorporation of label by pigmented cells. Our data strongly indicate that in differentiating amphibian melanocytes with functional pigment-forming systems, phenylalanine is used in protein synthesis, but does not serve as a substrate for the tyrosine-tyrosinase system.In another series of experiments, explants of neuroepithelium (neural crest anlage) were grown from the time of explantation to the seventh day in vitro in the presence of phenyllactic acid, an analog of phenylalanine. Pigment cells developed normally.These results suggest that phenylalanine plays little or no role in pigment cell differentiation.  相似文献   

12.
Biogenesis of rosmarinic acid in Mentha   总被引:1,自引:0,他引:1       下载免费PDF全文
The biogenesis of rosmarinic acid (alpha-O-caffeoyl-3,4-dihydroxyphenyl-lactic acid), the second most common ester of caffeic acid in the plant kingdom, was studied in Mentha arvense and Mentha piperita. Administration of (14)C-labelled compounds showed that, whereas the caffeoyl moiety was formed from phenylalanine via cinnamic acid and p-coumaric acid, the 3,4-dihydroxyphenyl-lactic acid moiety was formed from tyrosine and 3,4-dihydroxyphenylalanine. Time-course studies and the use of labelled rosmarinic acid showed that endogenous rosmarinic acid had a low turnover rate. The caffeoyl moiety did not appear to contribute to the formation of insoluble polymers, as has been suggested for chlorogenic acid in other plants.  相似文献   

13.
The hydroxylation of phenylalanine to tyrosine by the liver enzyme phenylalanine hydroxylase is regulated by the level of phenylalanine. Whether there is a distinct allosteric binding site for phenylalanine outside of the active site has been unclear. The enzyme contains an N-terminal regulatory domain that extends through Thr117. The regulatory domain of rat phenylalanine hydroxylase was expressed in Escherichia coli. The purified protein behaves as a dimer on a gel filtration column. In the presence of phenylalanine, the protein elutes earlier from the column, consistent with a conformational change in the presence of the amino acid. No change in elution is seen in the presence of the non-activating amino acid proline. 1H–15N HSQC NMR spectra were obtained of the 15N-labeled protein alone and in the presence of phenylalanine or proline. A subset of the peaks in the spectrum exhibits chemical shift perturbation in the presence of phenylalanine, consistent with binding of phenylalanine at a specific site. No change in the NMR spectrum is seen in the presence of proline. These results establish that the regulatory domain of phenylalanine hydroxylase can bind phenylalanine, consistent with the presence of an allosteric site for the amino acid.  相似文献   

14.
High-molecular-weight chicken erythrocyte chromatin was prepared by mild digestion of nuclei with micrococcal nuclease. Samples of chromatin containing both core (H3, H4, H2A, H2B) and lysine-rich (H1, H5) histone proteins (whole chromatin) or only core histone proteins (core chromatin) were examined by CD and thermal denaturation as a function of ionic strength between 0.75 and 7.0 × 10?3M Na+. CD studies at 21°C revealed a conformational transition over this range of ionic strengths in core chromatin, which indicated a partial unfolding of a segment of the core particle DNA at the lowest ionic strength studied. This transition is prevented by the presence of the lysine-rich histones in whole chromatin. Thermal-denaturation profiles of both whole and core chromatins, recorded by hyperchromicity at 260 nm, reproducibly and systematically varied with the ionic strength of the medium. Both materials displayed three resolvable thermal transitions, which represented the total DNA hyperchromicity on denaturation. The fractions of the total DNA which melted in each of these transitions were extremely sensitive to ionic strength. These effects are considered to result from intra- and/or internucleosomal electrostatic repulsions in chromatin studied at very low ionic strengths. Comparison of the whole and core chromatin melting profiles indicated substantial stabilization of the core-particle DNA by binding sites between the H1/H5 histones and the 140-base-pair core particle.  相似文献   

15.
Abstract: Plasma and CSF concentrations of endogenous l -DOPA, catecholamines, and metabolites of monoamines were assayed in a patient with atypical phenylketonuria due to absent dihydropteridine reductase (DHPR), before and during treatment with folinic acid, Sinemet, and 5-hydroxytryptophan. The patient had low but detectable levels of l -DOPA, 3,4-dihydroxyphenylacetic acid (DOPAC), and 3,4-dihydroxyphenylglycol (DHPG) in plasma and low but detectable levels of these compounds and of homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) in CSF, with approximately normal plasma and CSF levels of norepinephrine [noradrenaline (NA)]. Folinic acid treatment approximately doubled plasma levels of l -DOPA, NA, DOPAC, and DHPG, compared with values during dietary phenylalanine restriction alone. Detection of l -DOPA, catecholamines, and monoamine metabolites in this patient indicates that monoamine synthesis in humans does not absolutely require DHPR. The results are consistent with the existence of an alternative biochemical pathway, with folinic acid treatment augmenting activity along this pathway. Low plasma levels of l -DOPA, DOPAC, and DHPG may reflect decreased catecholamine synthesis and turnover in sympathetic nerves, with compensatory increases in exocytotic release normalizing plasma NA levels.  相似文献   

16.
DNA sequence organization in the genomes of five marine invertebrates   总被引:10,自引:1,他引:9  
The arrangement of repetitive and non-repetitive sequence was studied in the genomic DNA of the oyster (Crassostrea virginica), the surf clam (Spisula solidissima), the horseshoe crab (Limulus polyphemus), a nemertean worm (Cerebratulus lacteus) and a jelly-fish (Aurelia aurita). Except for the jellyfish these animals belong to the protostomial branch of animal evolution, for which little information regarding DNA sequence organization has previously been available. The reassociation kinetics of short (250-300 nucleotide) and long (2,000-3,000 nucleotide) DNA fragments was studied by the hydroxyapatite method. It was shown that in each case a major fraction of the DNA consists of single copy sequences less than about 3,000 nucleotides in length, interspersed with short repetitive sequences. The lengths of the repetitive sequences were estimated by optical hyperchromicity and S1 nuclease measurements made on renaturation products. All the genomes studied include a prominent fraction of interspersed repetitive sequences about 300 nucleotides in length, as well as longer repetitive sequence regions.  相似文献   

17.
The degree of chromosomal DNA (cDNA) denaturation and renaturation on polytene chromosomes has been measured by UV microspectrophotometry. Also DNA losses occurring upon denaturation have been quantified by Feulgen, gallocyanin-chromalum and UV. It has been observed that denaturation in alkali (0.07 N NaOH at room temperature) and formamide (90% formamide; 0.1 SSC, pH 7.2) at 65 °C removes about 30% of the DNA. Low DNA loss occurs upon denaturation in HCl (0.24 M) at room temperature and 60% formamide: 2 × 10?4 M EDTA (pH 8) at 55 °C. The presence of 4% formaldehyde in the denaturation buffer prevents DNA loss. After denaturation of chromosomes in 0.1 × SSC containing 4% formaldehyde at 100 °C for 30 sec, an hyperchromicity of 39 °C is observed. The denaturation efficiency varies with the denaturation treatment. The percentage reassociation was measured from the difference in the UV absorption of renatured chromosomes and that of denatured chromosomes from the same set. It seems that in our conditions DNA:DNA reassociation does not occur. The efficiency of hybridization is proportional to the denaturation extent of the DNA. However, the entire fraction of DNA which has been denatured is not available for hybridization.  相似文献   

18.
The integration host factor (IHF) is a protein which sequence specifically induces a bend of double-stranded DNA by more than 160°. Based on IHF as lead structure, a peptide mimic was introduced resembling the positively charged body of the protein by a lysine dendrimer and the minor groove recognition loop by a cyclopeptide. The proline located close to the tip of the recognition loop intercalates between the base pair plane. It was modified in order to evaluate the influence of the side chain residue with respect to size (1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid), aromaticity (phenylalanine), conformation of the five-membered ring [(4R)-fluoroproline, (4S)-fluoroproline, 3,4-dehydroproline], and the peptide backbone conformation (α-methylproline) on binding dsDNA and bending the double strand. Binding and bending studies were carried out by fluorescence resonance energy transfer experiments and gel electrophoresis using DNA sequences prepared by PCR with the IHF binding site in central or terminal position. Whereas aromatic residues and α-methylproline were not tolerated as proline substitute, incorporation of (4S)-fluoroproline and 3,4-dehydroproline provided enhanced binding.  相似文献   

19.
Physicochemical Studies on the Reaction between Formaldehyde and DNA   总被引:10,自引:0,他引:10       下载免费PDF全文
The reaction between formaldehyde and phage T7 DNA has been studied by optical absorbance and sedimentation measurements. Through the course of denaturation, OD200 and s20, w rise; after the attainment of full hyperchromicity the s20, w falls sharply, suggesting a decrease in molecular weight. Conditions in which formaldehyde causes cross-linking are defined. Some experimental applications of the denaturation technique are given. Evidence which suggests that preformed single-strand interruptions may exist in phage DNA is briefly discussed.  相似文献   

20.
Electrolytic reduction of the hypoxic tumour cell radiosensitizing drug misonidazole was carried out at a controlled potential under anaerobic conditions in the presence of Escherichia coli DNA. During the reduction process the DNA was examined by viscometry, thermal hyperchromicity, melting and renaturation profiles, hydroxyapatite chromatography, agarose gel electrophoresis and alkaline sucrose density gradient centrifugation. The reduced drug decreases the viscosity, hyperchromicity and renaturation of DNA. These effects are consistent with strand breakage of the molecule which was corroborated by finding an increase in the single-strand content of DNA, increased migration and loss of fluorescence intensity on agarose gels and sedimentation to a less dense region in alkaline sucrose density gradients. The results are discussed in relation to postulated mechanisms of the selective toxicity of the drug towards anaerobes and cytotoxicity of electron affinic radiosensitizers of hypoxic tumour cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号