首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hutchinson–Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD) are two laminopathies caused by mutations leading to cellular accumulation of prelamin A or one of its truncated forms, progerin. One proposed mechanism for the more severe symptoms in patients with RD compared with HGPS is that higher levels of farnesylated lamin A are produced in RD. Here, we show evidence in support of that hypothesis. Overexpression of the most common progeroid lamin A mutation (LMNA c.1824C>T, p.G608G) during skin development results in a severe phenotype, characterized by dry scaly skin. At postnatal day 5 (PD5), progeroid animals showed a hyperplastic epidermis, disorganized sebaceous glands and an acute inflammatory dermal response, also involving the hypodermal fat layer. PD5 animals also showed an upregulation of multiple inflammatory response genes and an activated NF‐kB target pathway. Careful analysis of the interfollicular epidermis showed aberrant expression of the lamin B receptor (LBR) in the suprabasal layer. Prolonged expression of LBR, in 14.06% of the cells, likely contributes to the observed arrest of skin development, clearly evident at PD4 when the skin had developed into single‐layer epithelium in the wild‐type animals while progeroid animals still had the multilayered appearance typical for skin at PD3. Suprabasal cells expressing LBR showed altered DNA distribution, suggesting the induction of gene expression changes. Despite the formation of a functional epidermal barrier and proven functionality of the gap junctions, progeroid animals displayed a greater rate of water loss as compared with wild‐type littermates and died within the first two postnatal weeks.  相似文献   

2.
Animals construct a layered skin to prevent dehydration and pathogen entrance. The barrier function of the skin relies on the extensive cross-linking of specialised components. In insects, for instance, epidermal cells produce an apical extracellular cuticle that consists of a network of proteins, chitin and lipids. We have identified mutations in the Drosophila gene coding for the δ-aminolevulinate synthase (Alas) that cause massive water loss. The cuticle of alas mutant larvae detaches from the epidermis and its basal region is frayed suggesting that an Alas dependent pathway is needed to organise the contact between the cuticle and the epidermis and anchor the cuticle to the apical surface of epidermal cells. Concomitantly, reduction of Alas function results in weakening of the extracellular dityrosines network in the cuticle, whereas glutamyl-lysine isopeptide bonds are not affected. The lateral septate junctions of epidermal cells that serve as a paracellular plug are intact, as well. Taken together, we hypothesise that Alas activity, which initiates heme biosynthesis in the mitochondrion, is needed for the formation of a dityrosine-based barrier that confers resistance to the internal hydrostatic pressure protecting both the cuticle from transcellular infiltration of body fluid and the animal from dehydration. We conclude that at least two modules--an apical protein-chitin lattice and the lateral septate junctions, act in parallel to ensure Drosophila skin impermeability.  相似文献   

3.
The enucleate layer of the epidermis, i.e. the stratum corneum, is responsible for certain critical protective functions, such as epidermal permeability barrier function. Within the epidermal membrane lamella component, ceramides are the dominant lipid class by weight (over 50%) and exhibit the greatest molecular heterogeneity in terms of sphingoid base and fatty acid composition. It is now evermore important to understand how ceramide production and functions are controlled in the epidermis, since decreased epidermal ceramide content has been linked to water loss and barrier dysfunction. During the past several years, critical enzymes in ceramide biosynthesis have been identified, including ceramide synthases (CerS) and ceramide hydroxylase/desaturase. In this review, we describe the molecular heterogeneity of ceramides synthesized in the epidermis and their possible roles in epidermal permeability barrier functions. We also describe recent studies that identified the family of CerS (CerS1–CerS6) in mammals. We further focus on the roles of specific isoforms of these enzymes in synthesizing the epidermal ceramides, especially in relation to chain-length specificity. In addition, we provide experimental information, including our recent findings, as to how applying ceramide or ceramide-containing substances to skin, orally or directly, can benefit skin health.  相似文献   

4.
Calcium dynamics in the epidermis play a crucial role in barrier homeostasis and keratinocyte differentiation. We have recently suggested that the electro-physiological responses of the keratinocyte represent the frontier of the skin sensory system for environmental stimuli. In the present study, we have evaluated the responses of proliferating and differentiated human keratinocytes to mechanical stress by measuring the intracellular calcium level. Before differentiation, mechanical stress induces a calcium wave over a limited area; this is completely blocked by apyrase, which degrades ATP. In the case of differentiated keratinocytes, the calcium wave propagates over a larger area. Application of apyrase does not completely inhibit this wave. Thus, in differentiated cells, the induction of calcium waves might involve not only ATP, but also another factor. Immunohistochemical studies indicate that connexins 26 and 43, both components of gap junctions, are expressed in the cell membrane of differentiated keratinocytes. Application of octanol or carbenxolone, which block gap junctions, significantly reduces calcium wave propagation in differentiated keratinocytes. Thus, signaling via gap junctions might be involved in the induction of calcium waves in response to mechanical stress at the upper layer of the epidermis.  相似文献   

5.
Abstract

The skin forms a life-sustaining barrier between the organism and physical environment. The physical barrier of skin is mainly localized in the stratum corneum (SC); however, nucleated epidermis also contributes to the barrier through tight, gap, and adherens junctions (AJs), as well as through desmosomes and cytoskeletal elements. Many inflammatory diseases, such as atopic dermatitis (AD) and psoriasis, are associated with barrier dysfunction. It is becoming increasingly clear that the skin barrier function is not only affected by inflammatory signals but that defects in structural components of the barrier may be the initiating event for inflammatory diseases. This view is supported by findings that mutations in filaggrin, a key structural epidermal barrier protein, cause the inflammatory skin disease AD, and that a loss of AJ components, namely epidermal p120 catenin or α-catenin results in skin inflammation.  相似文献   

6.
Epidermis is a self-renewing, multilayered tissue composed primarily of keratinocytes. The epidermal keratinocyte follows a terminal differentiation pathway that under normal circumstances is tightly linked to its position within the epidermis and culminates in the formation of the protective barrier (stratum corneum) that constitutes the outermost layer of skin. Strong but pliant adhesive mechanisms are essential for normal functioning of the epidermis. In the epidermis, adhesion is mediated primarily by four structures: hemidesmosomes and focal adhesions, which function in cell-matrix adhesion, and desmosomes and adherens junctions, which function in cell-cell adhesion. In this review we concentrate on the transmembrane components of these structures, which are thought to mediate directly the adhesive function. Members of the integrin family of adhesion molecules comprise the transmembrane components of hemidesmosomes and focal adhesions, although hemidesmosomes also have a second, unrelated transmembrane molecule known as 'bullous pemphigoid antigen 2'. Members of the cadherin family are the transmembrane constituents of desmosomes and adherens junctions. Desmosomes consistently contain two types of cadherins (desmoglein and desmocollin), while adherens junctions may contain only one type of cadherin (E- or P-cadherin). Expression of most of the transmembrane components varies with the position of the keratinocyte within the epidermis and thus may reflect the degree of epidermal differentiation. All of the integrin subunits have been localized predominantly to the basal layer. In contrast, the cadherins show very complex expression patterns throughout the epidermis. Desmogleins and desmocollins (the desmosomal cadherins) are each encoded by three genes, and the expression of each gene is limited to certain epidermal layers. With respect to the cadherins of the adherens junction, it has been shown that E-cadherin is present throughout the epidermis, while P-cadherin is limited to the basal layer. Interestingly, these complex expression patterns of integrins and cadherins within the epidermis may not simply be passive events in differentiation; rather, evidence is accumulating that adhesion molecules can exert a dynamic role in epidermal differentiation/stratification. For example, decreased adhesion to extracellular matrix, induced by changes in one or more integrins, appears to be a signal that induces certain differentiation-related events. Even more profound effects on epidermal morphogenesis have been demonstrated for the cadherins. E- and/or P-cadherin is required not only to initiate normal intercellular junction formation but also for the subsequent development of a stratified epithelium. Thus, the findings to date with both integrins and cadherins suggest that adhesion molecules may function not just as direct mediators of adhesion, but also as regulators of epidermal stratification, differentiation, and morphogenesis.  相似文献   

7.
Summary Tracer and freeze-fracture replication techniques show that there are two morphologically and topographically distinct permeability barriers in the epidermis of the grass snake. Tight junctions interconnect the apico-lateral plasma membranes of the uppermost living cells, establishing an ionic or osmotic gradient between the stratum germinativum and alpha layer. The second barrier is formed by intercellular lipid sheets in the overlying mesos layer, which are very similar to the barrier found in the stratum corneum of mammals.  相似文献   

8.
Matriptase, a type 2 transmembrane serine protease, and its inhibitor hepatocyte growth factor activator inhibitor (HAI)-1 are required for normal epidermal barrier function, and matriptase activity is tightly regulated during this process. We therefore hypothesized that this protease system might be deregulated in skin disease. To test this, we examined the level and activation state of matriptase in examples of 23 human skin disorders. We first examined matriptase and HAI-1 protein distribution in normal epidermis. Matriptase was detected at high levels at cell-cell junctions in the basal layer and spinous layers but was present at minimal levels in the granular layer. HAI-1 was distributed in a similar pattern, except that high-level expression was retained in the granular layer. This pattern of expression was retained in most skin disorders. We next examined the distribution of activated matriptase. Although activated matriptase is not detected in normal epidermis, a dramatic increase is seen in keratinocytes at the site of inflammation in 16 different skin diseases. To gain further evidence that activation is associated with inflammatory stimuli, we challenged HaCaT cells with acidic pH or H(2)O(2) and observed matriptase activation. These findings suggest that inflammation-associated reactive oxygen species and tissue acidity may enhance matriptase activation in some skin diseases.  相似文献   

9.
In the literature the question of whether a system structurally and functionally related to the barrier function of the tight junctions (TJs) of polarized epithelia exists in the epidermis has been and still is controversially discussed. We have systematically addressed this question in a study of the granular layer of fetal and adult human epidermis, combining different light and electron microscopic methods. We show that the lateral membranes of the cells of the stratum granulosum are connected by an extended subapical complex system integrating desmosomes and TJ structures identified as sites of close membrane-membrane contact and as regions of membrane-to-membrane apposition that in immunoelectron microscopy are positive for TJ marker proteins, notably occludin, indicative of an extended, probably continuous TJ barrier. In addition, we have noted in freeze-fractures of the apical membrane attaching this layer to the basalmost membrane of the stratum corneum an extended system integrating desmosomes with intramembraneous ridge configurations that appear as strands, circles, lariats or complex meshworks showing numerous continuities with the desmosomes. In some regions this system interconnecting desmosomes with curvilinear ridge structures occupies the major part of the plasma membrane. The molecular organizations and possible functional contributions of both structural systems positioned at the border between the living portion of the epidermis and the corneal layer are discussed, in particular in relation to the formation of a stable association between the two layers and of a barrier to the paracellular flow of molecules and particles. It is also discussed whether similar structures occur in other keratinizing stratified squamous epithelia, in squamous metaplasias and in tumors derived from such tissues.  相似文献   

10.
We describe an organotypic model of human skin comprised of a stratified layer of human epidermal keratinocytes and dermal fibroblasts within a contracted collagen lattice. Feasible and reproducible production of the skin construct has required the use of traditional as well as specialized culture techniques. The configuration of the construct has been engineered to maintain polarity and permit extended culture at the air-liquid interface. Morphological, biochemical and kinetic parameters were assessed and functional assays were performed to determine the degree of similarity to human skin. Light and ultrastructural morphology of the epidermis closely resembled human skin. The immunocytochemical localization of a number of differentiation markers and extracellular matrix proteins was also similar to human skin. Kinetic data showed a transition of the epidermal layer to a morein vivo-like growth rate during the development of the construct at the air-liquid interface. The barrier properties of the construct also increased with time reaching a permeability to water of less than 2%·h after approximately 2 weeks at the air-liquid interface which is still on average 30-fold more water-permeable than normal human skin. The construct is currently used forin vitro research and testing and is also being tested in clinical applications.  相似文献   

11.
The tight junction (TJ) and its adhesion molecules, claudins, are responsible for the barrier function of simple epithelia, but TJs have not been thought to play an important role in the barrier function of mammalian stratified epithelia, including the epidermis. Here we generated claudin-1-deficient mice and found that the animals died within 1 d of birth with wrinkled skin. Dehydration assay and transepidermal water loss measurements revealed that in these mice the epidermal barrier was severely affected, although the layered organization of keratinocytes appeared to be normal. These unexpected findings prompted us to reexamine TJs in the epidermis of wild-type mice. Close inspection by immunofluorescence microscopy with an antioccludin monoclonal antibody, a TJ-specific marker, identified continuous TJs in the stratum granulosum, where claudin-1 and -4 were concentrated. The occurrence of TJs was also confirmed by ultrathin section EM. In claudin-1-deficient mice, claudin-1 appeared to have simply been removed from these TJs, leaving occludin-positive (and also claudin-4-positive) TJs. Interestingly, in the wild-type epidermis these occludin-positive TJs efficiently prevented the diffusion of subcutaneously injected tracer (approximately 600 D) toward the skin surface, whereas in the claudin-1-deficient epidermis the tracer appeared to pass through these TJs. These findings provide the first evidence that continuous claudin-based TJs occur in the epidermis and that these TJs are crucial for the barrier function of the mammalian skin.  相似文献   

12.
Summary Localization and characterization of different lipids in the cellular constituents of the skin of Heteropneustes fossilis has been made using several histochemical techniques.High contents of cholesterol, its esters and phospholipids have been correlated with the metabolically active state of the basal cells undergoing cell proliferation and differentiation.The polygonal cells in the outermost layer of the epidermis, though rich in phospholipid contain small amounts of cholesterol and its esters. This has been correlated with the metabolically less active state of these cells.Neutral lipids and phospholipids in the polygonal cells of the outermost layer may contribute to the contents of surface slime and act as an efficient barrier for the penetration of water through the skin.The deposits of neutral lipids in the subcutis may provide energy during the period of fasting, act as a barrier for water diffusion through the skin and serve as shock absorbing pads protecting the fish from mechanical injury.Supported by a post doctoral fellowship sponsored by the Council of Scientific and Industrial Research, Government of IndiaSupported by a research scholarship sponsored by Banaras Hindu University  相似文献   

13.
Functional organization and the histochemical nature of the various cellular components of the epidermis of Noemacheilus botia are described. The various histochemical techniques reveal the basic proteinaccous nature of the outer free margins of the polygonal cells of the most superficial layer of the epidermis. These cells remain metabolically active as revealed by their healthy nuclei and are not sloughed off at the surface. the lateral cell membranes of these cells are fused together forming a continuous barrier which plays important role in water proofing the skin. In addition the polygonal cells in the most superficial layer also undergo the process of mucogenesis synthesizing sulphated acid mucopolysaccharides which may ultimately form a part of the contents of the protective extracellular cuticular coat.  相似文献   

14.
Hatchlings of the North American painted turtle (Chrysemys picta) spend their first winter of life inside a shallow, subterranean hibernaculum (the natal nest) where they may be exposed for extended periods to ice and cold. Hatchlings seemingly survive exposure to such conditions by becoming supercooled (i.e., by remaining unfrozen at temperatures below the equilibrium freezing point for body fluids), so we investigated the role of their integument in preventing ice from penetrating into body compartments from surrounding soil. We first showed that hatchlings whose epidermis has been damaged are more likely to be penetrated by growing crystals of ice than are turtles whose cutaneous barrier is intact. We next studied integument from a forelimb by light microscopy and discovered that the basal part of the alpha-keratin layer of the epidermis contains a dense layer of lipid. Skin from the forelimb of other neonatal turtles lacks such a layer of lipid in the epidermis, and these other turtles also are highly susceptible to inoculative freezing. Moreover, epidermis from the neck of hatchling painted turtles lacks the lipid layer, and this region of the skin is readily penetrated by growing crystals of ice. We therefore conclude that the resistance to inoculation imposed by skin on the limbs of hatchling painted turtles results from the presence of lipids in the alpha-keratin layer of the epidermis. Neonates apparently are able to avoid freezing during winter by drawing much of the body inside the shell, leaving only the ice-resistant integument of the limbs exposed to ice in the environment. The combination of behavior and skin morphology enables overwintering hatchlings to exploit an adaptive strategy based on supercooling.  相似文献   

15.
Imaging mass spectrometry (IMS) is a useful cutting edge technology used to investigate the distribution of biomolecules such as drugs and metabolites, as well as to identify molecular species in tissues and cells without labeling. To protect against excess water loss that is essential for survival in a terrestrial environment, mammalian skin possesses a competent permeability barrier in the stratum corneum (SC), the outermost layer of the epidermis. The key lipids constituting this barrier in the SC are the ceramides (Cers) comprising of a heterogeneous molecular species. Alterations in Cer composition have been reported in several skin diseases that display abnormalities in the epidermal permeability barrier function. Not only the amounts of different Cers, but also their localizations are critical for the barrier function. We have employed our new imaging system, capable of high-lateral-resolution IMS with an atmospheric-pressure ionization source, to directly visualize the distribution of Cers. Moreover, we show an ichthyotic disease pathogenesis due to abnormal Cer metabolism in Dorfman–Chanarin syndrome, a neutral lipid storage disorder with ichthyosis in human skin, demonstrating that IMS is a novel diagnostic approach for assessing lipid abnormalities in clinical setting, as well as for investigating physiological roles of lipids in cells/tissues.  相似文献   

16.
The thermoregulatory function of the skin differs in adult cold-acclimated and heat-acclimated rock pigeons (Columba livia). In general, the cutaneous evaporative cooling mechanism is not activated by appropriate stimuli in cold-acclimated pigeons in contrast to heat-acclimated pigeons. We studied with electron microscopy whether the differences in the function of the skin are reflected in the structure of the epidermal water barrier of these two extreme acclimation states. The epidermis of cold-acclimated pigeons is attenuated, and the underlying dermis lacks any intimate vascularization. Both the extracellular and the intracellular domains in the stratum corneum contain organized lamellar lipids. At the stratum transitivum-stratum corneum interface, multigranular body secretion is indicated by the highly convoluted cell membranes and membraneous sacculae enclosing the multigranular bodies. Alternatively, multigranular bodies retain in the corneocytes, and the lipoid material originated from them is reprocessed to broad lamellae. The keratohyalin (KH) granules are spotlike and oriented as cortical bands beneath the plasma membrane. In heat-acclimated pigeons, the epidermis displays modified patches side by side with basic structural type of epidermis. The modified areas are characterized by hypertrophy and abundance of dermal capillaries adjacent to the hypertrophied patch. No lamellar lipids are discerned in the dilated extracellular space. The structure of multigranular bodies is abnormal, and the numbers of lipid droplets in the outer viable epidermis and stratum corneum are decreased. The transitional cells contain stellate KH granules, which form a network throughout the cell. It is concluded that cold-acclimated pigeons have a lamellar, extracellular water barrier, the cutaneous water evaporation is minimized, and heat is stored in the body core. Acclimation to heat leads to formation of structurally heterogeneous skin. The structurally modified skin patches show disruption of the barrier-forming machinery in the multigranular bodies and marked reorganization of fibrillar proteins and electron-dense KH masses in the transitional layer. Thus water barrier adjustments in cold- and heat-acclimated pigeons manifest the dynamic function of avian skin as a thermoregulatory organ.  相似文献   

17.
Defects in epidermal barrier function and/or vesicular transport underlie severe skin diseases including ichthyosis and atopic dermatitis. Tight junctions (TJs) form a single layered network in simple epithelia. TJs are important for both barrier functions and vesicular transport. Epidermis is stratified epithelia and lamellar granules (LGs) are secreted from the stratum granulosum (SG) in a sequential manner. Previously, continuous TJs and paracellular permeability barriers were found in the second layer (SG2) of SG in mice, but their fate and correlation with LG secretion have been poorly understood. We studied epidermal TJ-related structures in humans and in mice and found occludin/ZO-1 immunoreactive multilayered networks spanning the first layer of SG (SG1) and SG2. Paracellular penetration tracer passed through some TJs in SG2, but not in SG1. LG secretion into the paracellular tracer positive spaces started below the level of TJs of SG1. Our study suggests that LG-secretion starts before the establishment of TJ barrier in the mammalian epidermis.  相似文献   

18.
During mammalian embryogenesis the emerging epidermis is temporarily covered by an epithelial monolayer, the periderm. In chicken, a second epithelial layer, the subperiderm, located underneath the periderm develops in later embryogenesis. Together the periderm and the subperiderm are referred to as the PSP unit. The cells of the PSP unit are tightly connected by tight junctions (TJ), thereby providing the embryo with an impermeable bilayered diffusion barrier. The emerging epidermis assumes its barrier function by cornification beginning at embryonic day 17 (E17) before at E18 the PSP unit undergoes desquamation. Lipid analysis of both epithelia after their mechanical separation revealed a dramatic increase to about 100-fold values of barrier-relevant ceramides, i.e. those known to essentially contribute to the diffusion barrier of the cornified envelope, in the emerging epidermis between E17 and E19. In contrast, the content of barrier-relevant ceramides in the PSP unit remained at constantly low levels throughout embryogenesis. These data strongly argue in favour of different mechanisms for the barrier function of the two epithelia. TJ in the PSP unit provide the main diffusion barrier protecting the embryo until beginning of desquamation at E18. At this developmental stage the content of cornified envelope-specific ceramides is substantially elevated, thus enabling the epidermis to fulfil its function as the major diffusion barrier after desquamation of the PSP unit. The observation that barrier-relevant ceramides are formed prior to desquamation of the PSP unit points to a precisely regulated sequence in that desquamation does not occur until the lipid-based barrier of the cornified envelope is completed and suggests in addition that these lipids might be essential regulators of the interaction between the PSP unit and the emerging epidermis.  相似文献   

19.
An epidermis surrounds all vertebrates, forming a water barrier between the external environment and the internal space of the organism. In the zebrafish, the embryonic epidermis consists of an outer enveloping layer (EVL) and an inner basal layer that have distinct embryonic origins. Differentiation of the EVL requires the maternal effect gene poky/ikk1 in EVL cells prior to establishment of the basal layer. This requirement is transient and maternal Ikk1 is sufficient to allow establishment of the EVL and formation of normal skin in adults. Similar to the requirement for Ikk1 in mouse epidermis, EVL cells in poky mutants fail to exit the cell cycle or express specific markers of differentiation. In spite of the similarity in phenotype, the molecular requirement for Ikk1 is different between mouse and zebrafish. Unlike the mouse, EVL differentiation requires functioning Poky/Ikk1 kinase activity but does not require the HLH domain. Previous work suggested that the EVL was a transient embryonic structure, and that maturation of the epidermis required replacement of the EVL with cells from the basal layer. We show here that the EVL is not lost during embryogenesis but persists to larval stages. Our results show that while the requirement for poky/ikk1 is conserved, the differences in molecular activity indicate that diversification of an epithelial differentiation program has allowed at least two developmental modes of establishing a multilayered epidermis in vertebrates.  相似文献   

20.
The structure and function of the intercorneocyte cement of the corneal layer of epidermis in mammals has been reviewed on the basis of the author's and published data. Two functions of the layer have been considered: a water-tight barrier and a desquamation. Chemical structure of the barrier has been characterized. Comparison of the barrier in water and terrestrial mammals suggest that the peculiarities of the barrier correlate with different pathways of keratinization. Factors that determine the adhesion have been described. The authors show the possibility to use natural models for studying the processes of keratinization and, in particular, functioning the intercellular compartment of the corneal layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号