首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nickel uptake system was investigated with a wild-type cell of Rhodopseudomonas capsulata and two mutants lacking uptake hydrogenase (Hup-). Wild type cells grown photoheterotrophically incorporated 63Ni2+ by a high affinity system. The uptake system had a pH of 7.0 and a temperature optimum of 28°C. Both Mg2+ and Co2+ ions severely repressed the uptake of Ni2+. Nickel transport was also inhibited by metabolic inhibitors including cyanide, azide, 2,4-dinitrophenol and m-chlorophenyl carbonylcyanidehydrazone. These data imply that Ni2+ uptake system occurs by the energy-linked system for Mg2+ transport. The intracellular distribution of 63Ni2+ in Hup- cells showed the same pattern as that of wild-type cells, indicate that the Hup- strains have no deficiency in Ni2+ transport.Abbreviations CCCP m-chlorophenyl carbonylcyanidehydrazone - HEPES N-2-hydroxylethylpiperazine-N-2-ethane-sulfuric acid - HOQNO 2-n-nonly-4-hydroxyquinoline-N-oxide - TMA tetramethylammonium hydroxide  相似文献   

2.
Uptake of Co2+ by three nickel-resistant strains (NiR1, NiR2, and NiR3) ofNeurospora crassa that differed in resistance to Co2+ has been studied. Uptake was linear with Co2+ concentration (up to 1 mM), with time (up to 6 h), and with pH between 3 and 6. Uptake rates were in the order NiR2>NiR1>NiR3. In all strains, there was gradual increase in Co2+ uptake between 10° and 28°C, with a much sharper increase between 28° and 40°C. Metabolic inhibitors decreased Co2+ uptake partially in all strains, except for KF in NiR3. About 50–80 g Co2+/100 mg dry weight was surface bound. Ni2+, Zn2+, and Mn2+ competed with Co2+, the effects being strain specific. Mg2+ inhibited Co2+ uptake in all strains with preformed mycelia. In NiR1 and NiR2 only with young mycelia (40 h old) was Mg2+ inhibitory to Co2+ uptake,during growth in the presence of Co2+. The results suggested the presence of two transport systems for Co2+ in NiR1 and NiR2, only one of which was sensitive to Mg2+; in contrast, NiR3 had a single system, which was sensitive to Mg2+.  相似文献   

3.
In tilapia (Oreochromis mossambicus) intestine, Mg2+ transport across the epithelium involves a transcellular, Na+- and Na+/K+-ATPase dependent pathway. In our search for the Mg2+ extrusion mechanism of the basolateral compartment of the enterocyte, we could exclude Na+/Mg2+ antiport or ATP-driven transport. Evidence is provided, however, that Mg2+ movement across the membrane is coupled to anion transport. In basolateral plasma membrane vesicles, an inwardly directed Cl gradient stimulated Mg2+ uptake (as followed with the radionuclide 27Mg) twofold. As Cl-stimulated uptake was inhibited by the detergent saponin and by the ionophore A23187, Mg2+ may be accumulated intravesicularly above chemical equilibrium. Valinomycin did not affect uptake, suggesting that electroneutral symport activity occurred. The involvement of anion coupled transport was further indicated by the inhibition of Mg2+ uptake by the stilbene derivative, 4,4′-diisothiocyanato-stilbene-2,2′-disulfonic acid. Kinetic analyses of the Cl-stimulated Mg2+ uptake yielded a K m (Mg2+) of 6.08 ± 1.29 mmol · l−1 and a K m (Cl) of 26.5 ± 6.5 mmol · l−1, compatible with transport activity at intracellular Mg2+- and Cl-levels. We propose that Mg2+ absorption in the tilapia intestine involves an electrically neutral anion symport mechanism. Received: 19 January 1996/Revised: 1 August 1996  相似文献   

4.
We isolated and characterized a nickel (Ni2+)-resistant mutant (GA1) of Schizosaccharomyces pombe. This mutant strain displayed resistance to both Ni2+ and Zn2+, but not to Cd2+, Co2+, and Cu2+. The growth rate of GA1 increased proportionally with increasing Mg2+ concentrations until 50 mM Mg2+. The GA1 mutation phenotype suggests a defect in Mg2+ uptake. Sequence analysis of the GA1 open reading frame (ORF) O13779, which is homologous to the prokaryotic and eukaryotic CorA Mg2+ transport systems, revealed a point mutation at codon 153 (ccc to acc) resulting in a Pro 153Thr substitution in the N-terminus of the CorA domain. Our results provide novel genetic information about Ni2+ resistance in fission yeast. Specifically, that reducing Mg2+ influx through the CorA Mg2+ transport membrane protein confers Ni2+ resistance in S. pombe. We also report that Ni2+ ion detoxification of the fission yeast is related to histidine metabolism and pH.  相似文献   

5.
A diet containing an inert marker (ballotini beads, quantified by X-radiography) was used to quantify the transport of two essential minerals, Ca2+ and Mg2+ from the diet during the digestion and absorption of a single meal of commercial trout food (3% ration). Initially, net uptake of Ca2+ was observed in the stomach followed by subsequent Ca2+ fluxes along the intestine which were variable, but for the most part secretory. This indicated a net secretion of Ca2+ along the intestinal tract resulting in a net assimilation of dietary Ca2+ of 28%. Similar handling of Ca2+ and Mg2+ was observed along the gastrointestinal tract (GI), although net assimilation differed substantially between the cations, with Mg2+ assimilation being close to 60%, mostly a result of greater uptake by the stomach. The stomach displayed the highest net uptake rates for both cations (1.5 and 1.3 mmol kg−1 fish body mass for Ca2+ and Mg2+, respectively), occurring within 2 h following ingestion of the meal. Substantial secretions of both Ca2+ and Mg2+ were observed in the anterior intestine, which were attributed to bile and other intestinal secretions, while fluxes in the mid and posterior intestine were small and variable. The overall patterns of Ca2+ and Mg2+ handling in the GI tract were similar to those observed for Na+ and K+ (but not Cl) in a previous study. Overall, these results emphasize the importance of dietary electrolytes in ionoregulatory homeostasis.  相似文献   

6.
Nickel Uptake by Pseudomonas aeruginosa: Role of Modifying Factors   总被引:1,自引:0,他引:1  
Pseudomonas aeruginosa cells growing in minimal medium were 40-fold more sensitive to Ni2+ than cells growing in enriched medium, suggesting a possible protective role of medium ingredients. Likewise, cells pre-grown in enriched medium showed a high K m (6.15 mM) and increased Ni2+ uptake (950 nmol mg−1 protein, 1h) over cells pre-sown in minimal medium (K m , 0.48 mM; 146 nmol mg−1 protein, 1 h). The overall pattern indicates that cells pre-grown in enriched medium were characterized by having lowered affinity towards Ni2+ than those with minimal medium background. The enhanced Ni2+ uptake by enriched medium-grown cells can be correlated with the improved metabolic state of the cells. Ni2+ uptake was optimum at neutrality (pH 7.0). A major Ni2+ transport system was competitively inhibited by Mg2+, Zn2+, Cd2+, or Co2+ (400 μM each). Noticeably, a minor Ni2+ transport pathway was still operative even in the higher concentration range of Mg2+ (4 mM and 40 mM). The stimulation of Ni2+ uptake monitored in the presence of different carbon sources (0.5% wt/vol, each) showed the sequence: glucose (1.6-fold) > phenol = gallic acid (1.5-fold). Succinate, in comparison, reduced Ni2+ uptake (0.5-fold) possibly because of its acting as a metal chelator as well. Sensitivity of Ni2+ transport towards methyl viologen, azide, 2-4 DNP, and DCCD suggested that transport was energy-linked. Received: 13 January 1998 / Accepted: 21 May 1998  相似文献   

7.
The interaction of cobalt (Co2+) and nickel (Ni2+) ions with whole cells of the photosynthetic purple bacterium Rhodobacter sphaeroides strain R26 was investigated. Active and passive uptakes were examined in cells grown in the presence of increasing amounts of Co2+ and Ni2+. Inductively coupled plasma atomic emission spectroscopy (ICP-AES), pH titration, and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy were used to assess the role of cell envelope and metabolism in accumulating the two heavy metals. The chosen microorganism was able to uptake cobalt and nickel up to 2.2 and 0.25 mg per gram of dried cells respectively, with the largest part found bound to the cell surface. Carboxylate groups lying on the cell wall of this Gram-negative bacterium proved to be the major candidates for binding protons and metal cations. Co2+ was found to interfere with Mg2+ extracellular immobilization and transport across the membrane, indicating that these ions share binding sites on the cell envelope and ion transport systems. According to the presence of a competition mechanism, bacterial growth experiments showed that high Mg2+ concentrations are able to rescue R. sphaeroides from Co2+ toxicity.  相似文献   

8.
Magnesium (Mg2+) plays a critical role in many physiological processes. The AtMRS2/MGT family, which consists of nine Arabidopsis genes (and two pseudo-genes) belongs to a eukaryotic subset of the CorA superfamily of divalent cation transporters. AtMRS2-10 and AtMRS2-1 possess the signature GlyMetAsn sequence conserved in the CorA superfamily; however, they have low sequence conservation with CorA. Direct measurement using the fluorescent dye mag-fura-2 revealed that reconstituted AtMRS2-10 and AtMRS2-1 mediated rapid Mg2+ uptake into proteoliposomes. The rapid Mg2+ uptake through AtMRS2-10 was inhibited by aluminum. An assay using the Al-sensitive dye morin indicated Al uptake into the proteoliposomes through AtMRS2-10. AtMRS2-10 also exhibited Ni2+ transport activity but almost no Co2+ transport activity. The rapid Mg2+ uptake through AtMRS2-1 was not inhibited by aluminum. Al uptake into the proteoliposomes through AtMRS2-1 was not observed. The functional complementation assay in Escherichia coli strain TM2 showed that AtMRS2-1 was capable of mediating Mg2+ uptake. Heterologous expression using the E. coli mutant cells also showed that the E. coli cells expressing AtMRS2-1 was more resistant to aluminum than the E. coli cells expressing AtMRS2-10. The results suggested that AtMRS2-10 transported Al into the E. coli cells, and then the transported Al inhibited the growth of E. coli. AtMRS2-1 has been localized to the Arabidopsis tonoplast, indicating that AtMRS2-1 is exposed to much higher concentration of aluminum than AtMRS2-10. Under the conditions, it may be required that the Mg2+ transport of AtMRS2-1 is insensitive to Al inhibition, and AtMRS2-1 is impermeable to Al.  相似文献   

9.
The parent wild strainNeurospora crassa Em 5297a and three Ni2+ resistantNeurospora crassa mutants have been shown to excrete pyruvate into the culture medium in Ni2+ and Co2+ toxicities. Ni2+ has a more pronounced effect in this regard. The excretion is progressive with growth inhibition and is abolished by Mg2+ in all strains and by Fe3+ partially in the Em strain but not inNeurospora crassa NiR1. Pyruvate, citrate and malate supplementation reverse growth inhibition caused by excess Ni2+, but with concomitant suppression of Ni2+ accumulation. It is suggested that one of the features of Ni2+ toxicity inNeurospora crassa is a derangement in carbohydrate metabolism at step(s) beyond pyruvate and that this is possibly due to decreased invivo activity of Mg2+ dependent processes  相似文献   

10.
Summary The uptake kinetics and intracellular location of cobalt (60Co), manganese (54Mn) and zinc (65Zn) have been characterized in Chlorella salina. Uptake of all three metals was biphasic. The initial rapid phase was independent of light, temperature or the presence of metabolic inhibitors. This first phase of metabolism-independent biosorption was followed by a slower phase of uptake that was apparently dependent on metabolism and decreased by incubation in the dark, or in the light at low temperature or in the presence of metabolic inhibitors. This latter phase of metal accumulation followed Michaelis-Menten kinetics. However, when expressed in the form of a Lineweaver-Burk plot two distinct phases were apparent for each metal with the following Km values (M); Co2+, 19 and 266; Mn2+, 2 and 760; Zn2+, 4 and 635. For all three metals cellular compartmentation analysis showed that large amounts of metal were bound to intracellular components and to the cell wall. There was also a higher concentration of each metal in the vacuole than in the cytosol, indicating transport of the metals across the tonoplast which may, in part, account for the multi-phasic uptake systems detected. The influence of competing divalent ions on the active uptake of Co2+ and Mn2+ was also studied. When the concentration of divalent ion was the same as that of Co2+ the uptake of the latter was not affected, indicating a specific system for the uptake of Co2+. However, Mn2+ uptake inhibited by Mg2+, Zn2+ and Cd2+, but not by Co2+, which indicated that Mn2+, Mg2+ and Cd2+ may enter the cells via a common system with different affinities for each metal.  相似文献   

11.
The aminoacylation of tRNA catalysed by valyl-tRNA synthetase (EC 6.1.1.9) and isoleucyl-tRNA synthetase (EC 6.1.1.5) fromMycobacterium smegmatis is dependent on the presence of divalent metal ions. Polyamines alone, in the absence of metal ions, do not bring about aminoacylation. In the presence of suboptimal concentrations of Mg2+, polyamines significantly stimulate the reaction. Of the cations tested, only Mn2+, Co2+ and Ca2+ can partially substitute for Mg2+ in aminoacylation, and spermine stimulates aminoacylation in the presence of these cations also. At neutral pH, spermine deacylates nonenzymatically aminoacyl tRNA. AMP and pyrophosphate-dependent enzymatic deacylation of aminoacyl-tRNA (reverse reaction) is also stimulated by spermine. The inhibitory effect of high concentration of KC1 on aminoacylation is counteracted, by spermine. The low level of activity between pH 8.5–9.0 at 1.2 mM Mg2+ is restored to normal level on the addition of spermine. The inhibitory effect of high pH on aminoacylation in the presence of low concentration of Mg2+ is also prevntedvby spemine.  相似文献   

12.
Selective suppression of rod signal transmission by cobalt ions was reported in carp retina. Using 10 μnol/L Co2+, rod-driven horizontal cells were hyperpolarized and light responses were completely suppressed in superfused, isolated retina, while cone-driven horizontal cells were almost unaffected. Similarly, scotopic electroretinographic bwave was suppressed by 10 μnol/L Co2+, while the photopic b-wave remained unaffected. Furthermore, the glutamate-isolated receptor potential (PIII) was not altered by low Co2+ under dark-adapted conditions. Other divalent ions with high affinity to calcium channels, such as cadmium and manganese ions, did not show similar suppressive effect on the rod horizontal cells. When rod horizontal cells were hyperpolarized by 10 μnol/L Co2+, the use of 3 mmol/L glutamate caused a significant depolarization of the cells, indicating that Co2+ application did not impair the ability of these cells to respond to glutamate. On the other hand, application of 200 μnol/L β-hydroxyaspartate, a glutamate transport blocker, mimicked the effect of low Co2+, suggesting a possibility that the low Co2+ effect might be related to a blockade of glutamate uptake by rods. Project supported by the State Commission of Science and Technology of China, the National Natural Science Foundation of China, the National Eye Institute, the Human Frontier Science Program.  相似文献   

13.
Kinetic analyses were made on intracellular Na+-dependent Ca2+ uptake by myocardial cells and neuroblastoma cells (N-18 strain) in culture. Cells loaded with various concentrations of Na+ could be prepared by incubating them in Ca2+-free medium containing various concentrations of Na+. Cells pre-loaded with various concentrations of Na+ were incubated in medium containing Ca2+ and 45Ca. The resulting 45Ca uptake by the two types of cell depended greatly on the initial intracellular concentrations of Na+. Lineweaver-Burk plots of the initial rate of Ca2+ uptake against the external concentration of Ca2+ fitted well to straight lines obtained by linear regression (r > 0.95). This result shows that Ca2+ uptake by the two types of cell was achieved by a carrier-mediated transport system. This Na+-dependent Ca2+ uptake was accompanied by Na+ release and the ratio of Na+ release to Ca2+ uptake was close to 3 : 1. A comparison of the kinetic data between myocardial cells and N-18 cells suggested that N-18 cells possess a carrier showing the same properties as that of myocardial cells, i.e.: (1) a similar dependency on the intracellular concentration of Na+; (2) the coincidence of the apparent Michaelis constants for Ca2+ (0.1 mM); (3) the similarities of the Ki values for Co2+, Sr2+ and Mg2+ (Co2+ < Sr2+ < Mg2+) and (4) a similar dependency on pH. However, the maximal initial rate, V, of N-18 cells was about 1100 that of myocardial cells. The rate of Na+-dependent Ca2+ uptake by non-excitable cells was much lower than that by myocardial cells.  相似文献   

14.
Summary Previous work by this and other laboratories has shown that glucagon administration stimulates calcium uptake by subsequently isolated hepatic mitochondria. This stimulation of hepatic mitochondrial Ca2+ uptake byin vivo administration of glucagon was further characterized in the present report. Maximal stimulation of mitochondrial Ca2+ accumulation was achieved between 6–10 min after the intravenous injection of glucagon into intact rats. Under control conditions, Ca2+ uptake was inhibited by the presence of Mg2+ in the incubation medium. Glucagon treatment, however, appeared to obliterate the observed inhibition by Mg2+ of mitochondrial Ca2+ uptake. Kinetic experiments revealed the usual sigmoidicity associated with initial velocity curves for mitochondrial calcium uptake. Glucagon treatment did not alter this sigmoidal relationship. Glucagon treatment significantly increased the Vmax for Ca2+ uptake from 292±22 to 377±34 nmoles Ca2+ /min per mg protein (n=8) but did not affect the K0.5, (6.5–8.6 μM). Since the major kinetic change in mitochondrial Ca2+ uptake evoked by glucagon is an increase in Vmax, the enhancement mechanism is likely to be an increase either in the number of active transport sites available to Ca2+ or in the rate of Ca2+ carrier movement across the mitochondrial membranes.  相似文献   

15.
Dipicolinic acid synthesis inPenicillium citreoviride strain 3114 was inhibited by Ca2+ ions, but not by Ba2+, Cu2+or Fe2+. Among the metals tested, only Zn2+ inhibited the synthesis of dipicolinic acid and promoted sporulation. None of these metals reversed the inhibition by Ca2+ or Zn2+. A mutant 27133-dpa-ca selected for resistance to feedback inhibition by dipicolinic acid: Ca2+ complex showed cross-resistance to inhibition by dipicolinic acid: Zn2+. Both 3114 and271 33-dpa-ca excreted a number of aliphatic and amino acids during secondary metabolism of dipicolinic acid. In the presence of 1000 ppm of Ca2+, accumulation of citric acid and α-aminoadipic acid was completely inhibited under conditions of inhibition of dipicolinic acid in parent strain 3114 but not in the mutant. Citric acid with or without Ca2+ did not inhibit thede novo synthesis of dipicolinic acid in the strain 3114. In fact, citric acid in the presence of Ca2+ improved significantly rate of dipicolinic acid synthesis. Apart from resistance to feed back inhibition by dipicolinic acid: Ca2+ complex, mutant differed from the parent in three other aspectsviz. (i) dipicolinic acid synthesis was not subject to catabolite repression by glucose, (ii) sporulation as well as dipicolinic acid synthesis was dependent on the presence of Ca2+ ions in the medium and (iii) Mg2+ requirement for the mutant increased three fold. Higher requirement of the Mg2+ could be partially relieved by Ca2+ during secondary metabolism. The results support the inference thatde novo synthesis of dipicolinic acid is regulated through feedback inhibition by dipicolinic acid: Ca2+complex.  相似文献   

16.
Isolated hepatocytes release 2–3 nmol Mg2+/mg protein or ~10% of the total cellular Mg2+ content within 2 minutes from the addition of agonists that increase cellular cAMP, for example, isoproterenol (ISO). During Mg2+ release, a quantitatively similar amount of Ca2+ enters the hepatocyte, thus suggesting a stoichiometric exchange ratio of 1 Mg2+:1Ca2+. Calcium induced Mg2+ extrusion is also observed in apical liver plasma membranes (aLPM), in which the process presents the same 1 Mg2+:1Ca2+ exchange ratio. The uptake of Ca2+ for the release of Mg2+ occurs in the absence of significant changes in Δψ as evidenced by electroneutral exchange measurements with a tetraphenylphosphonium (TPP+) electrode or 3H-TPP+. Collapsing the Δψ by high concentrations of TPP+ or protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) does not inhibit the Ca2+-induced Mg2+ extrusion in cells or aLPM. Further, the process is strictly unidirectional, serving only in Ca2+ uptake and Mg2+ release. These data demonstrate the operation of an electroneutral Ca2+/Mg2+ exchanger which represents a novel pathway for Ca2+ accumulation in liver cells following adrenergic receptor stimulation. This work was supported by National Institutes of Health Grant HL 18708.  相似文献   

17.
Oscillatoria anguistissima rapidly adsorbs appreciable amounts of cobalt from the aqueous solutions within 15 min of initial contact with the metal solution. O. anguistissima showed a high sequestration of cobalt at low equilibrium concentrations, and it followed the Freundlich model of adsorption. The adsorption is a strongly pH-dependent and temperature-independent phenomenon. The presence of Mg2+ and Ca2+ (100–200 ppm) resulted in decline in Co2+ adsorption capacity of Oscillatoria biomass. Sulphate and nitrate (0.75–10 mM) drastically reduced the extent of Co2+ biosorption. The biosorption of cobalt is an ion-exchange process as the Co2+ binding was accompanied by release of a large amounts of Mg2+ ions. Na2CO3 (1.0 mM) resulted in about 76% desorption of Co2+ from the loaded biomass. Received: 30 January 1999 / Accepted: 3 March 1999  相似文献   

18.
Magnesium (Mg2+) plays critical role in many physiological processes. The mechanism of Mg2+ transport has been well documented in bacteria; however, less is known about Mg2+ transporters in eukaryotes. The AtMRS2 family, which consists of 10 Arabidopsis genes, belongs to a eukaryotic subset of the CorA superfamily proteins. Proteins in this superfamily have been identified by a universally conserved GlyMetAsn motif and have been characterized as Mg2+ transporters. Some members of the AtMRS2 family, including AtMRS2-10, may complement bacterial mutants or yeast mutants that lack Mg2+ transport capabilities. Here, we report the purification and functional reconstitution of AtMRS2-10 into liposomes. AtMRS2-10, which contains an N-terminal His-tag, was expressed in Escherichia coli and solubilized with sarcosyl. The purified AtMRS2-10 protein was reconstituted into liposomes. AtMRS2-10 was inserted into liposomes in a unidirectional orientation. Direct measurement of Mg2+ uptake into proteoliposomes revealed that reconstituted AtMRS2-10 transported Mg2+ without any accessory proteins. Mutation in the GMN motif, M400 to I, inactivated Mg2+ uptake. The AtMRS2-10-mediated Mg2+ influx was blocked by Co(III)hexamine, and was independent of the external pH from 5 to 9. The activity of AtMRS2-10 was inhibited by Co2+ and Ni2+; however, it was not inhibited by Ca2+, Fe2+, or Fe3+. While these results indicate that AtMRS2-10 has similar properties to the bacterial CorA proteins, unlike bacterial CorA proteins, AtMRS2-10 was potently inhibited by Al3+. These studies demonstrate the functional capability of the AtMRS2 proteins in proteoliposomes to study structure–function relationships.  相似文献   

19.
Xu X  Liu X  Zhang L  Chen J  Liu W  Liu Q 《The protein journal》2006,25(6):423-430
Acutolysin D, isolated from the venom of Agkistrodon acutus, possesses marked haemorrhagic and proteolytic activities. The molecular weight and the absorption coefficients (A 1% 280) of acutolyisn D have been determined to be 47,850 ± 8 amu and 9.3 by mass spectrometer and UV spectrum, respectively. The effects of metal ions on the conformation and activity of acutolysin D have been studied by following fluorescence, circular dichroism and biological activity measurements. Acutolysin D contains two Ca2+-binding sites and two Zn2+-binding sites determined by atomic absorption spectrophotometer. Zn2+ is essential for the enzyme activities of acutolysin D, however, the presence of 1 mM Zn2+ significantly decreases its caseinolytic activity and intrinsic fluorescence intensity at pH 9.0 due to Zn(OH)2 precipitate formation. Ca2+ is important for the structural integrity of acutolysin D, and the presence of 1 mM Ca2+ markedly enhances its caseinolytic activity. Interestingly, the caseinolytic activity which is inhibited partly by Cu2+, Co2+, Mn2+ or Tb3+ and inhibited completely by Cd2+, is enhanced by Mg2+. The fluorescence intensity of the protein decreases in the presence of Cu2+, Co2+, Cd2+ or Mn2+, but neither for Ca2+, Mg2+ nor for Tb3+. Zn2+, Ca2+, Mg2+, Cu2+, Mn2+, Co2+ and Tb3+ have slight effects on its secondary structure contents. In addition, Cd2+ causes a marked increase of antiparallel β-sheet content from 45.5% to 60.2%.  相似文献   

20.
The light-dependent germination response of turions (resting fronds) is mediated by phytochrome and requires the presence of Ca2+ in the medium (K.-J. Appenroth and H. Augsten, 1990, Photochem. Photobiol. 52: 61–65). The Ca2+ requirement of germination is apparent only in the presence of exogenous Mg2+. A competitive ion antagonism was demonstrated between Ca2+ and Mg2+ in this physiological response; Mg2+ could also be replaced by Ba2+ or Sr2+. Without exog-enous Mg2+, a Ca2+ concentration as low as 0.9 μM fulfilled the Ca2+ requirement. This type of ion antagonism resembled the competitive Ca/Mg interaction reported previously for calcium-binding proteins. The physiological response was blocked by inhibitors of Ca2+ uptake (verapamil, La3+). It was concluded that uptake of Ca2+ from the external medium is an essential step in the phytochrome-mediated germination of turions. The results are in agreement with the assumption that the uptake of Ca2+ is blocked at the side of entry by other alkaline earth ions. Treatment of turions with Mg2+ (1 mM) for 24 h at varying times after the red light pulse in otherwise virtually Ca2+-free KNO3 solution resulted in a response similar to a Ca2+ step-down treatment. This is in agreement with the assumption that the Ca2+- and the Mg2+-sensitive periods coincide. The ion interaction described here represents the first photophysiological example in plants of an antagonistic effect between Ca2+ and Mg2+ similar to that which occurs in vitro with calmodulin. Received: 12 June 1998 / Accepted: 28 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号