首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Schiff base formed by condensation of 2,6-diacetylpyridine with S-benzyldithiocarbazate (H2SNNNS) behaves as a pentadentate ligand, forming a nickel(II) complex of empirical formula Ni(SNNNS)·H2O that is high-spin with a room-temperature magnetic moment of 2.93 B.M. Spectroscopic data indicate that the ligand coordinates with the nickel(II) ion via the pyridine nitrogen atom, the azomethine nitrogen atom and the thiolate sulfur atom. The crystal and molecular structure of the nickel(II) complex was determined by X-ray crystallography. The complex crystallizes in the monoclinic system, space group C2/c, with a=15.849(2), b=18.830(2) and c=18.447(2) Å and =90°, β=102.179(6)°, γ=90° and Z=8. The crystal structure analysis shows that the complex is dinuclear, [Ni(SNNNS)]2·2H2O, in which the nickel(II) ions are bridged by the two pyridine nitrogen atoms of two fully deprotonated ligands. The NiN4S2 coordination geometry about each nickel(II) ion can be described as a distorted octahedron. The Schiff base and its nickel(II) complex were tested against four pathogenic bacteria (Bacillus subtilis, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus and B. subtilis (wild type B29) and pathogenic fungi (Saccharomyces ceciricae, Candida albicans, Candida lypolitica and Aspergillus ochraceous) to assess their antimicrobial properties. Both compounds exhibit mild antibacterial and antifungal activities against these organisms. The anticancer properties of these compounds were also evaluated against Human T-lymphoblastic leukaemia cell lines. The Schiff base exhibits marked cytotoxicity against these cells, but its nickel(II) complex is inactive.  相似文献   

2.
New copper(II) complexes of general empirical formula, [Cu(NNS)X] (NNS = anionic forms of the 2-acetylpyrazine Schiff bases of S-methyl- and S-benzyldithiocarbazate, Hapsme and Hapsbz) and X = Cl, Br, NCS and NO3 have been synthesized and characterized. X-ray crystal structures of the free ligand, Hapsbz and the complexes, [Cu(apsbz)(NO3)], [Cu(apsme)(NCS)]2 and [Cu(apsme)Cl]2 have been determined. In the solid state, the Schiff base, Hapsbz remains in its thione tautomeric form with the thione sulfur atom trans to the azomethine nitrogen atom. X-ray diffraction shows that the [Cu(apsbz)(NO3)] complex is a novel coordination polymer in which one of the nitrogen atoms of the pyrazine ring bridges two adjacent copper(II) ions. The Schiff base is coordinated to the copper(II) ion in its iminothiolate form via the thiolate sulfur atom, the azomethine nitrogen atom and one of the pyrazine nitrogen atoms, the overall geometry of each copper atom in the polymer being close to a square-pyramid. The complexes, [Cu(apsme)X]2 (X = NCS, Cl) are dimers in which each copper atom adopts a five-coordinate near square-pyramidal geometry with an N3S2 coordination environment. The Schiff base coordinates as a uninegatively charged tridentate ligand chelating via the pyridine and azomethine nitrogen atoms and the thiolate sulfur atoms. A nitrogen atom of a unidentate thiocayanate or chloride ligand and a bridging sulfur atom from a second ligand completes the coordination sphere. Room temperature μeff values for the complexes in the solid state are in the range 1.70-2.0 μB typical of uncoupled or weakly coupled Cu(II) centres. Variable temperature susceptibility studies show that the chain complex displays weak ferromagnetic coupling across the pyrazine bridges, while the S-bridged dinuclear compounds display either weak ferromagnetic or weak antiferromagnetic coupling that relates to subtle bridging geometry differences. EPR studies of frozen DMF solutions give rather similar g and ACu values for all compounds indicative of Cu(dx2-y2) ground state orbitals on the Cu centers.  相似文献   

3.
The dinickel(II) compound [Ni2(μ-OAc)2(OAc)2(μ-H2O)(asy·dmen)2]·2.5H2O, 1; undergoes facile reaction in a 1:2 molar ratio with benzohydroxamic acid (BHA) in ethanol to give the novel nickel(II) tetranuclear hydroxamate complex [Ni4(μ-OAc)3(μ-BA)3(asy·dmen)3][OTf]2·H2O, 2, in which the bridging acetates, bridging two nickel atoms in 1, undergo a carboxylate shift from the μ211 bridging mode of binding to the μ312 bridging three nickel atoms in the tetramer. The structure of complex 2 was determined by single-crystal X-ray crystallography. The two monodentate acetates, water and two bidentate bridging acetates of two moles of complex 1 are replaced by three monodentate bridging acetates and three benzohydroxamates. Three nickel atoms in the tetramer, Ni(2), Ni(3) and Ni(4) are in a N2O4 octahedral environment, while the fourth nickel atom Ni(1) is in an O(6) octahedral environment. The Ni-Ni separations are Ni(1)-Ni(2) = 3.108 Å, Ni(1)-Ni(3) = 3.104 Å and Ni(1)-Ni(4) = 3.110 Å, which are longer than previously studied in dinuclear urease inhibited models but shorter than in the nickel(II) tetrameric glutarohydroxamate complex [Ni4(μ-OAc)2(μ-gluA2)2(tmen)4][OTf]2, isolated and characterized previously in this laboratory. Magnetic studies of the tetrameric complex show that the four Ni(II) ions are ferromagnetically coupled, leading to a total ground spin state ST = 4. Three analogous tetranuclear nickel hydroxamates were prepared from AHA and BHA and the appropriate dinuclear complex with either sy·dmen or asy·dmen as capping ligands.  相似文献   

4.
The reaction of [Ni(pftp)] [pftp = N,N-propane-1,3-diyl-(6-formyl-4-methyliminatothiophenolato)] with hydroxylamine hydrochloride in the presence potassium acetate in MeOH resulted in the formation of the complex [Ni(LH2)] [L = N,N-propane-1,3-diyl-(4-methyl-2-methyliminato-6-methyloxime-thiophenolato)] in good yield. A single crystal X-ray diffraction structural determination showed a mononuclear nickel(II) complex with the new acyclic ligand LH2 that had been functionalised with two oxime groups containing an empty N(oxime)2S2 pocket to which another metal ion could be added. A further reaction of [Ni(LH2)] with NiCl2·6H2O, triethylamine and ammonium hexafluorophosphate in MeOH gave a dark red product that yielded red crystals of [Ni2(LH)]PF6·DMF via slow recrystallisation from a DMF/PriOH solvent mixture. A single crystal X-ray diffraction study of these crystals confirmed the presence of a dinuclear nickel(II) complex linked by a dithiolato-bridge. Both nickel(II) ions exhibited square-planar geometry where the metal centres are coordinated in two distinct cis-S2N(imine)2 and cis-S2N(oxime)2 binding sites provided by the new dicompartmental oxime/thiolate-containing ligand LH.  相似文献   

5.
New copper(II) complexes of general empirical formula, Cu(mpsme)X · xCH3COCH3 (mpsme = anionic form of the 6-methyl-2-formylpyridine Schiff base of S-methyldithiocarbazate; X = Cl, N3, NCS, NO3; x = 0, 0.5) have been synthesized and characterized by IR, electronic, EPR and susceptibility measurements. Room temperature μeff values for the complexes are in the range 1.75-2.1 μB typical of uncoupled or weakly coupled Cu(II) centres. The EPR spectra of the [Cu(mpsme)X] (X = Cl, N3, NO3, NCS) complexes reveal a tetragonally distorted coordination sphere around the mononuclear Cu(II) centre. We have exploited second derivative EPR spectra in conjunction with Fourier filtering (sine bell and Hamming functions) to extract all of the nitrogen hyperfine coupling matrices. While the X-ray crystallography of [Cu(mpsme)NCS] reveals a linear polymer in which the thiocyanate anion bridges the two copper(II) ions, the EPR spectra in solution are typical of a magnetically isolated monomeric Cu(II) centres indicating dissociation of the polymeric chain in solution. The structures of the free ligand, Hmpsme and the {[Cu(mpsme)NO3] · 0.5CH3COCH3}2 and [Cu(mpsme)NCS]n complexes have been determined by X-ray diffraction. The {[Cu(mpsme)NO3] 0.5CH3COCH3}2 complex is a centrosymmetric dimer in which each copper atom adopts a five-coordinate distorted square-pyramidal geometry with an N2OS2 coordination environment, the Schiff base coordinating as a uninegatively charged tridentate ligand chelating through the pyridine and azomethine nitrogen atoms and the thiolate, an oxygen atom of a unidentate nitrato ligand and a bridging sulfur atom from the second ligand completing the coordination sphere. The [Cu(mpsme)(NCS)]n complex has a novel staircase-like one dimensional polymeric structure in which the NCS ligands bridge two adjacent copper(II) ions asymmetrically in an end-to-end fashion providing its nitrogen atom to one copper and the sulfur atom to the other.  相似文献   

6.
Three indolyl-imine ligands have been synthesized through the condensation of S-benzyldithiocarbazate with indole-2-carbaldehyde, indole-3-carbaldehyde and indole-7-carbaldehyde. Treatment of these Schiff bases with acetate salts of Ni(II), Zn(II) and Cd(II) in ethanol yielded a series of complexes of 2:1 type (ligand/metal ratio) in which the ligands coordinated to the metal ions as monoanionic NS bidentate chelates. While the 2-imineindole and 3-imineindole formed the expected five-membered chelate rings, the X-ray crystal structure of [Cd(HL3)(py)2], (HL3 = the mono-deprotonated 7-imineindole), revealed an unusual mode of coordination, namely formation of four-membered rings with the metal atom. Reaction of the 7-imineindole with the metal ions in the presence of potassium hydroxide produced complexes of the type [M(L3)(H2O)] in which the Schiff base acts as a dianionic NNS tridentate ligand.  相似文献   

7.
Reaction of nickel(II) acetate, 1,2-bis(diphenylphosphino)ethane (dppe), and a di- or tri-substituted thiourea R1NHC(S)R2R3 (R3 = H or alkyl) with trimethylamine in hot methanol gave cationic nickel(II) complexes containing N,S-chelated thiourea monoanion ligands [Ni{SC(NR2R3)NR1}(dppe)]+, which can be readily isolated as their BPh4 salts. The X-ray crystal structure of [Ni{SC(NMe2)NPh}(dppe)]+BPh4 is reported.  相似文献   

8.
Multifunctional Schiff base ligands Ln, namely the tetradentate N,N-bis[2-hydroxy-5-(azopyridine)benzylidene]propylendiamine and the bidentate N-dodecyl-5-(azopyridine)salicylaldimine, both containing a flexible azo spacer, a metallation site and a terminal pyridine group, were synthetised and fully characterised. Mesogenic structures, analysed by polarised optical microscopy, DSC and powder X-ray diffraction, were obtained from self-assembly of the mono or bifunctional hydrogen-bond acceptors Ln with carboxylic acid donors. Ni(II) mono and bis-chelate, four- and six-coordinated, Ln derivatives were synthetised. The octahedral structure of the [Ni(py)2(L2)2] complex was confirmed by single crystal X-ray analysis. H-bonded self-assembly of Ni(II) complexes and carboxylic acids results in the formation of supramolecular networks whose structure and thermal stability were studied by DSC and powder X-ray diffraction analysis at variable temperatures.  相似文献   

9.
The potentially tridentate ligand 2,6-bis[(3-methylimidazolium-1-yl)methyl]pyridine dibromide reacts readily with silver(I) oxide in dichloromethane or dimethylsulfoxide to give a dinuclear silver(I)-carbene complex that was isolated as the tetrafluoroborate salt. Single crystal X-ray crystallography shows that each silver(I) ion is bridged by two ligands bonding through the carbene donors. Treatment of the silver(I) complex with suitable palladium(II) precursors gave the complexes PdCl[(CNC)]BF4 and [PdMe(CNC)]BF4 (CNC=2,6-bis[(3-methylimidazolin-2-yliden-1-yl)methyl]pyridine), in which the pyridyl and both carbene moieties are coordinated to a single palladium(II). The palladium(II) complexes have been fully characterised, including X-ray crystallography, and exhibit good activities in the Heck coupling reaction of 4-bromoacetophenone and n-butyl acrylate.  相似文献   

10.
Five complexes of copper(II) acetate with Schiff base ligands based on salicylaldehyde and N,N-dimethylamino)ethyl/propyl amine and their reduced products, have been synthesized and characterized by various spectroscopic methods. The solid state structures of 1, 2 and 3 have been determined using single crystal X-ray diffraction method. The structures of the other two compounds have been proposed on the basis of spectroscopic and physical methods. The compounds 1, 3 and 4 are dinuclear complexes of the tridentate ligands, where the two Cu(II) centers have square pyramidal geometry with bridging acetate or phenoxo groups. Each arm of the tripodand ligand forms a mononuclear, magnetically dilute complex 5 having five coordinated Cu(II) ions. Complex 2 is mononuclear with a square pyramidal stereochemistry. The catalytic performance of the oxidation of 3,5-di-tert-butylcatechol to quinone was studied using UV-Vis absorption spectral methods. Complex 4 exhibits the highest activity with a turnover number of 41 h−1 while other showed lower rates of oxidation. A kinetic treatment on the basis of Michaelis-Menten model was applied. Ease of removal of the exogenous acetate ligands and easy access to the Cu(II) ions have been seen to affect the activity in the complexes. At the same time presence of two endogenous phenoxo bridges in the dinuclear complexes reduces the activity.  相似文献   

11.
Copper(II) complexes with the non-steroidal anti-inflammatory drug diflunisal in the presence of N,N-dimethylformamide or nitrogen donor heterocyclic ligands (pyridine, 1,10-phenanthroline, 2,2′-bipyridine or 2,2′-bipyridylamine) have been synthesized and characterized. The deprotonated diflunisal ligands are coordinated to Cu(II) ion through carboxylato oxygen atoms. The crystal structures of [tetrakis(diflunisal)bis(N,N-dimethylformamide)dicopper(II)] 1 and [bis(diflunisal)bis(pyridine)copper(II)], 2 have been determined by X-ray crystallography and are the first reported crystal structures of diflunisal complexes. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) suggests binding of the complexes to CT DNA with the dinuclear [tetrakis(diflunisal)bis(N,N-dimethylformamide)dicopper(II)] compound exhibiting the highest binding constant, Kb. Intercalative binding mode may also be concluded using cyclic voltammetry and solution viscosity measurements of the complexes in the presence of CT DNA. Competitive studies with ethidium bromide (EB) indicate that the complexes can displace the DNA-bound EB suggesting competition with EB. Diflunisal and its complexes exhibit good binding propensity to human or bovine serum albumin protein showing relatively high binding constant values.  相似文献   

12.
A new potentially tetradentate (N4) Schiff base ligand (L), 1,9,12,20-tetraazatetracyclo[18.2.2.02,7.014,19]tetracosa-2(7),3,5,8,12,14(19),15,17-octaene containing a piperazine moiety is described. Macrocyclic Schiff base complexes, [NiL](ClO4)2 (1) and [CuL](ClO4)2 (2) have been obtained from equimolar amounts of ligand (L) with nickel(II) and copper(II) metal ions. While the equilibrium reaction in the presence of cobalt(II) and zinc(II) metal ions with ligand L in a 1:1 molar ratio yielded the open-chain Schiff base complexes, [CoL′](ClO4)2 (3) and [ZnL′](ClO4)2 (4) containing two terminal primary amino groups. The ligand L′ is 1,4-bis(2-(2-aminoethyliminomethyl)phenyl)piperazine. The crystal structures of (1) and (4) have been also determined by X-ray diffraction. It was shown that the Ni(II) is coordinated to the ligand L by two nitrogen atoms of piperazine group and two nitrogen atoms of the imine groups, in a slightly distorted square-planar geometry. Also single crystal X-ray analysis of (4) confirmed a distorted octahedral arrangement in the vicinity of Zn atom with N6 donor set. The spectroscopic characterization of all complexes is consistent with their crystal structures.  相似文献   

13.
[Ni(dpmap)(H2O)]2(ClO4)2 · 3(CH3)2CO, a dinuclear nickel(II) complex of 2-{[[Di(2-pyridyl)methyl](methyl)amino]methyl}phenol, dpmapH has been synthesized. X-ray diffraction analysis indicates that each nickel(II) center is coordinated by two dpmap ligands and two water molecules. The two nickel(II) centers are bridged by μ2-phenolate oxygen donors. The two nickel(II) centers each have distorted octahedral symmetry, comprised of cis-coordinated pyridyl nitrogen, a tert-amino nitrogen and a bridging phenolate oxygen. Hexacoordination is completed by an oxygen atom of a water molecule. The water molecules at each nickel center are trans- to each other across the Ni2O2 basal plane. The two Ni atoms are separated by 3.170 Å. Variable temperature and field magnetic measurements reveal weak antiferromagnetic coupling (J = −0.85 cm−1) between the nickel(II) centers. The χmT versus T data were fit using a model, derived from Kambe’s method and include zero-field splitting (D = −1.6 cm−1). Broken-symmetry density functional theory (BS-DFT) indicates that the weak antiferromagnetism is due to electron density delocalization onto the ligand framework and the inability of the out-of plane phenolato-bridges to mediate superexchange.  相似文献   

14.
《Inorganica chimica acta》1988,142(1):113-117
It is generally accepted that copper(II) complexes involving 2-aminoethanol or a Schiff base deriving from this aminoalcohol display a tetranuclear structure with a Cu4O4 ‘cubane’ core. Using a Schiff base obtained by reacting 2′-aminoacetophenone with 2-aminoethanol, we have prepared copper(II) and nickel(II) complexes whose properties are fully consistent with a dinuclear structure. The copper complex is characterized by a low antiferromagnetic interaction.  相似文献   

15.
A series of chiral bimetallic complexes have been prepared containing both Cu(II) and Hg(II) metal centers. The complexes possess chiral salen ligands which host Cu(II) in the center of the cis-N2O2 chromophore and Hg(II) via two oxygen atoms of the chromophore. Halogen and acetate groups from mercury salts interact with the Cu(II) center. The X-ray crystallographic data of 11 reveals a short distance of Cl?Cu (3.22-3.26 Å). EPR study also discloses a strong interaction, in particular, of acetate group with Cu.  相似文献   

16.
A mononuclear octahedral nickel(II) complex [Ni(HL1)2](SCN)2 (1) and an unusual penta-nuclear complex [{(NiL2)(μ-SCN)}4Ni(NCS)2]·2CH3CN (2) where HL1 = 3-(2-aminoethylimino)butan-2-one oxime and HL2 = 3-(hydroxyimino)butan-2-ylidene)amino)propylimino)butan-2-one oxime have been prepared and characterized by X-ray crystallography. The mono-condensed ligand, HL1, was prepared by the 1:1 condensation of the 1,2-diaminoethane with diacetylmonoxime in methanol under high dilution. Complex 1 is found to be a mer isomer and the amine hydrogen atoms are involved in extensive hydrogen bonding with the thiocyanate anions. The dicondensed ligand, HL2, was prepared by the 1:2 condensation of the 1,3-diaminopropane with diacetylmonoxime in methanol. The central nickel(II) in 2 is coordinated by six nitrogen atoms of six thiocyanate groups, four of which utilize their sulphur atoms to connect four NiL2 moieties to form a penta-nuclear complex and it is unique in the sense that this is the first thiocyanato bridged penta-nuclear nickel(II) compound with Schiff base ligands.  相似文献   

17.
The nickel(II) complexes with the quinolone antibacterial agents oxolinic acid, flumequine, enrofloxacin and sparfloxacin in the presence of the N,N′-donor heterocyclic ligand 2,2′-bipyridylamine have been synthesized and characterized. The quinolones act as bidentate ligands coordinated to Ni(II) ion through the pyridone oxygen and a carboxylato oxygen. The crystal structure of [(2,2′-bipyridylamine)bis(sparfloxacinato)nickel(II)] has been determined by X-ray crystallography. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that they bind to CT DNA with [(2,2′-bipyridylamine)bis(flumequinato)nickel(II)] exhibiting the highest binding constant to CT DNA. The cyclic voltammograms of the complexes have shown that in the presence of CT DNA the complexes can bind to CT DNA by the intercalative binding mode which has also been verified by DNA solution viscosity measurements. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. The complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values. The biological properties of the [Ni(quinolonato)2(2,2′-bipyridylamine)] complexes have been evaluated in comparison to the previously reported Ni(II) quinolone complexes [Ni(quinolonato)2(H2O)2], [Ni(quinolonato)2(2,2′-bipyridine)] and [Ni(quinolonato)2(1,10-phenanthroline)]. The quinolones and their Ni(II) complexes have been tested for their antioxidant and free radical scavenging activity. They have been also tested in vitro for their inhibitory activity against soybean lipoxygenase.  相似文献   

18.
Five new complexes of Pt(II), Pd(II), Co(III) and Ni(II) with 2-pyridine(quinoline)carboxaldehyde selenosemicarbazones were synthesized and characterized. Crystal structures of Pt(II) complex with the pyridine derivative and Co(III) complex with the quinoline derivative were determined. In all complexes the ligands were coordinated through N2Se donor atom set forming either square-planar (Pt, Pd) or octahedral (Co, Ni) geometry. All complexes showed biological activity.  相似文献   

19.
《Inorganica chimica acta》2004,357(9):2561-2569
Ni(II), Cu(II), Zn(II) and Cd(II) complexes of an N4-donor Schiff base, containing (CH2)2 as spacer, have been prepared. The X-ray crystal structures of monohelical Ni(ETs) · H2O and the homochirally crystallised Δ-Cu(ETs), as well as the meso-helicate Zn2(ETs)2 · MeCN [H2ETs: N,N-bis(2-tosylaminobenzylidene)-1,2-diaminoethane] have been solved. In the latter, the ligand behaves as bis-bidentate, displaying a “C”-type arrangement, instead of the typical “S”-type fashion present in bis-helical dinuclear complexes.  相似文献   

20.
Combined pH-metric, UV-Vis, 1H NMR and EPR spectral investigations on the complex formation of M(II) ions (M=Co, Ni, Cu and Zn) with N-(2-benzimidazolyl)methyliminodiacetic acid (H2bzimida, hereafter H2L) in aqueous solution at a fixed ionic strength, I=10−1 mol dm−3, at 25 ± 1 °C indicate the formation of M(L), M(H−1L) and M2(H−1L)+ complexes. Proton-ligand and metal-ligand constants and the complex formation equilibria have been elucidated. Solid complexes, [M(L)(H2O)2] · nH2O (n=1 for M = Co and Zn, n=2 for M = Ni) and {Cu (μ-L) · 4H2O}n, have been isolated and characterized by elemental analysis, spectral, conductance and magnetic measurements and thermal studies. Structures of [Ni(L)(H2O)2] · 2H2O and {Cu(μ-L) · 4H2O}n have been determined by single crystal X-ray diffraction. The nickel(II) complex exists in a distorted octahedral environment in which the metal ion is coordinated by the two carboxylate O atoms, the amino-N atom of the iminodiacetate moiety and the pyridine type N-atom of the benzimidazole moiety. Two aqua O atoms function as fifth and sixth donor atoms. The copper(II) complex is made up of interpenetrating polymeric chains of antiferromagnetically coupled Cu(II) ions linked by carboxylato bridges in syn-anti (apical-equatorial) bonding mode and stabilized via interchain hydrogen bonds and π-π stacking interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号