首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Bis(diphenylphosphino)ethane (dppe) complexes of the type ReOCl(dppe)(O-O), where O-O = catecholate or tetrachlorocatecholate dianion, were prepared by reacting ReOCl3(dppe) with the catechol ligand in the presence of NEt3. X-ray diffraction on the tetrachlorocatecholate compound showed that the molecule adopts a distorted octahedral structure, in which the dppe ligand and the bidentate catecholate lie in the equatorial plane, perpendicular to the ORe-Cl unit. In contrast, for ReOCl(PPh3)2(O-O), the position trans to the ReO bond is occupied by a catecholate oxygen, whereas the two PPh3 ligands are trans to one another in the equatorial plane. The UV-Vis absorption spectrum of ReO(OMe)(dppe)(oxalate) is similar to those of ReO(OR)X2(dppe) compounds, showing two weak bands for the spin-allowed d-d transitions from the filled interaxial d orbital in the xy plane into the inequivalent metal dxz and dyz orbitals, respectively. For the catecholate complexes, the spectra are dominated by charge-transfer transitions from the HOMO π orbital of the catecholate ligand into the dxz and dyz orbitals. Both the singlet-singlet and the singlet-triplet transitions are generally observed. No information could be obtained on the weaker d-d transitions for the catecholate compounds.  相似文献   

2.
In this paper it is reported the synthesis of the phosphonium salts [Ph2P(CH2)n(Ph)2PCH2COOMe]Br (n = 1 (1), 2 (2)) and [Ph2P(CH2COOMe)(CH2)n(Ph)2PCH2COOMe]Br2 (n = 3 (3)) derived from the reactions of the diphosphines dppm, dppe and dppp with methyl bromoacetate. By reaction of the monophosphonium salt of dppm and dppe with the strong base Na[N(SiMe3)2] the corresponding carbonyl stabilized ylides Ph2P(CH2)n(Ph)2PCHCOOMe (n = 1 (4), 2 (5)) were obtained. The Ph2P(CH2)2(Ph)2PCHCOOMe (5) ylide was reacted with Pd(II) and Pt(II) substrates. From these reactions were isolated exclusively complexes in which the ylide was chelated to the metal through the free phosphine group and the ylidic carbon atom. A further reaction of the Ph2P(CH2)2(Ph)2PCHCOOMe (5) ylide with 1.5 equiv. of Na[N(SiMe3)2] gives the bifunctionalized ketenylidene Ph2P(CH2)2(Ph)2PCCO (6) system. This cumulenic ylide reacts with Pt(II) complexes to form a chelated derivative in which IR and NMR spectra suggest the breaking of the CC bond of the -CCO group.  相似文献   

3.
Bis(alkoxy)allenylidene complexes, [(CO)5MCCC(OR′)OR], as well as mono(alkoxy)allenylidene complexes, [(CO)5MCCC(OR′)Ph], of chromium and tungsten are accessible from propynones [HCCC(O)Ph] or propynoic acid esters [HCCC(O)OR; R = Et, (−)-menthyl, endo-bornyl] by the following reaction sequence: (a) deprotonation of the alkynes, (b) reaction with [(CO)5M-THF] (M = Cr, W), and (c) alkylation of the resulting alkynyl metallate, [(CO)5MCCC(O)R], with Meerwein salts. Vinylidene complexes, [(CO)5MCC(R′)C(O)OR], are formed as a by-product by Cβ-alkylation of the alkynyl metallate. Dimethylamine displaces one alkoxy substituent of the bis(alkoxy)allenylidene complexes to give dimethylamino(alkoxy)allenylidene complexes, [(CO)5MCCC(OR)NMe2]. The analogous reaction of dimethylamine with a mono(alkoxy)-substituted allenylidene complex affords the aminoallenylidene complex [(CO)5CrCCC(NMe2)Ph]. When the amine is used in large excess, the α,β-unsaturated aminocarbene complex [(CO)5CrC(NMe2)C(H)C(NMe2)Ph] is additionally formed by addition of the amine across the CαCβ-bond of the allenylidene ligand. The reaction of [(CO)5MCCC(OEt)2] with dimethyl ethylenediamine offers access to bis(amino)allenylidene complexes, in which Cγ is part of a five-membered heterocycle. Photolysis of bis(alkoxy)allenylidene complexes in the presence of triphenylphosphine yields tetracarbonyl- and tricarbonyl{bis(phosphine)}allenylidene complexes. Diethylaminopropyne inserts into the CβCγ bond of [(CO)5MCCC(OEt)OMethyl] to give alkenylallenylidene complexes. Subsequent acid-catalyzed intramolecular cyclization affords a pyranylidene complex.  相似文献   

4.
Bimetallic alkylidene complexes of molybdenum (RF3O)2(ArN)MoCH-SiMe2-CHMo(NAr)(ORF3)2 (1) and (RF3O)2(ArN)MoCH-SiPhVin-CHMo(NAr)(ORF3)2 (2) (Ar = 2,6-C6H3; RF3 = CMe2CF3) have been prepared by the reactions of vinyl silicon reagents Me2Si(CHCH2)2 and PhSi(CHCH2)3 with known alkylidene compound PhMe2C-CHMo(NAr)(ORF3)2. Complexes 1 and 2 were structurally characterized. Ring opening metathesis polymerization (ROMP) of cyclooctene using compounds 1 and 2 as initiators led to the formation of high molecular weight polyoctenamers with predominant trans-units content in the case of 1 and predominant cis-units content in the case of 2.  相似文献   

5.
A new cumulene diiron complex related to the Fe-only hydrogenase active site [(μ-SCH2C(S)CCH2)Fe2(CO)6] (1) was obtained by treatment of (μ-LiS)2Fe2(CO)6 with excess 1,4-dichloro-2-butyne. By controllable CO displacement of 1 with PPh3 and bis(diphenylphosphino)methane (dppm), mono- and di-substituted complexes, namely [(μ-SCH2C(S)CCH2)Fe2(CO)5L] (2: L = PPh3; 3: L = dppm) and [(μ-SCH2C(S)CCH2)Fe2(CO)4L2] (4: L = PPh3; 5: L = dppm) could be prepared in moderate yields. Treatment of 1 with bis(diphenylphosphino)ethane (dppe) afforded a double butterfly complex [(μ-SCH2C(S)CCH2)Fe2(CO)5]2(μ-dppe) (7). With dppm in refluxing toluene, a dppm-bridged complex [(μ-SCH2C(S)CCH2)Fe2(CO)4(μ-dppm)] (6) was obtained. These model complexes were characterized by IR, 1H, 31P NMR spectra and the molecular structures of 1, 2 and 5-7 were determined by single crystal X-ray analyses. The electrochemistry of 1-3 was studied and the electrocatalytic property of 1 was investigated for proton reduction in the presence of HOAc.  相似文献   

6.
The Schiff base, 2-chlorophenylsalicylaldimine (HL1), is formed readily from salicylaldehyde and 2-chloroaniline. After deprotonation, this ligand is found to react as a bidentate mixed-donor chelate with the complexes [RuRCl(CO)(BTD)(PPh3)2] (R = H, CHCHC6H5, CHCHC6H4Me-4, CHCHtBu, CCCPhCHPh; BTD = 2,1,3-benzothiadiazole) to form the compounds [RuR(L1)(CO)(PPh3)2] through displacement of the chloride and BTD ligands. An analogous reaction occurs with the osmium complex [OsHCl(CO)(BTD)(PPh3)2] to provide [OsH(L1)(CO)(PPh3)2]. The compound [Ru(CHCHC6H4Me-4)(L2)(CO)(PPh3)2] is formed through reaction of salicylaldehyde (HL2) with [Ru(CHCHC6H4Me-4)Cl(CO)(BTD)(PPh3)2] in the presence of base. Two further ligands were investigated to extend the study to encompass 5- and 4-membered chelates; 8-hydroxyquinoline (HL3) and 2-hydroxy-4-methylquinoline (HL4) react with [Ru(CHCHPh)Cl(CO)(BTD)(PPh3)2] and [Ru(CHCHC6H4Me-4)Cl(CO)(BTD)(PPh3)2] in the presence of base to yield the complexes [Ru(CHCHPh)(L3)(CO)(PPh3)2] and [Ru(CHCHC6H4Me-4)(L4)(CO)(PPh3)2], respectively. The crystal structure of [Ru(CHCHC6H4Me-4)(L1)(CO)(PPh3)2] is reported.  相似文献   

7.
Different protic nucleophiles (i.e.Ph2CNH, PhSH, MeCO2H, PhOH) can be added to the CC bond of [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){C(OMe)CCTol}(Cp)2][SO3CF3] (1), affording new diiron alkenyl methoxy carbene complexes.The additions of Ph2CNH and MeCO2H are regio and stereoselective, resulting in the formation of the 5-aza-1-metalla-1,3,5-hexatriene [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){Cα(OMe)CβHCγ(Tol)(NCPh2)}(Cp)2][SO3CF3] (2), and the 2-(acyloxy)alkenyl methoxy carbene complex [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){Cα(OMe)CβHCγ(Tol)OC(O)Me)}(Cp)2][CF3SO3] (5); the E isomer of the former and the Z of the latter are formed exclusively.Conversely, the addition of PhSH is regio but not stereoselective; thus, both the E and Z isomers of [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){Cα(OMe)CβHCγ(Tol)(SPh)}(Cp)2][SO3CF3] (3) are formed in comparable amounts.Compounds 3 and 5 are demethylated upon chromatography through Al2O3, resulting in the formation of the acyl complexes [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){Cα(O)CβHCγ(Tol)(SPh)}(Cp)2] (4) and [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){Cα(O)CβHCγ(Tol)OC(O)Me}(Cp)2] (6), respectively, both with a Z configured CβCγ bond.Finally, the reaction of 1 with PhOH proceeds only in the presence of an excess of Et3N affording the 2-(alkoxy)alkenyl acyl complex [Fe2{μ-CN(Me)(Xyl)}(μ- CO)(CO){Cα(O)CβHCγ(Tol)(OPh)}(Cp)2] (7). The crystal structures of 4 · CH2Cl2 and 7 · 0.5CH2Cl2 have been determined by X-ray diffraction experiments.  相似文献   

8.
Reaction of 3,4-difluoropyrrole with the labile triosmium cluster [Os3(CO)10(CH3CN)2] affords products in which C-H, N-H and C-F bonds are cleaved under mild conditions. C-H and N-H bonds are cleaved to give [Os3H(NCCFCFCH2)(CO)10] (1) a non-aromatic stabilised form of 3,4-difluoropyrrole. Thermolysis of 1 affords in moderate yields the compounds [Os3H2(CCCFCHNH)(CO)9] (2) and [Os3H2(NCHCFCFC)(CO)9] (3). For compound 3, C-H and N-H bonds are cleaved with concomitant migration of H atoms to the metal framework. In contrast, for compound 2 activation of C-H and C-F bonds leads to coordination of the ligand through the carbon atoms, acting as a four-electron donating species.  相似文献   

9.
The metal-mediated coupling between the nitriles RCN in the platinum(IV) complexes trans-[PtCl4(RCN)2] (RMe, Et, CH2Ph, Ph), cis/trans-[PtCl4(MeCN)(Me2SO)] and the newly synthesized bifunctional oximehydroxamic acid, viz. N,2-dihydroxy-5-(1-hydroxyiminoethyl)benzamide, proceeds smoothly in CH2Cl2 at 40-45 °C to accomplish the new metallaligands HNC(R)ONHC(O)C6H3(2-OH)(5-C(Me)NOH) with pendant oxime functionalities due to the regioselective addition of the reagent via its hydroxamic groups. The obtained iminoligands exist in hydroxamic/hydroximic tautomeric equilibrium in solution. The structures of the isolated compounds are based on elemental analyses (C, H, N), IR, 1D 1H, 13C{1H}, and 2D NMR correlation experiments, i.e. 1H,13C-COSY, 1H,13C long range COSY, 1H,15N-COSY, and 1H,15N long range COSY.  相似文献   

10.
《Inorganica chimica acta》2004,357(14):4165-4171
Cationic palladium(II) complexes [PdCl{PR2CH2C(But)NNC(But)CH2PR2}]Cl, where R = isopropyl, cyclohexyl or tert-butyl, were synthesized by the reactions of the corresponding diphosphinoazines with bis(acetonitrile)palladium(II) dichloride. When bis(benzonitrile)palladium(II) dichloride was used instead, in the molar ratio of 2:1 to the diphosphinoazine, a new complex was isolated with the isopropyl ligand showing a previously unknown (E,E) tetradentate coordination mode. Crystal and molecular structure was determined by X-ray diffraction. The solid complex was a racemate of two axially chiral enantiomers and the chirality was preserved in solution. Reactions of the cationic complexes with triethylamine gave complexes [PdCl{PR2CHC(But)NNC(But)CH2PR2}], containing deprotonated diphosphinoazines in ene-hydrazone unsymmetrical pincer-like configuration. The complexes represent several of the still rare examples of Pd(II) amido bis(phosphine) complexes with a chlorine atom covalently bonded trans to the amide nitrogen.  相似文献   

11.
Using different organomercury substrates, two isomeric cycloaurated complexes derived from the stabilised iminophosphorane Ph3PNC(O)Ph were prepared. Reaction of Ph3PNC(O)Ph with PhCH2Mn(CO)5 gave the manganated precursor (CO)4Mn(2-C6H4C(O)NPPh3), metallated on the C(O)Ph substituent, which yielded the organomercury complex ClHg(2-C6H4C(O)NPPh3) by reaction with HgCl2 in methanol. Transmetallation of the mercurated derivative with Me4N[AuCl4] gave the cycloaurated iminophosphorane AuCl2(2-C6H4C(O)NPPh3) with an exo PPh3 substituent. The endo isomer AuCl2(2-C6H4Ph2PNC(O)Ph) [aurated on a PPh3 ring] was obtained by an independent reaction sequence, involving reaction of the diarylmercury precursor Hg(2-C6H4P(NC(O)Ph)Ph2)2 [prepared from the known compound Hg(2-C6H4PPh2)2 and PhC(O)N3] with Me4N[AuCl4]. Both of the isomeric iminophosphorane derivatives were structurally characterised, together with the precursors (2-HgClC6H4)C(O)NPPh3 and (CO)4Mn(2-C6H4C(O)NPPh3). The utility of 31P NMR spectroscopy in monitoring reaction chemistry in this system is described.  相似文献   

12.
Rhodium(III) and iridium(III) octahedral complexes of general formula [MCl3{R2PCH2C(But)NNC(But)CH2PR2}] (M = Rh, Ir; R = Ph, c-C6H11, Pri, But; not all the combinations) were prepared either from the corresponding diphosphinoazines and RhCl3 · 3H2O or by the oxidation of previously reported bridging complexes [{MCl(1,2-η:5,6-η-CHCHCH2CH2CHCHCH2CH2)}2{μ-R2PCH2C(But)NNC(But)CH2PR2}] with chlorine-containing solvents. Depending on the steric properties of the ligands, complexes with facial or meridional configuration were obtained. Crystal and molecular structures of three facial and two meridional complexes were determined by X-ray diffraction. Hemilability of ligand in the complex fac-[RhCl3{(C6H11)2PCH2C(But)NNC(But)CH2P(C6H11)2}] consisting in reversible decoordination of the phosphine donor group in the six-membered ring was observed as the first step of isomerization between fac and mer isomers.  相似文献   

13.
The reactions of [κ2(C1,C4)-CRCRCRCR](PPh3)2Ir(Cl) (9, R = CO2Me) with propargyl alcohol derivatives (2-propyn-1-ol, 2-methyl-3-butyn-2-ol, 1-ethynylcyclopentanol, and 1-ethynylcyclooctanol), in the presence of water leads to the formation of iridium(III)-vinyl complexes bearing the general structure [κ2(C1,C4)-CRCRCRCR](PPh3)2Ir(CO)(κ1-vinyl) where vinyl = -CHCH2, -(E)-CHCHMe, -CHC(CH2)4, or -CHC(CH2)7. In these, the CO ligand was derived from the terminal carbon of the starting alkyne and the oxygen atom from water. Under anhydrous conditions, 9 undergoes reaction with 2-propyn-1-ol to give trimethyl 1,3-dihydro-3-oxo-4,5,6-isobenzofurantricarboxylate, the result of a cycloaromatization/transesterification involving the buta-1,3-dien-1,4-diyl ligand in 9 and 2-propyn-1-ol.  相似文献   

14.
Bis(ferrocenyl)-substituted allenylidene complexes, [(CO)5MCCCFc2] (1a-c, Fc = (C5H4)Fe(C5H5), M = Cr (a), Mo (b), W (c)) were obtained by sequential reaction of Fc2CO with Me3Si-CCH, KF/MeOH, n-BuLi, and [(CO)5M(THF)]. For the synthesis of related mono(ferrocenyl)allenylidene chromium complexes, [(CO)5CrCCC(Fc)R] (R = Ph, NMe2), three different routes were developed: (a) reaction of the deprotonated propargylic alcohol HCCC(Fc)(Ph)OH with [(CO)5Cr(THF)] followed by desoxygenation with Cl2CO, (b) Lewis acid induced alcohol elimination from alkenyl(alkoxy)carbene complexes, [(CO)5CrC(OR)CHC(NMe2)Fc], and (c) replacement of OMe in [(CO)5CrCCC(OMe)NMe2] by Fc. Complex 1a was also formed when the mono(ferrocenyl)allenylidene complex [(CO)5CrCCC(Fc)NMe2] was treated first with Li[Fc] and the resulting adduct then with SiO2. The replacement route (c) was also applied to the synthesis of an allenylidene complex (7a) with a CC spacer in between the ferrocenyl unit and Cγ of the allenylidene ligand, [(CO)5CrCCC(NMe2)-CCFc]. The related complex containing a CHCH spacer (9a) was prepared by condensation of [(CO)5CrCCC(Me)NMe2] with formylferrocene in the presence of NEt3. The bis(ferrocenyl)-substituted allenylidene complexes 1a-c added HNMe2 across the Cα-Cβ bond to give alkenyl(dimethylamino)carbene complexes and reacted with diethylaminopropyne by regioselective insertion of the CC bond into the Cβ-Cγ bond to afford alkenyl(diethylamino)allenylidene complexes, [(CO)5MCCC(NEt2)CMeCFc2]. The structures of 5a, 7a, and 9a were established by X-ray diffraction studies.  相似文献   

15.
Alkynyl Pd(II) azido complexes of the type [Pd(N3)(CCR)L2] (1-3) were obtained by reactions of aqueous NaN3 with [Pd(Cl)(CCR)L2] (R = Ph or C(O)OMe). Treating compounds 1-3 with organic isocyanides (R-NC) afforded novel complexes, trans-[Pd(CCPh)(NCNR)(PMe3)2] (R = 2,6-Me2C6H3 (4) or 2,6-Et2C6H3 (5)) and trans-[Pd(CCR)(CN4-t-Bu)L2] (6: L = PMe3, R = Ph; 7: L = PEt3, R = C(O)OMe; 8: L = PMe3, R = C(O)OMe), which contain either a carbodiimido or a C-coordinated tetrazolato group. Reactions of compounds 1 and 2 with R-NCS (R = 2,6-Me2C6H3 or CH2CH3) and 1,4-phenylene diisothiocyanate (C6H4(NCS)2) smoothly proceeded to give tetrazole-thiolato complexes, trans-[Pd(CCPh)(SCN4-R)L2] (L = PMe3, R = Et (9) or 2,6-Me2C6H3 (10); L = PEt3, R = 2,6-Me2C6H3 (11)), and a phenylene-bridged dinuclear Pd(II) tetrazole-thiolato complex, [(PEt3)2(CCPh)Pd(SCN4-(μ-C6H4)-SCN4)Pd(CCPh)(PEt3)2] (12), respectively. Complexes 9-12 contain the Pd-S bond that is formed by the dipolar cycloaddition of the organic isothiocyanate to the Pd-azido bond. In contrast, the corresponding reactions of compounds 1and 2 with C6F5CN and Me3SiCN (organic nitriles, R-CN) gave an N-coordinated Pd(II)-tetrazolato compound {trans-[Pd(CCPh)(N4C-C6F5)(PMe3)2] (13)} and a mixture of Pd(II)-cyano complexes {trans-[Pd(CCPh)(CN)(PEt3)2] (14) and [Pd(CN)2(PEt3)2] (15)}, respectively. Bis(phosphine) bis(cyano) complexes of Pd and Ni, [M(CN)2L2] (L = PEt3, PMe3; L2 = DEPE), could be obtained independently by the reactions of [M(N3)2L2] with excess Me3SiCN in organic solvents.  相似文献   

16.
Transmetallation reactions of ortho-mercurated iminophosphoranes (2-ClHgC6H4)Ph2PNR with [AuCl4] gives new cycloaurated iminophosphorane complexes of gold(III) (2-Cl2AuC6H4)Ph2PNR [R = (R,S)- or (S)-CHMePh, p-C6H4F, tBu], characterised by NMR and IR spectroscopies, ESI mass spectrometry and an X-ray structure determination on the chiral derivative R = (S)-CHMePh. The chloride ligands of these complexes can be readily replaced by the chelating ligands thiosalicylate and catecholate; the resulting derivatives show markedly higher anti-tumour activity versus P388 murine leukaemia cells compared to the parent chloride complexes. Reaction of (2-Cl2AuC6H4)Ph2PNPh with PPh3 results in displacement of a chloride ligand giving the cationic complex [(2-Cl(PPh3)AuC6H4)Ph2PNPh]+, indicating that the PN donor is strongly bonded to the gold centre.  相似文献   

17.
The iridium 1,1,1-tris(diphenylphosphinomethyl)ethane (triphos) complexes [{κ2(C1,C4)-CRCRCRCR}{CH3C(CH2PPh2)3}Ir(NCMe)]BF4 (2-NCMe, R = CO2Me) and [{κ2(C1,C4)-CRCRCRCR}{CH3C(CH2PPh2)3}Ir(CO)]BF4 (2-CO, R = CO2Me) serve as models for proposed iridium-vinylidene intermediates of relevance to the [2 + 2 + 1] cyclotrimerization of alkynes. The solid-state structures of 2-NCMe, 2-CO, and [κ2(C1,C4)-CRCRCRCR]{CH3C(CH2PPh2)3}Ir(Cl) (2-Cl), were determined by X-ray crystallography.  相似文献   

18.
[AuTl(C6F5)2(en)] (en = ethylenediamine) reacts with cyclic ketones as cyclopentanone (Cy5O), cyclohexanone (Cy6O) or cycloheptanone (Cy7O) in 1:1 or 1:2 molar ratio leading to products of stoichiometry [AuTl(C6F5)2{CyxN(CH2)2NH2}] (x = 5 1, 6 2 or 7 3), or [AuTl(C6F5)2{CyxN(CH2)2NCyx}] (x = 5 4, 6 5 or 7 6). Addition of ethylenediamine to the ketimine complexes in chloroform regenerates [AuTl(C6F5)2(en)], the starting material, and the free ketimines, as their NMR and mass spectra evidenced. The ketimine complexes display luminescence in solid state at room temperature and at 77 K at higher wavelengths than the diamine starting product (505 nm). The excited states responsible for this behaviour are assigned to orbitals due to the gold-thallium interactions.  相似文献   

19.
The reaction of the dihydrido iridium(III) precursor [IrH2(Cl)(PiPr3)2] (5) with internal alkynes RCC(CO2Me) (R = Me, CO2Me) afforded the five-coordinate hydrido(vinyl) complexes [IrH(Cl){(E)-C(R)CH(CO2Me)}(PiPr3)2] (6, 7), via insertion of the alkyne into one of the IrH bonds. Compounds 6 and 7 are also accessible by careful hydrogenation of the alkyne iridium(I) derivatives trans-[IrCl{RCC(CO2Me)}(PiPr3)2] (9, 10), the latter being prepared from in situ generated trans-[IrCl(C8H14)(PiPr3)2] and RCC(CO2Me). UV irradiation of 6 (R = CO2Me) led to the formation of the isomer [IrH(Cl){κ2(C,O)-C(CO2Me)CHC(OMe)O}(PiPr3)2] (3) having the vinyl ligand coordinated in a bidentate fashion. While 6 reacted with acetonitrile and CO to afford the six-coordinate iridium(III) compounds [IrH(Cl){(E)-C(CO2Me)CH(CO2Me)}(L′)(PiPr3)2] (11, 12), treatment of 6 with LiC5H5 gave the half-sandwich-type complex [(η5-C5H5)IrH{(E)-C(CO2Me)CH(CO2Me)}(PiPr3)] (13) by, the loss of one PiPr3. The reaction of 3 with CO under pressure resulted in the formation of [IrH(Cl){(Z)-C(CO2Me)CH(CO2Me)}(CO)(PiPr3)2] (14) in which, in contrast to the stereoisomer 12, the two CO2Me substituents are trans disposed.  相似文献   

20.
Molecular structures of dimethylbis(trimethylsilylketyl)silane (Me2Si[C(SiMe3)CO]2), dimethylbis(trimethylgermylketyl)silane (Me2Si[C(GeMe3)CO]2), and dimethylbis(trimethylstannylketyl)germane (Me2Ge[C(SnMe3)CO]2) have been studied in the gas phase by electron diffraction accompanied by high level ab initio and DFT calculations. Extensive theoretical conformational analyses of the molecules in the vapour predicted a possibility of existence of two types of conformers with small energy differences. The first type had gauche-gauche arrangements of the ketenyl groups in the central C(CO)XC(CO) fragments directed away from each other. The second type had nearly syn-gauche arrangements of the ketenyl groups. In addition, the energy differences were found to depend on the level of computations used. The experimental analysis, in turn, was unable to distinguish between different conformers due to the large number of similar overlapping distances. The experimental data were fitted by an averaged single-conformer model, which nevertheless allowed reliable determination of bonds and bonded angles in the molecules. Main experimental (rh1) structural parameters for Me2Si[C(SiMe3)CO]2, Me2Si[C(GeMe3)CO]2, and Me2Ge[C(SnMe3)CO]2, i.e. Me2X[C(YMe3)CO]2 (X,Y = Si, Ge, Sn), are (X-C)mean 187.7(1) pm, 194.6(2) pm, 216.1(3) pm; (Y-C)mean, 187.7(1) pm, 188.8(8) pm, 194.6(4) pm; (CC)mean, 135.3(5) pm, 131.6(5) pm, 131.5(13) pm; (CO)mean, 117.0(7) pm, 117.4(7) pm, 119.0(11) pm; (C-H)mean, 110.6(7) pm, 110.0(4) pm, 109.1(13) pm; (X(Y)-CC)mean, 114.4(2)°, 115.6(1)°, 115.6(2)°; (C-X(Y)-CMe)mean, 108.3(3)°, 108.4(3)°, 108.9(13)°; C(2)-C(1)-Y(4)-C(10), −19(6)°, 5(4)°, −9(10)°; C(7)-C(6)-Y(9)-C(38),−22(7)°, −32(3)°, −9(10)°; C(2)-C(1)-X(5)-C(6), 128(4)°, 142(1)°, 108(9)°; C(7)-C(6)-X(5)-C(1), 92(6)°, 115(2)°, 108(9)°, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号