首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Because of its clear genetic and developmental background, diversity of behavioral paradigms and neuroanatomy of the brain, Drosophila has become an important animal model for studying genetic, molecular and cellular bases of learning and memory[1]. Extensive research has explored the visual operant conditioning of Drosophila and related molecular bases[2—8]; recently, researchers began to address cognition-like functions and involved neural substrates[9—11]. In these studies, behavioral ana…  相似文献   

2.
Ever since operant conditioning was studied experimentally, the relationship between associative learning and possible motor learning has become controversial. Although motor learning and its underlying neural substrates have been extensively studied in mammals, it is still poorly understood in invertebrates. The visual discriminative avoidance paradigm of Drosophila at the flight simulator has been widely used to study the flies' visual associative learning and related functions, but it has not been used to study the motor learning process. In this study, newly-designed data analysis was employed to examine the flies' solitary behavioural variable that was recorded at the flight simulator-yaw torque. Analysis was conducted to explore torque distributions of both wild-type and mutant flies in conditioning, with the following results: (1) Wild-type Canton-S flies had motor learning performance in conditioning, which was proved by modifications of the animal's behavioural mode in conditioning. (2) Repetition of training improved the motor learning performance of wild-type Canton-S flies. (3) Although mutant dunce(1) flies were defective in visual associative learning, they showed essentially normal motor learning performance in terms of yaw torque distribution in conditioning. Finally, we tentatively proposed that both visual associative learning and motor learning were involved in the visual operant conditioning of Drosophila at the flight simulator, that the two learning forms could be dissociated and they might have different neural bases.  相似文献   

3.
The associative learning abilities of the fruit fly, Drosophila melanogaster, have been demonstrated in both classical and operant conditioning paradigms. Efforts to identify the neural pathways and cellular mechanisms of learning have focused largely on olfactory classical conditioning. Results derived from various genetic and molecular manipulations provide considerable evidence that this form of associative learning depends critically on neural activity and cAMP signaling in brain neuropil structures called mushroom bodies. Three other behavioral learning paradigms in Drosophila serve as the main subject of this review. These are (1) visual and motor learning of flies tethered in a flight simulator, (2) a form of spatial learning that is independent of visual and olfactory cues, and (3) experience-dependent changes in male courtship behavior. The present evidence suggests that at least some of these modes of learning are independent of mushroom bodies. Applying targeted genetic manipulations to these behavioral paradigms should allow for a more comprehensive understanding of neural mechanisms responsible for diverse forms of associative learning and memory.  相似文献   

4.
Summary Operant behavior is studied in tethered Drosophila flies using visual motion, heat or odour as operandum and yaw torque, thrust or direction of flight as operans in various combinations (Fig. 1). On the basis of these results a conceptual framework of operant behavior is proposed: (1) It requires a goal (desired state) of which the actual state deviates. (2) To attain the goal a range of motor programs is activated (initiating activity, see Fig. 7). (3) Efference copies of the motor programs are compared to the sensory input referring to the deviation from the desired state (e.g. by cross-correlation). (4) In case of a significant coincidence the respective motor program is used to modify the sensory input in the direction towards the goal. (5) Consistent control of a sensory stimulus by a behavior may lead to a more permanent behavioral change (conditioning). In this scheme operant activity (1–4) and operant conditioning (1–5) are distinguished.Abbreviations ALU arbitrary length unit - d horizontal angular width of visual pattern - IR infrared - SEM standard error of the means - T yaw torque - Th thrust - performance index - horizontal angle between visual pattern position and longitudinal body axis of the fly - vertical angular extension of visual pattern  相似文献   

5.
Acute choice behavior in ingesting two different concentrations of sucrose in Drosophila is presumed to include learning and memory. Effects on this behavior were examined for four mutations that block associative learning (dunce, rutabaga, amnesiac, and radish). Three of these mutations cause cyclic AMP signaling defects and significantly reduced taste discrimination. The exception was radish, which affects neither. Electrophysiological recordings confirmed that the sensitivity of taste receptors is almost indistinguishable in all flies, whether wild type or mutant. These results suggest that food choice behavior in Drosophila involves central nervous learning and memory operating via cyclic AMP signaling pathways.  相似文献   

6.
Apparently unpaired exposure to appetitive or aversive stimuli can suppress or enhance later associative learning. While the suppressive effect has been found in both vertebrate and invertebrate animals, it is not clear if the enhancing effect is restricted to the vertebrates. Additionally, whether Drosophila associative learning can be influenced in either direction is open. To address these questions, we examined the effects of pre-exposing flies to a high temperature negative reinforcer in the heat-box place-learning paradigm. We found that pre-exposing flies to an unavoidable high temperature enhanced later associative conditioning that uses mild increases in temperature. This enhancement lasts at least 20 min, does not depend on changes in the straightforward avoidance behavior of a high temperature source, and is independent of the antennal thermosensor. We thus provide an example of enhanced associative learning after unpaired exposure to a typical reinforcer in an invertebrate animal, suggesting the conservation of this component of learning.  相似文献   

7.
We investigate the organization of behaviour across sensory modalities, using larval Drosophila melanogaster. We ask whether olfactory learning and behaviour are affected by visual processing. We find that: (1) Visual choice does not affect concomitant odour choice. (2) Visual context does not influence odour learning, nor do changes of visual context between training and test affect retrieval of odour memory. (3) Larvae cannot solve a biconditional discrimination task, despite generally permissive conditions. In this task, larvae are required to establish conditional associations: in light, one odour is rewarded and the other one is not, whereas in dark the opposite contingency is established. After such training, choice between the two odours is equal under light and dark testing conditions, suggesting that larvae do not establish odour memories specifically for one visual context only. Together, these data suggest that, in larval Drosophila, olfactory learning and behaviour are ‘insulated’ against visual processing.  相似文献   

8.
为了明确棉铃虫对苯乙醛和乙酸苯甲酯两种关键花香气味的联系性学习行为,在室内分别测定了不同学习训练的棉铃虫雌雄成虫对两种关键花香气味的选择偏好性反应和雄成虫的触角电位反应。偏好性测定结果表明,无花香气味接触经历的棉铃虫对苯乙醛和乙酸苯甲酯的选择频次均无显著差异,且单纯的花香气味接触经历也不能诱导棉铃虫气味偏好性的显著改变,唯有花香气味接触经历伴随蔗糖溶液进行强化训练时,才能诱导气味偏好性的显著性改变。从对两种花香气味的联系性学习看,棉铃虫更容易将苯乙醛与蔗糖溶液进行联系性学习,而不容易将乙酸苯甲酯与蔗糖溶液进行联系性学习。从性别差异看,雌虫比雄虫具有更强的将花香气味与蔗糖溶液进行联系性学习的能力。触角电位测定结果表明,不同学习训练的棉铃虫雄成虫对两种花香气味和绿叶气味顺-3-己烯-1-醇的EAG反应值之间不存在显著性差异。总之,花香气味伴随食物资源的联系性学习经历,能够明显提高棉铃虫成虫对花香气味的选择偏好,可以此为基础进一步优化花香引诱剂的配方设计和应用技术。  相似文献   

9.
Using the flight simulator system, the operant conditioned visual flight orientation behavior inDrosophila was studied. It was demonstrated that the visual learning performance is associated with age; flies learn more reliably at 3–4 days than at 1–2 days of age; the cAMP level of brain is also increasing with age; the brain cAMP content of nonlearner flies of wild type is much higher than that of normal flies; the cAMP level of brain increased abnormally after being fed with caffeine, and the learning performance decred. These results imply that a moderate range of cAMP level is necessary for the visual learning and memory pmess. Abnody high or low level of cAMP causes defects of leaming and memory ability. Project supported by the National Natural Science Foundation of China rant No. 69435013) and the National Fundarnental Research Programme in China  相似文献   

10.
The ability to learn is universal among animals; we investigate associative learning between odors and tastants in larval Drosophila melanogaster. As biologically important gustatory stimuli, like sugars, salts, or bitter substances have many behavioral functions, we investigate not only their reinforcing function, but also their response-modulating and response-releasing function. Concerning the response-releasing function, larvae are attracted by fructose and repelled by sodium chloride and quinine; also, fructose increases, but salt and quinine suppress feeding. However, none of these stimuli has a nonassociative, modulatory effect on olfactory choice behavior. Finally, only fructose but neither salt nor quinine has a reinforcing effect in associative olfactory learning. This implies that the response-releasing, response-modulating and reinforcing functions of these tastants are dissociated on the behavioral level. These results open the door to analyze how this dissociation is brought about on the cellular and molecular level; this should be facilitated by the cellular simplicity and genetic accessibility of the Drosophila larva.  相似文献   

11.
Olfactory learning and memory processes in Drosophila have been well investigated with aversive conditioning, but appetitive conditioning has rarely been documented. Here, we report for the first time individual olfactory conditioning of proboscis activity in restrained Drosophila melanogaster. The protocol was adapted from those developed for proboscis extension conditioning in the honeybee Apis mellifera. After establishing a scale of small proboscis movements necessary to characterize responses to olfactory stimulation, we applied Pavlovian conditioning, with five trials consisting of paired presentation of a banana odour and a sucrose reward. Drosophila showed conditioned proboscis activity to the odour, with a twofold increase of percentage of responses after the first trial. No change occurred in flies experiencing unpaired presentations of the stimuli, confirming an associative basis for this form of olfactory learning. The adenylyl cyclase mutant rutabaga did not exhibit learning in this paradigm. This protocol generated at least a short-term memory of 15 min, but no significant associative memory was detected at 1 h. We also showed that learning performance was dependent on food motivation, by comparing flies subjected to different starvation regimes.  相似文献   

12.
13.
Summary The relative contribution of visual and chemical components in the orientation ofLasius niger andIridomyrmex humilis (Argentine ant) workers during mass recruitment to newly discovered food sources is analyzed over short time intervals. While both species orient in response to the trail pheromone, a large number ofL. niger foragers rapidly switch to a more individual orientation, based on their memory of environmental cues.I. humilis workers, on the other hand, predominantly use collective chemical cues. The effect of the number of reinforcements on visual learning and its interference with chemical communication show that olfactory cues always prevail in the Argentine ant. InL. niger, the proportion of ants orienting to visual cues is independent of the trail concentration. Detailed observations of the trail-laying behavior of individually marked foragers show that nearly all theI. humilis workers initially lay a trail, whereas only half theL. niger foragers do so. This proportion decreases considerably with the number of trips performed byL. niger workers, while remaining constant for the Argentine ants. These results are interpreted with respect to the species' behavioral ecology.  相似文献   

14.
Associative learning is known to modify foraging behavior in numerous parasitic wasps. This is in agreement with optimal foraging theory, which predicts that the wasps will adapt their responses to specific cues in accordance with the rewards they receive while perceiving these cues. Indeed, the generalist parasitoid Cotesia marginiventris shows increased attraction to a specific plant odor after perceiving this odor during contact with hosts. This positive associative learning is common among many parasitoids, but little is known about the effects of unrewarding host searching events on the attractiveness of odors. To study this, preferences of female C. marginiventris for herbivore-induced odors of three plant species were tested in a six-arm olfactometer after the wasps perceived one of these odors either i) without contacting any caterpillars, ii) while contacting the host caterpillar Spodoptera littoralis, or iii) while contacting the non-host caterpillar Pieris rapae. The results confirm the effects of positive associative learning, but showed no changes in innate responses to the host-induced odors after “negative” experiences. Hence, a positive association is made during an encounter with hosts, but unsuccessful host-foraging experiences do not necessarily lead to avoidance learning in this generalist parasitoid.  相似文献   

15.
The role of color and shape in the host recognition and acceptance behavior ofAphidius ervi Haliday was studied. A quantitative analysis of the oviposition behavior ofA. ervi was carried out with a computer-aided analysis of 150 video-recorded oviposition sequences on its natural host,Acyrthosiphon pisum (Harris). The importance of visual stimuli was assessed in a choice condition bioassay, observing the behavioral reaction of female parasitoids to various test materials flame-sealed into glass capillaries. Glass beads 2 and 6 mm in diameter and a flat arena were coated with cornicle secretion ofA. pisum, and their acceptance rates by both naive and experienced female parasitoids were assessed under no-choice conditions. In most cases,A. ervi females switched from random searching to attack position when the host was within a range of 1 cm, suggesting that host recognition is regulated in part by cues acting before physical contact. The glass capillary bioassay indicated that visual cues are important factors in the host recognition and acceptance phases. Pea aphid color alone can elicit the oviposition response of naiveA. ervi females, and this response is enhanced when color is combined with aphid shape. The cornicle secretion ofA. pisum stimulated an oviposition response which was stronger in naive females ofA. ervi than in experienced ones and was not significantly affected by the glass bead size or flat surface. These results, along with those from previous studies, suggest that manipulation of the oviposition behavior ofA. ervi is feasible under laboratory conditions.  相似文献   

16.
Lorenzetti FD  Baxter DA  Byrne JH 《Neuron》2008,59(5):815-828
Operant conditioning is a ubiquitous but mechanistically poorly understood form of associative learning in which an animal learns the consequences of its behavior. Using a single-cell analog of operant conditioning in neuron B51 of Aplysia, we examined second-messenger pathways engaged by activity and reward and how they may provide a biochemical association underlying operant learning. Conditioning was blocked by Rp-cAMP, a peptide inhibitor of PKA, a PKC inhibitor, and by expressing a dominant-negative isoform of Ca2+-dependent PKC (apl-I). Thus, both PKA and PKC were necessary for operant conditioning. Injection of cAMP into B51 mimicked the effects of operant conditioning. Activation of PKC also mimicked conditioning but was dependent on both cAMP and PKA, suggesting that PKC acted at some point upstream of PKA activation. Our results demonstrate how these molecules can interact to mediate operant conditioning in an individual neuron important for the expression of the conditioned behavior.  相似文献   

17.
18.
The fruit fly Drosophila melanogaster has a sophisticated visual system and exhibits complex visual behaviors. Visual responses, vision processing and higher cognitive processes in Drosophila have been studied extensively. However, little is known about whether the retinal location of visual stimuli can affect fruit fly performance in various visual tasks. We tested the response of wild-type Berlin flies to visual stimuli at several vertical locations. Three paradigms were used in our study: visual operant conditioning, visual object fixation and optomotor response. We observed an acute zone for visual feature memorization in the upper visual field when visual patterns were presented with a black background. However, when a white background was used, the acute zone was in the lower visual field. Similar to visual feature memorization, the best locations for visual object fixation and optomotor response to a single moving stripe were in the lower visual field with a white background and the upper visual field with a black background. The preferred location for the optomotor response to moving gratings was around the equator of the visual field. Our results suggest that different visual processing pathways are involved in different visual tasks and that there is a certain degree of overlap between the pathways for visual feature memorization, visual object fixation and optomotor response.  相似文献   

19.
A temporal fractal is clearly shown in the feeding behavior ofDrosophila as a self-similar pattern of locomotive velocity and inverse power law distributions of food dwelling time over the time scale range of 103. The fractality was observed in the dwelling time distribution immediately after the fly was placed to feeding site or on inferior food in a two-choice situation. Fractality may be understood as adaptive, and an intrinsic property of animal behavior that reflects complex information processing in the CNS ofDrosophila.  相似文献   

20.
Insect parasitoids use a variety of chemical and physical cues when foraging for hosts and food. Parasitoids can learn cues that lead them to the hosts, thus contributing to better foraging. One of the cues that influence host‐searching behaviour could be colour. In this study, we investigated the ability of females of the parasitoid wasps Telenomus podisi Ashmead and Trissolcus basalis Wollaston (both Hymenoptera: Scelionidae) to respond to colours and to associate the presence of hosts – eggs of Euschistus heros (Fabricius) (Hemiptera: Pentatomidae) – with coloured substrates after training (associative learning). Two sets of experiments were conducted: in one the innate preference for substrate colours was examined, in the other associative learning of substrate colour and host presence was tested in multiple‐choice and dual‐choice experiments. In the associative learning experiments, Te. podisi and Tr. basalis were trained to respond to differently coloured substrates containing hosts in two sessions of 2 h each, with 1‐h intervals. In multiple‐choice experiments, the wasps displayed innate preference for yellow substrates over green, brown, black, or white ones. Even after being trained on substrates of different colours, both parasitoids continued to show preference for yellow substrates. The response to the colours of substrates of both parasitoids was related with the orientation to the plant foliage during the search for hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号