共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The role of mRNA localization is presumably to effect cell asymmetry by synthesizing proteins in specific cellular compartments. However, protein synthesis has never been directly demonstrated at the sites of mRNA localization. To address this, we developed a live cell method for imaging translation of beta-actin mRNA. Constructs coding for beta-actin, containing tetracysteine motifs, were transfected into C2C12 cells, and sites of nascent polypeptide chains were detected using the biarsenial dyes FlAsH and ReAsH, a technique we call translation site imaging. These sites colocalized with beta-actin mRNA at the leading edge of motile myoblasts, confirming that they were translating. beta-Actin mRNA lacking the sequence (zipcode) that localizes the mRNA to the cell periphery, eliminated the translation there. A pulse-chase experiment on living cells showed that the recently synthesized protein correlated spatially with the sites of its translation. Additionally, localization of beta-actin mRNA and translation activity was enhanced at cell contacts and facilitated the formation of intercellular junctions. 相似文献
3.
4.
Methods applicable to visualizing single fluorophores in living cells are described, namely, laser epifluorescence, confocal, near-field, two-photon, and total internal reflection microscopy. It is demonstrated that total internal reflection microscopy is the most appropriate for visualizing single fluorophores near the substrate-medium interface. This method can be used for studying receptors, ion channels, and numerous cytoskeletal and signal molecules located on or near the basal cell membrane. It is demonstrated that stringent criteria are necessary when identifying single molecules, as these objects emit a limited number of photons before irreversible photobleaching and their fluorescence is obscured by autofluorescence or out-of-focus fluorescence. The methods used for studying the lateral mobility of single molecules floating on the cell membrane are also described. 相似文献
5.
Technical advances in the field of live-cell imaging have introduced the cell biologist to a new, dynamic, subcellular world. The static world of molecules in fixed cells has now been extended to the time dimension. This allows the visualization and quantification of gene expression and intracellular trafficking events of the studied molecules and the associated enzymatic processes in individual cells, in real time. 相似文献
6.
Synopsis Intracellular diffusion properties and enzyme activities in single living cells can be analysed by means of fluorogenic substrates that diffuse into the cells where they are converted into a fluorescent product by an enzymic reaction. The reaction-kinetic analysis of this process as a system of consecutive reactions provides information on the diffusion of the substrate into the cells, on intracellular enzyme activities and on the efflux of the fluorescent product. Separation of diffusion and enzyme-mediated processes is obtained by inducing specific changes of the cellular membrane using gramicidin D. A model for the functional interpretation of the experimental findings is proposed. Application of this method as a viability test for freshly prepared and frozen platelets is discussed.Paper given at the Royal Microscopical Society's European Histochemistry Meeting at Nottingham in September 1975. 相似文献
7.
The development and application of single cell optical imaging has identified dynamic and oscillatory signalling processes in individual cells. This requires single cell analyses since the processes may otherwise be masked by the population average. These oscillations range in timing from seconds/minutes (e.g. calcium) to minutes/hours (e.g. NF-kappaB, Notch/Wnt and p53) and hours/days (e.g. circadian clock and cell cycle). Quantitative live cell measurement of the protein processes underlying these complex networks will allow characterisation of the core mechanisms that drive these signalling pathways and control cell function. Ultimately, such studies can be applied to develop predictive models of whole tissues and organisms. 相似文献
8.
Quantitation of GFP-fusion proteins in single living cells 总被引:9,自引:0,他引:9
9.
10.
Multichannel (multisite) microfluorometry in conjunction with microinjection of metabolic intermediates (e.g. glycolytic phosphate esters) was used for in situ topographic analysis of metabolic transients (e.g. NAD(P)NAD(P)H) in correlation to structure and compartmentalization of single living EL2 and L cells. In cells submitted to repeated microinjections with different doses of substrate (glucose-6-P or -1-P, 6-phosphogluconate, allosteric factors) rate laws were derived by a power or exponential approximation. On this basis intracellular metabolic rates were evaluated topographically and the multisite-multicomponent control of enzyme pathways in integrated biochemical systems was assessed. From different simulation trials it appeared that the transients observed are best simulated by a difference of exponentials, accounting for NAD(P) reducing and reoxidizing pathways. The determination of intracellular metabolic rate laws, their multisite-multicomponent control and the extent to which topographic discrimination of compartmentalization is possible provide the basis for application to specific problems in cell physiology, specialized cell function or the understanding of multicellular steady states. 相似文献
11.
12.
E Kohen C Kohen J G Hirschberg A W Wouters B Thorell H V Westerhoff K K Charyulu 《Cell biochemistry and function》1983,1(1):3-16
Microspectrofluorometry of cell coenzymes (NAD(P)H, flavins) in conjunction with sequential microinjections into the same cell of metabolites and modifiers, reveals aspects of the regulatory mechanisms of transient redox changes of mitochondrial and extramitochondrial nicotinamide adenine dinucleotides. The injection of ADP in the course of an NAD(P)H transient produced by glycolytic (e.g. glucose 6-phosphate, G6P) or mitochondrial (e.g. malate) substrate leads to sharp reoxidation (state III, Chance and Williams, 1955), followed by a spontaneous state III to IV transition, and an ultimate return to original redox steady state. The response to ADP alone is biphasic, i.e. a small oxidation-reduction transient followed by a larger reverse transient. Similarities between responses to injected ATP and ADP suggest possible intracellular interconversions. Sequential injections of glycolytic and Krebs cycle substrates into the same cell, produce a two-step NAD(P) response, possibly revealing the intracellular compartmentation of this coenzyme. A two-step NAD(P)H response to sequentially injected fructose 1,6-diphosphate and G6P indicates the dynamic or even structural compartmentation of glycolytic phosphate esters in separate intracellular pools. The intracellular regulation and compartmentation of bioenergetic pathways and cell-to-cell metabolic inhomogeneities provide the basis on which the quantitative biochemistry of the intact living cell may be reconciled with these in situ findings. 相似文献
13.
14.
In the last years, significant advances in microscopy techniques and the introduction of a novel technology to label living
cells with genetically encoded fluorescent proteins revolutionized the field of Cell Biology. Our understanding on cell dynamics
built from snapshots on fixed specimens has evolved thanks to our actual capability to monitor in real time the evolution
of processes in living cells. Among these new tools, single particle tracking techniques were developed to observe and follow
individual particles. Hence, we are starting to unravel the mechanisms driving the motion of a wide variety of cellular components
ranging from organelles to protein molecules by following their way through the cell. In this review, we introduce the single
particle tracking technology to new users. We briefly describe the instrumentation and explain some of the algorithms commonly
used to locate and track particles. Also, we present some common tools used to analyze trajectories and illustrate with some
examples the applications of single particle tracking to study dynamics in living cells. 相似文献
15.
Protein phosphorylation by intracellular kinases plays one of the most pivotal roles in signaling pathways within cells. To reveal the biological issues related to the kinase proteins, electrophoresis, immunocytochemistry, and in vitro kinase assay have been used. However, these conventional methods do not provide enough information about spatial and temporal dynamics of the signal transduction based on protein phosphorylation and dephosphorylation in living cells. To overcome the limitation for investigating the kinase signaling, we developed genetically encoded fluorescent indicators for visualizing the protein phosphorylation in living cells. Using these indicators, we visualized under a fluorescence microscope when, where, and how the protein kinases are activated in single living cells. 相似文献
16.
We describe a simple, sensitive and noninvasive assay that uses nontoxic, reengineered anthrax toxin-beta-lactamase fusion proteins with altered protease cleavage specificity to visualize specific cell-surface proteolytic activity in single living cells. The assay could be used to specifically image endogenous cell-surface furin, urokinase plasminogen activator and metalloprotease activity. We have adapted the assay for fluorescence microscopy, flow cytometry and fluorescent plate reader formats, and it is amenable for automation and high-throughput analysis. 相似文献
17.
Culturing satellite cells from living single muscle fiber explants 总被引:21,自引:0,他引:21
J. David Rosenblatt Alison I. Lunt David J. Parry Terence A. Partridge 《In vitro cellular & developmental biology. Animal》1995,31(10):773-779
Summary Conventional methods for isolating myogenic (satellite) cells are inadequate when only small quantities of muscle, the tissue in which satellite cells reside, are available. We have developed a tissue culture system that reliably permits isolation of intact, living, single muscle fibers with associated satellite cells from predominantly fast and slow muscles of rat and mouse; maintenance of the isolated fibers in vitro; dissociation, proliferation, and differentiation of satellite cells from each fiber; and removal of the fiber from culture for analysis. 相似文献
18.
Fusco D Accornero N Lavoie B Shenoy SM Blanchard JM Singer RH Bertrand E 《Current biology : CB》2003,13(2):161-167
Cytoplasmic mRNA movements ultimately determine the spatial distribution of protein synthesis. Although some mRNAs are compartmentalized in cytoplasmic regions, most mRNAs, such as housekeeping mRNAs or the poly-adenylated mRNA population, are believed to be distributed throughout the cytoplasm. The general mechanism by which all mRNAs may move, and how this may be related to localization, is unknown. Here, we report a method to visualize single mRNA molecules in living mammalian cells, and we report that, regardless of any specific cytoplasmic distribution, individual mRNA molecules exhibit rapid and directional movements on microtubules. Importantly, the beta-actin mRNA zipcode increased both the frequency and length of these movements, providing a common mechanistic basis for both localized and nonlocalized mRNAs. Disruption of the cytoskeleton with drugs showed that microtubules and microfilaments are involved in the types of mRNA movements we have observed, which included complete immobility and corralled and nonrestricted diffusion. Individual mRNA molecules switched frequently among these movements, suggesting that mRNAs undergo continuous cycles of anchoring, diffusion, and active transport. 相似文献
19.
The ability to visualize in real-time the expression level and localization of specific endogenous RNAs in living cells can offer tremendous opportunities for biological and disease studies. Here we demonstrate such a capability using a pair of molecular beacons, one with a donor and the other with an acceptor fluorophore that hybridize to adjacent regions on the same mRNA target, resulting in fluorescence resonance energy transfer (FRET). Detection of the FRET signal significantly reduced false positives, leading to sensitive imaging of K-ras and survivin mRNAs in live HDF and MIAPaCa-2 cells. FRET detection gave a ratio of 2.25 of K-ras mRNA expression in stimulated and unstimulated HDF, comparable to the ratio of 1.95 using RT–PCR, and in contrast to the single-beacon result of 1.2. We further revealed intriguing details of K-ras and survivin mRNA localization in living cells. The dual FRET molecular beacons approach provides a novel technique for sensitive RNA detection and quantification in living cells. 相似文献
20.
Fluorescence resonance energy transfer analysis of protein-protein interactions in single living cells by multifocal multiphoton microscopy 总被引:1,自引:0,他引:1
Two variants of an endo-beta-1,4-mannanase from the digestive tract of blue mussel, Mytilus edulis, were purified by a combination of immobilized metal ion affinity chromatography, size exclusion chromatography in the absence and presence of guanidine hydrochloride and ion exchange chromatography. The purified enzymes were characterized with regard to enzymatic properties, molecular weight, isoelectric point, amino acid composition and N-terminal sequence. They are monomeric proteins with molecular masses of 39216 and 39265 Da, respectively, as measured by MALDI-TOF mass spectrometry. The isoelectric points of both enzymes were estimated to be around 7.8, however slightly different, by isoelectric focusing in polyacrylamide gel. The enzymes are stable from pH 4.0 to 9.0 and have their maximum activities at a pH about 5.2. The optimum temperature of both enzymes is around 50-55 degrees C. Their stability decreases rapidly when going from 40 to 50 degrees C. The N-terminal sequences (12 residues) were identical for the two variants. They can be completely renatured after denaturation in 6 M guanidine hydrochloride. The enzymes readily degrade the galactomannans from locust bean gum and ivory nut mannan but show no cross-specificity for xylan and carboxymethyl cellulose. There is no binding ability observed towards cellulose and mannan. 相似文献