首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.

Background  

The localization of specific mRNA generates cell polarity by controlling the translation sites of specific proteins. Although most of these events depend on differences in gene expression, no method is available to examine time dependent gene expression of individual living cells. In situ hybridization (ISH) is a powerful and useful method for detecting the localization of mRNAs, but it does not allow a time dependent analysis of mRNA expression in single living cells because the cells have to be fixed for mRNA detection. To overcome these issues, the extraction of biomolecules such as mRNAs, proteins, and lipids from living cells should be performed without severe damage to the cells. In previous studies, we have reported a single cell nanoprobe (SCN) method to examine gene expression of individual living cells using atomic force microscopy (AFM) without killing the cells.  相似文献   

2.
3.
Comparative gene expression studies are often limited by low availability of tissue and poor quality of extractable mRNA. Collective PCR amplification of minute quantities of mRNA has great potential for overcoming these limitations. However, there remains significant concern about the effects of amplification on the absolute and relative abundance of individual mRNAs that could complicate subsequent gene expression studies. To address this problem, we systematically compared the relative abundance of many specific mRNAs from complex cDNA preparations (from tissue and cultured cells) both before and after amplification by PCR. Our results demonstrated that, as expected, the absolute abundance of different mRNAs in a cDNA library is altered in an unpredictable manner by PCR amplification. However, we found that the concentration ratios of specific mRNAs among different cDNA preparations were routinely well conserved after PCR amplification. Thus, for the purpose of comparative expression studies for specific mRNAs in two (or more) complex cDNAs, PCR-amplified cDNA is equally useful as unamplified cDNA. These results provide a rigorous experimental validation and offer a theoretical treatment to support the utility of PCR amplified cDNA for differential gene expression studies. We conclude that the inherent difficulties in performing differential screening studies such as gene chip and array analyses on limited amounts of biological materials can be overcome by a PCR amplification step without compromising data quality. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
A systems-level understanding of a small but essential population of cells in development or adulthood (e.g. somatic stem cells) requires accurate quantitative monitoring of genome-wide gene expression, ideally from single cells. We report here a strategy to globally amplify mRNAs from single cells for highly quantitative high-density oligonucleotide microarray analysis that combines a small number of directional PCR cycles with subsequent linear amplification. Using this strategy, both the representation of gene expression profiles and reproducibility between individual experiments are unambiguously improved from the original method, along with high coverage and accuracy. The immediate application of this method to single cells in the undifferentiated inner cell masses of mouse blastocysts at embryonic day (E) 3.5 revealed the presence of two populations of cells, one with primitive endoderm (PE) expression and the other with pluripotent epiblast-like gene expression. The genes expressed differentially between these two populations were well preserved in morphologically differentiated PE and epiblast in the embryos one day later (E4.5), demonstrating that the method successfully detects subtle but essential differences in gene expression at the single-cell level among seemingly homogeneous cell populations. This study provides a strategy to analyze biophysical events in medicine as well as in neural, stem cell and developmental biology, where small numbers of distinctive or diseased cells play critical roles.  相似文献   

5.
6.
7.
Recent developments in gene array technologies, specifically cDNA microarray platforms, have made it easier to try to understand the constellation of gene alterations that occur within the CNS. Unlike an organ that is comprised of one principal cell type, the brain contains a multiplicity of both neuronal (e.g., pyramidal neurons, interneurons, and others) and noneuronal (e.g., astrocytes, microglia, oligodendrocytes, and others) populations of cells. An emerging goal of modern molecular neuroscience is to sample gene expression from similar cell types within a defined region without potential contamination by expression profiles of adjacent neuronal subtypes and noneuronal cells. At present, an optimal methodology to assess gene expression is to evaluate single cells, either identified physiologically in living preparations, or by immunocytochemical or histochemical procedures in fixed cells in vitro or in vivo. Unfortunately, the quantity of RNA harvested from a single cell is not sufficient for standard RNA extraction methods. Therefore, exponential polymerase-chain reaction (PCR) based analyses and linear RNA amplifications, including a newly developed terminal continuation (TC) RNA amplification methodology, have been used in combination with single cell microdissection procedures to enable the use of cDNA microarray analysis within individual populations of cells obtained from postmortem brain samples as well as the brains of animal models of neurodegeneration.  相似文献   

8.
9.
Real-time PCR tomography is a novel, quantitative method for measuring localized RNA expression profiles within single cells. We demonstrate its usefulness by dissecting an oocyte from Xenopus laevis into slices along its animal-vegetal axis, extracting its RNA and measuring the levels of 18 selected mRNAs by real-time RT-PCR. This identified two classes of mRNA, one preferentially located towards the animal, the other towards the vegetal pole. mRNAs within each group show comparable intracellular gradients, suggesting they are produced by similar mechanisms. The polarization is substantial, though not extreme, with around 5% of vegetal gene mRNA molecules detected at the animal pole, and around 50% of the molecules in the far most vegetal section. Most animal pole mRNAs were found in the second section from the animal pole and in the central section, which is where the nucleus is located. mRNA expression profiles did not change following in vitro fertilization and we conclude that the cortical rotation that follows fertilization has no detectable effect on intracellular mRNA gradients.  相似文献   

10.
Protein localization within cells can be achieved by the targeting and localized translation of mRNA. Yet, our understanding of the dynamics of mRNA targeting and protein localization, and of how general this phenomenon is, is not clear. Plasmid-based expression systems have been used to visualize exogenously expressed mRNAs and proteins; however, these methods typically produce them at levels greater than endogenous and can result in mislocalization. Hence, a method that allows for the simultaneous visualization of endogenous mRNAs and their translation products in living cells is needed. We previously developed a method (m-TAG) to localize endogenously expressed mRNAs in yeast by chromosomal insertion of the MS2 aptamer sequence between the open-reading frame (ORF) and 3' UTR of any gene. Upon coexpression with the MS2 RNA-binding coat protein (MS2-CP) fused with GFP, the aptamer-tagged mRNAs bearing their 3' UTRs are localized using fluorescence microscopy. Here we describe an advanced method (mp-TAG) that allows for the simultaneous visualization of both endogenously expressed mRNAs and their translation products in living yeast for the first time. Homologous recombination is used to insert the mCherry gene and MS2-CP binding sites downstream from any ORF, in order to localize protein and mRNA, respectively. As proof of the concept, we tagged ATP2 as a representative gene and demonstrated that endogenous ATP2 mRNA and protein localize to mitochondria, as shown previously. In addition, we demonstrate that tagged proteins like Hhf2, Vph1, and Yef3 localize to their expected subcellular location, while the localization of their mRNAs is revealed for the first time.  相似文献   

11.
12.
13.
We have previously demonstrated a new cell manipulation technology by using an atomic force microscope (AFM) and ultrathin needles, named nanoneedles. The nanoneedle is an AFM tip etched by a focused ion beam (FIB) and is sharpened from 200 to 800 nm in diameter. In this study, we have evaluated the proper diameter of a needle required for insertion into human cells over a long period without causing cell death, and achieved highly efficient gene expression method for human cells using a nanoneedle and an AFM.  相似文献   

14.
Heat shock promoters are powerful tools for the precise control of exogenous gene induction in living organisms. In addition to the temporal control of gene expression, the analysis of gene function can also require spatial restriction. Recently, we reported a new method for in vivo, single‐cell gene induction using an infrared laser‐evoked gene operator (IR‐LEGO) system in living nematodes (Caenorhabditis elegans). It was demonstrated that infrared (IR) irradiation could induce gene expression in single cells without incurring cellular damage. Here, we report the application of IR‐LEGO to the small fish, medaka (Japanese killifish; Oryzias latipes) and zebrafish (Danio rerio), and a higher plant (Arabidopsis thaliana). Using easily observable reporter genes, we successfully induced gene expression in various tissues in these living organisms. IR‐LEGO has the potential to be a useful tool in extensive research fields for cell/tissue marking or targeted gene expression in local tissues of small fish and plants.  相似文献   

15.
16.
17.
Summary Genomic sequencing makes it possible to identify all the genes of an organism, now including Homo sapiens. Yet measurement of the expression of each gene of interest still presents a daunting prospect. Northern blots, RNase protection assays, as well as microarrays and related technologies permit measurement of gene expression in total RNA extracted from cultured cells or tissue samples. It would be most valuable, however, to quantitate gene expression noninvasively in living cells and tissues. Unfortunately, no reliable method has been available to measure levels of specific mRNAs in vivo. Peptide nucleic acids (PNAs) display superior ruggedness and hybridization properties as a diagnostic tool for gene expression, and could be used for this purpose. On the down side, they are negligibly internalized by normal or malignant cells in the absence of conjugated ligands. Nevertheless, we have observed that Tc-99m-peptides can delineate tumors, and PNA-peptides designed to bind to IGF-1 receptors on malignant cells are taken up specifically and concentrated in nuclei. We have postulated that antisense Tc-99m-PNA-peptides will be taken up by human cancer cells, will hybridize to complementary mRNA targets, and will permit scintigraphic imaging of oncogene mRNAs in human cancer xenografts in a mouse model. The oncogenes cyclin D1, ERBB2, c-MYC, K-RAS, and tumor suppressor p53 are being probed initially. These experiments provide a proof-of-principle for noninvasive detection of oncogene expression in living cells and tissues. This scintigraphic imaging technique should be applicable to any particular gene of interest in a cell or tissue type with characteristic receptors.  相似文献   

18.
We developed a method combining atomic force microscopy (AFM) and antibody-immobilized nanoneedles to discriminate living cells by probing intracellular cytoskeletal proteins without the need for cell labeling. The nanoneedles are ultra-thin AFM probes sharpened to 200 nm in diameter. While retracting a nanoneedle inserted into a cell, we measured the mechanical force needed to unbind the antibody-target protein complex. Using this method, the intermediate filament protein, nestin and neurofilament were successfully detected in mouse embryonic carcinoma P19 cells and rat primary hippocampal cells within a minute for a single cell and cell differentiation states could be determined. Additionally, the measured magnitude of the force detecting nestin was indicative of the malignancy of breast cancer cells. This method was shown to affect neither the doubling time of cells nor does it leave extrinsic antibodies within the examined cells, allowing to be used in subsequent analyses in their native state.  相似文献   

19.
目的:分析FHL2基因在健康人群个体间表达的差异,评估FHL2作为一种新的辐射生物剂量计的可行性。方法:收集20例健康人血液样本,提取白细胞RNA进行反转录,以β-actin作为内参,利用实时定量PCR方法,检测人群中FHL2基因相对表达水平,并分析其差异。结果:FHL2和β-actin基因的实时定量PCR熔解曲线均为单峰,所得到的Ct值与相应的PCR产物呈良好的线性关系;20例血液标本中FHL2表达水平之间存在较大差异,且其表达水平与性别无关。结论:公认的放射诱导基因FHL2可能不适合作为辐射生物剂量计。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号