首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a kinetic study of the dynamics of the population of two Saccharomyces cerevisiae strains (designated K1 and 522D) in mixed culture. These two strains are commonly used in wine making. The K1 strain (killer yeast) secretes a glycoprotein (killer toxin) which causes the death of the 522D strain (sensitive yeast). Initially, the mixed cultures were realized in batch fermentations. Initial concentrations of killer yeast were 5 and 10% of the total population. The influence of the killer strain on the sensitive cultures was measured in comparison with a reference fermentation. The reference fermentation was inoculated only with the sensitive strain. Results show that an initial concentration of 10% of killer strain affects the microbial population balance and the rate of ethanol production. However the fermentation was only slightly disturbed when the proportion of killer to sensitive yeast at the beginning of mixed culture was 5%. To achieve total displacement by the killer yeast at low concentrations, the mixed cultures were carried out in a continuous system. The results obtained in continuous fermentations with the same strains have shown that a level of contamination as low as 0.8% of killer strain was sufficient to completely displace the original sensitive population after 150 h incubation.  相似文献   

2.
Procedures were developed for purification of virus-like particles (VLPs) from killer, neutral, and sensitive strains of Saccharomyces cerevisiae. Morphologically similar spherical VLPs measuring 40 nm in diameter were extracted from all three phenotypes. The particles were partially purified by high-speed centrifugation through a layer of CsCl (1.26 g/cm3) and sucrose density gradient centrifugation. Gradient-purified preparations contained three centrifugal species that sedimented at approximately 43, 102, and 162S. The 43S component is considered to be an artifact. Preparations from killer strains contained three double-stranded RNA (ds-RNA) components with molecular weights of 1.19 x 10(6), 1.29 x 10(6) and 2.54 x 10(6). VLPs from neutral and sensitive strains contained only the largest ds-RNA species. VLP preparations were subsequently separated into two major density components by CsCl equilibrium gradient centrifugation. The light component banding at 1.28 to 1.30 g/cm3 was void of nucleic acid, and the heavy component banding at 1.40 g/cm3 contained only the largest ds-RNA species.  相似文献   

3.
Summary Glucose limited growth of a respiratory deficient mutant of Saccharomyces cerevisiae was studied in continuous culture under steady state conditions. The maximal growth rate, the Michaelis constant, the cell yield, the maintenance coefficient and the ethanol yield of the growing cell population were determined. The steady state concentrations of cells, glucose and ethanol were measured as functions of the dilution rate and compared with theoretical predictions. A far-reaching agreement between theory and experiment was observed. The decrease of the cell yield in the range of low dilution rates is well explained by introducing the concept of maintenance energy in the general theory of continuous cultures. A deviation of the cell yield from the predicted values, which has been found in the range of high dilution rates, is discussed.  相似文献   

4.
Summary Growth of Saccharomyces cerevisiae was investigated under aerobic conditions in a glucose limited chemostat. The steady state concentrations of cells, glucose and ethanol were measured in dependence of the dilution rate. The growth rate showed a biphasic dependence from the glucose concentration. A shift from respiratory to fermentative metabolism (Crabtree-effect) altering heavily the cell yield and the ethanol yield took place in the range of dilution rates between 0.3 h-1 and 0.5 h-1. Therefore the classical theory of continuous cultures is not applicable on aerobic growth of Saccharomyces cerevisiae under glucose limitation without introducing further premises. On the other hand the steady state cell concentration as a function of the dilution rate fits well the theoretically calculated curves, if cells are cultivated under conditions where only fermentation or respiration is possible.  相似文献   

5.
Abstract The present work reports on population dynamics in musts (pH 3.2) inoculated with pairs of Saccharomyces cerevisiae wild strains. Two assays determined the growth of both killer and sensitive strains; the latter were not totally eliminated from the must and non-proliferating populations were detected. Another two were carried out with two killer or two sensitive strains, respectively; the exponential growth of the two populations was observed in both cases. The succession of Saccharomyces cerevisiae strains was seen to be common in the four assays; only one strain proved to have the ability to complete fermentation, whereas the other disappeared after 28 days of fermentation. The most important fermentation compounds were estimated at the end of fermentations.  相似文献   

6.
Summary The performance ofZymomonas mobilis strains ATCC 31821 and ATCC 31823 was assessed in batch and continuous culture. In batch culture using a medium containing 250 g/l glucose, identical maximum specific growth rates of 0.16/h were found, though final biomass concentration and growth yield were significantly lower for ATCC 31 823 than for ATCC 31 821. Final ethanol concentrations in this medium were about 110 g/l vor both organisms. In continuous culture at increasing dilution rates using a medium containing 100 g/l glucose, no significant differences were seen between the two strains with respect to the fermentation parameters studied. For ATCC 31 821, maximum rates of glucose uptake (Qs) and ethanol produktion (Qp) of 8.7 g glu/g/h and 4.4 g eth/g/h, respectively, were found. Both strains showed a similar performance at a fixed dilution rate of 0.1/h, where maximum ethanol concentrations of about 68 g/l were reached at a feed glucose concentration of about 139 g/l. At this dilution rate the maximum values of Qs and Qp were about 5.8 g glu/g/h and 2.8 g eth/g/h, respectively. Test tube experiments showed that growth, measured as optical density, decreased with increasing concentrations of exogenous ethanol with complete inhibition of growth at ethanol concentrations >8% (v/v). As evidenced by the results presented here, we have been unable to practice the invention as described in U.S. Patent 4,403,034 (Rogers and Tribe 1983).Nomenclature D Dilution rate, 1/h - max maximum specific growth rate, 1/h - SR Initial substrate concentration, g glucose/1 - S Residual substrate concentration, g glucose/1 - S0 Effluent substrate concentration, g glucose/1 - X Blomass concentration; g cells/l - OD620 Optical density at 620 nm, dimensionless - [P] Product concentration, g ethanol/1 - Yx/s Growth yield, g cells/g glucose used - Yp/s Product yield, g ethanol/g glucose used - %, Yield Percentage yield, Yp/sx100/Y p s/max =Yp/sx100/0.51 - Qs Specific rate of glucose uptake, g glucose/g cells/h - Qp Specific rate of ethanol formation, g ethanol/g cells/h - me Maintenance energy coefficient, g glucose/g cells/h - VP Volumetric productivity, g ethanol/l/h - t Fermentation time, h  相似文献   

7.
A study of 26 killer-resistant wine strains of Saccharomyces cerevisiae, isolated during spontaneous fermentations in three vineyards in NW Spain, was carried out employing several methods that included a spheroplast-killing assay and analysis of chromosomal DNA patterns by pulse-field agarose electrophoresis. The results showed that 92% of the strains were derivatives of K2 killer toxin producing wine strains isolated from the same fermentations, and that they could be grouped into four different karyotypes. The remaining strains were killer-resistant at cell-wall level and were not related to the others, as was demonstrated by the absence of L and M ds-RNAs and by their different karyotypes.  相似文献   

8.
9.
Short-period (40-50 min) synchronized metabolic oscillation was found in a continuous culture of yeast Saccharomyces cerevisiae under aerobic conditions at low-dilution rates. During oscillation, many parameters changed cyclically, such as dissolved oxygen concentration, respiration rate, ethanol and acetate concentrations in the culture, glycogen, ATP, NADH, pyruvate and acetate concentrations in the cells. These changes were considered to be associated with glycogen metabolism. When glycogen was degraded, the respiro-fermentative phase was observed, in which ethanol was produced and the respiration rate decreased. In this phase, the levels of intracellular pyruvate and acetate became minimum, ATP became high and intracellular pH at its lowest level. When glycogen metabolism changed from degradation to accumulation, the respiratory phase started, during which ethanol was re-assimilated from the culture and the respiration rate increased. Intracellular pyruvate and acetate became maximum, ATP decreased and the intracellular pH appeared high. These findings may indicate new aspects of the control mechanism of glycogen metabolism and how respiration and ethanol fermentation are regulated together under aerobic conditions.  相似文献   

10.
The recovery of cutinase of Fusarium solani pisi produced by the yeast Saccharomyces cerevisiae was studied in a fluidised bed adsorption system directly integrated with a productive fermenter (so-called direct product sequestration; DPS). The relative efficiency of this system was compared with the one of a conventional purification process by discrete sequences of fermentation, broth clarification, ultrafiltration and fixed bed anion exchange chromatography. By direct product sequestration of the extracellular heterologous cutinase it was possible, through only one unit operation: (i) to perform broth clarification, (ii) to obtain a high cutinase concentration factor, and (iii) to recover cutinase with a specific activity that equalled that obtained with the conventional purification process. It was also possible (iv) to substantially reduce the total process time, (v) to improve the overall yield, and (vi) to increase cutinase productivity. Furthermore, the procedure outlined is suitable for large scale bioprocess exploitation.  相似文献   

11.
Summary Bakers' yeast has been grown on a medium containing 1% glucose in aerobic conditions. The fermentation exhibited five phases, lag, fermentative growth, transition, growth on ethanol and stationary phase. Samples were taken during each phase and analysed for the levels of a selection of intermediary metabolites. The levels of ATP, AMP, glucose 6-phosphate, fructose 1,6- diphosphate, 6-phosphogluconate, citrate and glyoxylate showed differences in the different phases of the fermentation and can be used as indicators of metabolic state, whereas ADP, triose phosphates, fructose 6-phosphate, 2-phosphoglycerate and oxalacetate did not show much variation and were less useful as metabolic indicators.  相似文献   

12.
Summary Cell cycle parameters in different radiation-sensitive strains of diploid yeast were determined by flow cytofluorometry. The cell generation time was increased in homozygous rad2 and rad51 mutants but was not significanty different from the wild type in rad9 and rad6 mutants. All mutants had a longer G1-phase than the wild type. A lengthened S-phase was found in rad2 cells. Rad51 mutants displayed a considerably longer duration of G2.  相似文献   

13.
The effect of killer strains of Saccharomyces cerevisiae on the growth of sensitive strains during must fermentation was studied by using a new method to monitor yeast populations. The capability of killer yeast strains to eliminate sensitive strains depends on the initial proportion of killer yeasts, the susceptibility of sensitive strains, and the treatment of the must. In sterile filtered must, an initial proportion of 2-6% of killer yeasts was responsible for protracted fermentation and suppression of isogenic sensitive strains. A more variable initial proportion was needed to get the same effect with non-isogenic strains. The suspended solids that remain in the must after cold-settling decreased killer toxin effect. The addition of bentonite to the must avoided protracted fermentation and the suppression of sensitive strains; however, the addition of yeast dietary nutrients with yeast cell walls did not, although it decreased fermentation lag.  相似文献   

14.
Cultures of Saccharomyces cerevisiae grown continuously produce an autonomous oscillation in many metabolic outputs. The most conveniently measured variable, i.e., dissolved oxygen concentration, oscillates with a period of 40-55 min. Previously we have identified two compounds capable of resetting phase, acetaldehyde and hydrogen sulfide. The phase-response curves constructed for acetaldehyde show a strong (Type 0) response at 3.0 mM and a weak (Type 1) response at 1.0 mM. Ammonium sulfide phase-response curves (pulse injected at 1.0 microM and 3.0 microM) revealed that sulfide is only an effective perturbation agent when endogenous sulfide concentrations are at a maximum. Also only Type 1 phase responses were observed. When the phase-response curve for sulfite (at 3.0 M) was constructed, phase responses were at a maximum at 60 degrees, indicating the possible involvement of sulfite in cell synchronization. It is concluded that endogenously produced acetaldehyde and sulfite tune the oscillation of mitochondrial energization state whereas sulfide mediates population synchrony.  相似文献   

15.
以酿酒酵母两种不同类型的嗜杀菌株SK4(K1型)和ERR1(K2型)为材料,分析了不同嗜杀酵母的嗜杀特性,两株嗜杀酵母具有相互杀死作用,其嗜杀活性与菌体生长有关。SK4和ERR1的嗜杀质粒的比较表明:M1-dsRNA质粒和M2-dsRNA质粒分子量分别为1.7kb和1.5kb,两株菌的L-dsRNA质粒均为4.0kb。用高温和紫外线处理嗜杀酵母,嗜杀活性随之消失,消除菌中的M-dsRNA质粒也相应  相似文献   

16.
An industrial spectrophotometer was used as a very accurate on-line biomass sensor to investigate fast dynamic changes in yeast culture in the range of 0.5–5 g/l. High sensitive variation in biomass concentration of 0.015 g/l was detected. A fast dynamic response is induced in a steady state continuous culture of Saccharomyces cerevisiae by an acetate pulse and biomass concentration profile clearly determined by this sensor.  相似文献   

17.
Industrial ethanol fermentation is a complex microbiological process to which yeast cells must adapt for survival. One of the mechanisms for adaptation is thought to involve chromosome rearrangements. We found that changes in chromosome banding patterns measured by pulsed-field gel electrophoresis can also be produced in laboratory media under simulated industrial conditions. Based on analysis of their generational variation, we found that these chromosome changes were specific to the genetic backgrounds of the initial strains. We conclude that chromosome rearrangements could be one of the factors involved in yeast cell adaptation to the industrial environment.  相似文献   

18.
Five, highly flocculeng strains of Saccharomyces cerevisiae, isolated from wine, were immobilized in calcium alginate beads to optimize primary must fermentation. Three cell-recycle batch fermentations (CRBF) of grape musts were performed with the biocatalyst and the results compared with those obtained with free cells. During the CRBF process, the entrapped strains showed some variability in the formation of secondary products of fermentation, particularly acetic acid and acetaldehyde. Recycling beads of immobilized flocculent cells is a good approach in the development and application of the CRBF system in the wine industry.  相似文献   

19.
The specific growth rate () of a respiration-deficient mutant of Saccharomyces cerevisiae growing under defined experimental conditions in batch culture (mineral medium plus glucose and vitamins at 25°C) varied from experiment to experiment over a wide range (0.10–0.24 h-1) and showed a normal distribution. Neither the age of the culture, the history of the inoculum, nor experimental error accounted wholy for the variability of . The variation was positively correlated with the specific rate of glucose transfer and negatively with the specific rate of production of non-fermentative CO2. The yield decreased with implying higher maintenance requirements in batch culture (4.7 mmoles g-1 h-1) than in continuous culture (0.8 mmoles g-1 h-1). It was concluded that the strain is capable of establishing any one of several steady states of growth under the same experimental conditions, each steady state displaying some buildin inertia with respect to change. The variations of the specific rates of glucose transfer and non-fermentative CO2 production, and of the yield appeared to be consequences rather than causes of the variation of . The ultimate causes of the variation of remained unidentified.Part of a doctoral thesis submitted by J. Martinez-Peinado to the University of Navarra Spain  相似文献   

20.
The problem of dynamically modeling a chemostat is addressed. Using the results of continuous culture experiments for the growth of a strain of Saccharomyces cerevisiae on a glucose-limited medium, a general approach to developing dynamic models is discussed. The approach to develop and verify the model involves three different types of experiments: steady-state, dynamic step response, and feedback identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号