首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trichodermin, a microbial biofungicide obtained by the cultivation of the genus Trichoderma in geometrically dissimilar bioreactors, was investigated both in production and the application in food plants at different stages of growth. The growth of the producer was considerably better in the counterflow mixing system (CFMS) in comparison with the turbine mixing system (STMS). Morphological changes of the strain were studied during batch fermentation at different mixing regimes. The characteristic dynamics of the morphology were better when using CFMS. The biofungicide trichodermin produced by CFMS showed a somewhat higher activity for barley and sugar beet.  相似文献   

2.
The influence of two mixing systems on the principal parameters of mycelial fermentations of Aspergillus niger, Fusicoccum amygdali Del. and Fusarium moniliforme Sheld. as well as their metabolite citric acid, fusicoccin and gibberellic acid production was analyzed from the viewpoint of flow energy distribution in a bioreactor. The growth and metabolite synthesis during fermentation was compared under different mixing conditions in the fermenter FU-8 with a turbine mixing system (TMS) and a counterflow mixing system (CMS). It was found that the growth, productivity and respiration characteristics as well as the morphology of these cultures varied dependent on the mixing system and agitation regime used. The counterflow mixing system was more favourable for large agglomerates (F. amygdali) or soft pellets (A. niger) forming fungi, while the turbine mixing system was more effective for F. moniliforme growing in the form of small clumps and freely dispersed hyphae. Flow characteristics under different mixing conditions were analyzed in a model fermenter. The kinetic energy of flow fluctuations was measured in gassed and ungassed water and different fermentation broth systems by using a Stirring Intensity Measuring Device (SIMD-F1). The difference of the energy values at different points was better expressed in the fermenter with a turbine mixing system in comparison with that having a counterflow mixing system. High viscous F. amygdali and A. niger broth provided higher energy values compared to water and low viscous F. moniliforme broth. It was observed that the intensity of growth and the intensity of the synthesis decreased at very high energy values, which was obviously connected to the influence of the irreversible shear stress on the mycelial morphology.  相似文献   

3.
Clubroot is a serious threat to canola production in western Canada. The biofungicide Serenade® (Bacillus subtilis QST713) reduced the disease substantially in controlled environment, but showed variable efficacy in field trials. To better understand how this biofungicide works, two of the product components, i.e., B. subtilis and its metabolites (product filtrate), were assessed under controlled conditions for their relative contribution to clubroot control. The information may be used to optimize the product formulation. The bacterium or product filtrate alone was only partially effective against clubroot, reducing disease severity by about 60% relative to untreated controls. In contrast, Serenade controlled the disease by over 90%. This pattern of response was mirrored in quantitative PCR assessment on P. brassicae DNA within canola roots; the lowest and highest amounts of pathogen DNA were found in roots of Serenade treatment (0.02 and 0.01 ng/g) and controls (0.52 and 13.35 ng/g), respectively, at 2 and 3 weeks after treatment. During this period, the amount of DNA changed little in Serenade-treated roots but increased by almost 30-fold in the control. The product filtrate or B. subtilis also reduced the pathogen DNA substantially (0.03–1.16 ng/g). Serenade decreased the germination and viability of P. brassicae resting spores only marginally. It is suggested that biofungicide Serenade controls clubroot largely via suppressing root-hair and cortical infection by P. brassicae zoospores. The bacterial metabolites in the product formulation possibly assist B. subtilis in rhizosphere colonization and clubroot control by minimizing the competition from other soil microbes.  相似文献   

4.
J Lyttle 《CMAJ》1995,153(4):468-470
Lieutenant-Commander Colin Harwood was part of a team from the Canadian Forces Medical Service (CFMS) that was sent to Rwanda in the wake of that country''s bloody civil war. The Ottawa-based officer says the CFMS personnel helped ease many serious medical problems during the 10 weeks they spent there, although the sheer numbers of wounded, diseased and orphaned people sometimes seemed overwhelming. The Canadian personnel helped more than 22,000 patients during their stay.  相似文献   

5.
Kinetics of growth inhibition of fungi Fusarium and Bipolaris caused by bacteria Pseudomonas sp. V-6798 and Azotobacter chroococum V-2272 D on dense nutrient media, both in single-crop system and by coinoculation, was demonstrated. The speed of fungal colonies growth as a function of bacteria concentration in inoculate was shown to be in accordance with the Ierysalimskii modified equation. The degree of antagonistic activity was suggested to be assessed by the constant of inhibition (Ki) and residual rate of fungi growth. Constant of inhibition of fungal growth by bacteria varied within 10-100 cells/ml for observed species. More effective fungistatic influence of bacterial strains in combined culture was observed. Parameters reported in the present study allow comparing the degree of bacteria antifungal activity in vitro. Suggested screening method could be used for selection of bacteria as activity biofungicide and while selecting biomedication for defined plant pathogen disruption.  相似文献   

6.
In a previous study, it was observed that Microsphaeropsis ochracea was less efficacious as a biofungicide for apple scab when applied under field conditions as an unformulated spore suspension with an airblast spray using low water volumes as compared to a ground cover spray using high water volumes. The effect of spore concentration (109 to 1012 spores ha?1), water volume (250–1500 L ha?1), and 20 adjuvants were studied to improve colonization of apple leaves by M. ochracea. Using commercial-type spray equipment, the fungus was applied to excised apple leaves. Higher spores concentrations resulted in greater colonization. Water volume did not have a strong impact on colonization. Only a few adjuvants improved germination (glycerine) and mycelial growth (K-90, Agrimer, Ekol, and Tween 80) in some trials. When tested on apple trees, the adjuvant Assist provided the most consistent improvement in colonization in five out of eight trials. The use of oils, humectants, and surfactants could broaden the opportunities for using this biofungicide.  相似文献   

7.
Over recent years, the company ECOGEN Inc. has been successfully developing a biofungicide known under the trade name ‘AQ10’ in the USA where it has been authorized in 1994 for controlling powdery mildews on various host plants. This new product is based on the use ofAmpelomyces quisqualis, an hyperparasitic fungal species infesting representatives ofErysiphaceae (powdery mildews) only. The production process now allows for the hyperparasite to be mass-cultured and formulated into an easily water-dispersed, dry powder which preserves spore viability at room temperature for a period in excess of 12 months. Upon spraying, the conidia germinate rapidly to effectively attack any developing powdery mildew colonies. Efforts are now concentrating on experimental application schedules in vineyards aimed at defining an optimal positioning of the biofungicide within existing disease control programmes. The pilot trials are being conducted over a large number of wine-producing areas under a Mediterranean climate around the world where powdery mildew represents the major pest problem. Results obtained so far show that in order to achieve an optimal, cost-effective, consistent disease control, the biofungicide has to be applied before the incidence of powdery mildew has reached high levels, and at any of the three most susceptible growth stages of grapevine,i.e. bud break, between flowering and bunch closure, and just before veraison. The biofungicide may therefore be used as a curative to slightly preventative control agent likely to fit into any IPM strategies. The various technical problems associated with the development and industrial production of this new biofungicide are largely solved. Constraints relating to designing comprehensive, user-friendly IPM programmes which include ‘AQ10’ still require adjustments in terms of defining spraying dates and intervals according to a range of agricultural practices, climatic changes likely to occur during the season, and compatibility for tank-mixing with other pesticides. A number of additional constraints relate to official registration in various countries, distributors’ and farmers’ acceptance of a new, ‘living’ product: these are still more difficult to address because they claim for a profound change in the users’ general attitude towards controlling diseases of cultivated plants.  相似文献   

8.
Biomass growth, consumption of carbon and energy source, specific rates of formation of metabolic byproducts, biomass yield referred to the C-source and to oxygen, respiration rate and the value of RQ were studied in Klebsiella aerogenes CCM 2318 (on a synthetic glucose medium) at different specific growth rates. Maintenance coefficients and the total energy balance of the cultivation process were evaluated for a multistage tower fermentor with a defined interstage mixing. The results pointed to changes in both glucose metabolism and the physiological state of the population, brought about by changes in specific growth rate. As compared with a chemostat, the culture was found to exhibit a different physiological character is stages 1 and 4 despite a considerable interstage mixing.  相似文献   

9.
In order to overproduce biofungicides agents by Bacillus amyloliquefaciens BLB371, a suitable culture medium was optimized using response surface methodology. Plackett-Burman design and central composite design were employed for experimental design and analysis of the results. Peptone, sucrose, and yeast extract were found to significantly influence antifungal activity production and their optimal concentrations were, respectively, 20 g/L, 25 g/L, and 4.5 g/L. The corresponding biofungicide production was 250 AU/mL, corresponding to 56% improvement in antifungal components production over a previously used medium (160 AU/mL). Moreover, our results indicated that a deficiency of the minerals CuSO(4), FeCl(3) · 6H(2)O, Na(2)MoO(4), KI, ZnSO(4) · 7H(2)O, H(3)BO(3), and C(6)H(8)O(7) in the optimized culture medium was not crucial for biofungicides production by Bacillus amyloliquefaciens BLB371, which is interesting from a practical point of view, particularly for low-cost production and use of the biofungicide for the control of agricultural fungal pests.  相似文献   

10.
The higher ethanol titer inevitably requires higher solids loading during the simultaneous enzymatic saccharification and fermentation (SSF) using lignocellulose as the feedstock. The mixing between the solid lignocellulose and the liquid enzyme is crucially important. In this study, a bioreactor with a novel helical impeller was designed and applied to the SSF operation of the steam explosion pretreated corn stover under different solids loadings and different enzyme dosages. The performances using the helical impeller and the common Rushton impeller were compared and analyzed by measuring rheological properties and the mixing energy consumption. The results showed that the new designed stirring system had better performances in the saccharification yield, ethanol titer, and energy cost than those of the Rushton impeller stirring. The mixing energy consumption under different solids loadings and enzyme dosages during SSF operation were analyzed and compared to the thermal energy in the ethanol produced. A balance for achieving the optimal energy cost between the increased mixing energy cost and the reduced distillation energy cost at the high solids loading should be made. The potentials of the new bioreactor were tested under various SSF conditions for obtaining optimal ethanol yield and titer. Biotechnol. Bioeng. 2010. 105: 718–728. © 2009 Wiley Periodicals, Inc.  相似文献   

11.
A three-dimensional CFD model incorporating the rheological properties of sludge was developed and applied to quantify mixing in a full-scale anaerobic digester. The results of the model were found to be in good agreement with experimental tracer response curve. In order to predict the dynamics of mixing, a new parameter, UI (uniformity index) was defined. The visual patterns of tracer mixing in simulation were well reflected in the dynamic variation in the value of UI. The developed model and methods were applied to determine the required time for complete mixing in a full-scale digester at different solid concentrations. This information on mixing time is considered to be useful in optimizing the feeding cycles for better digester performance.  相似文献   

12.
The effect of fungal inoculum properties on colonization of nonsterile soil by three isolates of the white-rot fungus Trametes versicolor was investigated. Fungal inoculum properties were examined in separate experiments and were fungal inoculum composition, age of fungal inoculum, concentration of the inoculum and inoculation method. The fungal inoculum composition study compared pine versus poplar sawdust as the basic carrier with varying amounts of corn grit, corn meal and starch. The age of the fungal inoculum studied ranged from 3 to 21 days. The inoculum concentration gradually increased from 0 to 50% (v/v). The study assessing inoculation method compared mixing with layering techniques. The effect of moisture conditions of soil, sawdust and sand in combination with two inoculation methods (mixing versus point source inoculation) on colonization by T. versicolor was also determined. Colonization of soil was always assessed visually and enzymatically monitoring mycelial growth, biological potential (fluorescein diacetate assay) and laccase levels. Generally, the three different assessment methods correlated (P < 0.05) with each other. A fungal inoculum based on pine sawdust supported white-rot fungal growth in soil better than a poplar sawdust basis. Colonization of soil by T. versicolor was improved by increasing the corn content of the fungal inoculum. Younger (<7 days old) fungal inoculum resulted in better soil colonization than older (>10 days). A strong correlation (P < 0.001) was observed between the amount of fungal inoculum used in the soil augmentation and white-rot fungal colonization of soil. Inoculation of the fungal inoculum into soil by mixing was preferable over application in layers or point source inoculation. Moisture level did not influence biological potential measurements, but affected mycelial growth and laccase expression.  相似文献   

13.
为科学筛选提升南亚热带人工林生产力的树种配置模式,选择南亚热带8个乡土树种,采用随机区组的试验设计,建立了树种多样性梯度(1、2、4、6个树种)人工新造林试验平台,研究树种多样性及不同功能特性树种混交对人工林早期树木生长的影响。结果表明: 在树木生长第5年,树木生长并没有随树种多样性增加而增加;速生树种马尾松和米老排纯林生长量是珍贵树种红椎和格木纯林的2.5~4.5倍;2个树种混交和4个树种混交情况下,针阔树种混交、速生树种与固氮树种混交显著提高树木生长量51.5%~132.8%,而当6个树种混交时,不同树种组配对生长量没有显著影响。不同树种配置模式下土壤氮、磷养分是影响树木早期生长的主要因素。针阔树种混交、速生和固氮树种混交能显著提高南亚热带人工林树木的早期生长。  相似文献   

14.
Kinetics of growth inhibition of fungi Fusarium and Bipolaris caused by bacteria Pseudomonas sp. V-6798 and Azotobacter chroococum V-2272 D on dense nutrient media, both in single-crop system and by coinoculation, was demonstrated. The speed of fungal colonies growth as a function of bacteria concentration in inoculate was shown to be in accordance with the Ierysalimskii modified equation. The degree of antagonistic activity was suggested to be assessed by the constant of inhibition (K i ) and residual rate of fungi growth. Constant of inhibition of fungal growth by bacteria varied within 10–100 cells/ml for observed species. More effective fungistatic influence of bacterial strains in combined culture was observed. Parameters reported in the present study allow comparing the degree of bacteria antifungal activity in vitro. Suggested screening method could be used for selection of bacteria as activity biofungicide and while selecting biomedication for defined plant pathogen disruption.  相似文献   

15.
Lime stabilization is a means to raise the pH of biosolids to meet specific pathogen requirements. Along with controlling the microbial growth, lime stabilization reduces the potential for offensive odors. Lime stabilized biosolids can be beneficially used as a soil amendment and also for land reclamation. However, if biosolids are not properly incorporated with the lime, there is a potential for microbial growth, which consequently leads to the emanation of offensive odors and growth of pathogens. Proper mixing was found to be an important factor for the reduction of offensive odors in biosolids treatment. To better understand the effects of mixing on odorous products, bench-scale and full-scale tests were conducted to assess the lime stabilization process and investigate mixing quality at a wastewater treatment plant to help reduce odors associated with known odorants. The results of 4-week laboratory bench-scale tests showed that mixing had the largest effect on odor. The hedonic tone test of the control samples with poor mixing showed a hedonic tone of -2.9 initially and then dropped to -7.3 on Day 29. The hedonic tone of the 3.5%, 7%, and 10% lime mixed biosolids had similar hedonic tones (-2.8 to -2.5) on Day 1 and slightly fluctuated over time and ended at -1.6 to -2.7 on Day 29, which was less odorous than the controls. The control sample with poor mixing showed a rapid pH drop from 12.1 on Day 1 to 8.4 on Day 7. The pH of the control sample was considerably lower than the mixed samples and ended up on Day 28 with a pH of 8.0. The pH of the 7% and 10% samples were relatively stable throughout the 4-week period with a pH still higher than 12 on Day 28. The biosolids with better mixing had a less offensive odor and weaker odor strength than the controls collected at the plant with poor mixing. The lime stabilization process in the wastewater treatment plant was modified in a full-scale study by prolonging the mixing time. The samples collected from the modified process had a less offensive odor and weaker odor strength than the controls from the original lime addition process with short mixing time. The hedonic tone of the two biosolid samples taken from the modified process (-2.5 to -3.0) was less negative than the controls (-3.5 to -4.5). The pH of the biosolid samples taken from the modified process was still above 12 on Day 21, while the pH notably drooped in the controls from 11 on Day 1 to 7.5-8.5 on Day 7. In addition, headspace analysis from both bench and full-scale tests indicated that the sulfur compounds were more prominent in poorly mixed samples than well mixed samples.  相似文献   

16.
平板式光生物反应器培养液混合强度对螺旋藻生长的影响   总被引:2,自引:0,他引:2  
目的:探讨平板式光生物反应器内培养液混合对螺旋藻生长的影响规律。方法:在平板式光生物反应器中进行钝顶螺旋藻(Spirulina platensis)户内和户外培养,通过改变通入反应器内气体的流量来控制培养液的混合强度,测定藻细胞的面积产量和叶绿素含量。结果:在一定的混合强度范围内,藻细胞的面积产量随着混合强度的增加而增加;室内培养时,混合强度的改变不会影响藻细胞的光合反应特性,户外高密度培养时,培养液混合强度的改变会造成藻细胞光合反应特性的变化。结论:强化培养液的混合可以提高螺旋藻产量。  相似文献   

17.
A quantitative evaluation of the hydrolysis of wheat starch using Termamyl, a thermostable alpha-amylase (endo-1,4-alpha-d-glucan, glucanohydrolase; EC 3.2.1.78), is reported. Data from the monitoring of the hydrolysis of wheat starch indicated that, after 1 h, glucose and maltooligosaccharides up to DP 7 were the main hydrolysis products and thus enabled optimization of a liquefication step during the production of L-lactic acid. The monitoring system used, both in the on- and off-line mode, was based on continuous flow microdialysis sampling (CFMS) coupled to anion exchange chromatography and integrated pulsed electrochemical detection (IPED). A microdialysis probe equipped with a 5-mm polysulfone (SPS 4005) membrane, with a molecular-weight cut-off of 5 kDa, was used to sample the hydrolysis products of native wheat starch at 90 degrees C. Characteristic fingerprint separations were achieved by anion exchange chromatography after enzymatic hydrolysis. Post-column switching improved the detection and, consequently, also quantification of the hydrolysates as fouling of the electrode could be reduced. Maltooligosaccharide standards were used for quantification and to verify the elution of the hydrolysates by spiking the off-line samples. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 546-554, 1997.  相似文献   

18.
This study investigates the scaling of photobioreactor productivity based on the growth of Nannochloropsis salina incorporating the effects of direct and diffuse light. The scaling and optimization of photobioreactor geometry was analyzed by determining the growth response of a small-scale system designed to represent a core sample of a large-scale photobioreactor. The small-scale test apparatus was operated at a variety of light intensities on a batch time scale to generate a photosynthetic irradiance (PI) growth dataset, ultimately used to inform a PI growth model. The validation of the scalability of the PI growth model to predict productivity in large-scale systems was done by comparison with experimental growth data collected from two geometrically different large-scale photobioreactors operated at a variety of light intensities. For direct comparison, the small-scale and large-scale experimental systems presented were operated similarly and in such a way to incorporate cultivation relevant time scales, light intensities, mixing, and nutrient loads. Validation of the scalability of the PI growth model enables the critical evaluation of different photobioreactor geometries and design optimization incorporating growth effects from diffuse and direct light. Discussion focuses on the application of the PI growth model to assess the effect of diffuse light growth compared to direct light growth for the evaluation of photobioreactors followed by the use of the model for photobioreactor geometry optimization on the metric of areal productivity.  相似文献   

19.
Pathogen spread within pig host populations can vary depending on within-herd interactions among pigs also called the contact structure. The recommended batch farrowing management, allowing for a fixed-interval mating for groups of sows of equal size, called batches, leads to an all-in/all-out management of pigs in which animals in different batches have no contact. To maintain a profitable pig delivery, producers have to deliver groups of pigs at a given weight, what needs sometimes herd management adaptations. However, producers’ adaptations that avoid delivering pigs below slaughtering weight (out-of-range pigs), result in increasing the contact between animals from different batches. To study the influence of herd management on contact structure and on pig delivery, a stochastic mathematical model representing population dynamics within a farrow-to-finish herd was elaborated. Sixteen management systems were represented combining or not the all-in/all-out management system with producers’ decisions: batch mixing, use of an extra room, suppression of the drying period and sale of post-weaning batches. Two types of contact were considered: via the animals themselves, when batch mixing occurred; and via the room, when decontamination was not complete. The impact of producers’ decisions on contact structure and on pig delivery, differed radically when pig growth was normal and when it was slow (i.e. mean age at slaughtering weight increased by 20%). When pig growth was normal, the all-in/all-out management prevented both contact via the animals and via the room but resulted in 9% of pigs delivered out of range. The use of an extra room or batch mixing decreased this percentage, the latter resulting in very frequent contact between batches via the animals. When pig growth was slow, the all-in/all-out management led to a very high percentage of pigs delivered out of range (almost 80%). The suppression of the drying period at the end of the finishing period and the sale of post-weaning batches induced a significant decrease in this percentage (down to 2% to 20%), the latter allowing to reduce the percentage of batches that made contact via the room (40% instead of 80%). This pig herd model helped to understand the compromise for producers between implementing internal biosecurity or maintaining a profitable pig delivery. Our results show that there was no unique optimal system and that efficient producers’ decisions (for biosecurity and delivery) may differ, depending on pig growth.  相似文献   

20.
The heat generated by mixing and lactose metabolism, during the continuous production of single cell protein from cheese whey lactose using a jacketed fermenter with running cooling water, was calculated using a heat balance equation. The technique quantified the heat produced in and lost from the fermentation unit. Most of the heat generated by mixing in the cell-free system (97.47%) was lost with exhaust gas, while a very small amount (2.53%) was lost through the fermenter lid, wall, and bottom. The heat generated by mixing was significant (26.31% of the total heat generated in the fermentation system with an active yeast population present) and, therefore, cannot be ignored in heat balance calculations. About 19.71% of the total heat generated in the reactor was lost through the coolant at an ambient temperature of 22 +/- 0.5 degrees C, showing the need for a cooling system. A yeast population size of 986 million cells/mL and a lactose removal efficiency of 95.6% were observed. About 72.5% and 27.5% of the lactose consumed were used for growth and respiration, respectively. A yield of 0.66 g of cells/g of lactose was achieved. The heat released by unit biomass was 7.05 kJ/g of cells. The results showed the significant impact of ambient air temperature on the cooling load. The heat to be removed from the medium by the cooling system varied from 3.46 to 281.56 kJ/h when the temperature increased from 16 to 30 degrees C. A heating system is needed to maintain the medium temperature at 34 degrees C when the ambient air temperature is below 16 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号