首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human plasminogen kringle 4 has been crystallized in two different crystal forms: monoclinic, a = 32.78(3), b = 49.17(2), c = 46.27(3) A, beta = 100.67 degrees, space group P2(1), four molecules/unit cell, two molecules/asymmetric unit; orthorhombic, a = 32.09(7), b = 49.14(6), c = 49.47(9) A, space group P2(1)2(1)2, four molecules/unit cell. Both crystal forms have a large protein fraction (66% for monoclinic and 62% for orthorhombic) and diffract x-rays to 2.0 A resolution. A self-rotation function has been calculated with monoclinic data indicating a non-crystallographic 2-fold rotation approximately parallel to a* (peak height of 14.3 x sigma). Cross-rotation function calculations are in progress utilizing the coordinates of the conserved structure of kringle 1 of prothrombin and plasminogen kringle 4.  相似文献   

2.
Human apo-lactoferrin in both native and deglycosylated forms has been purified, and crystals obtained by dialysis against low ionic strength buffer solutions. The crystals of native apo-lactoferrin are orthorhombic, space group P2(1)2(1)2(1) with cell dimensions a = 222.0 A, b = 115.6 A, c = 77.8 A and have two protein molecules per asymmetric unit. Two crystal forms of deglycosylated apo-lactoferrin have been obtained. One is orthorhombic, space group P2(1)2(1)2(1), with cell dimensions a = 152.1 A, b = 94.6 A, c = 55.8 A. The second is tetragonal, space group I4, with cell dimensions a = b = 189.4 A, c = 55.1 A. Both of the latter have only one molecule per asymmetric unit, and are suitable for high-resolution X-ray structure analysis.  相似文献   

3.
The crystal structure of the title compound, an analogue of the angiotensinogen-(10-13) peptide in which the N-terminal leucine and the C-terminal tyrosine are respectively replaced by the phenyloxy-acetic group and by phenylalanine, has been determined by X-ray diffraction. The peptide crystallizes in the space group P2(1)2(1)2(1) with a = 4.866(1), b = 22.311(3), c = 27.213(4) A and Z = 4. The crystal structure was solved by direct methods and refined to an R value of 0.056. The molecules adopt a pleated sheet conformation with the hydrophobic residues alternatively situated on the right and left of the main chain. In the crystallographic "a" direction, the molecules are linked by hydrogen bonds and form parallel pleated sheet-type structures.  相似文献   

4.
Crystals of recombinant wild-type antichymotrypsin have been prepared by the method of vapor diffusion with polyethylene glycol 4000 as a precipitant at pH 5.7. Two crystal forms are observed. One form belongs to tetragonal space group P4(3)2(1)2 (or P4(1)2(1)2) and has unit cell dimensions a = b = 126 A, c = 243 A, with two molecules in the asymmetric unit. The other crystal form belongs to orthorhombic space group P2(1)2(1)2(1) and has unit cell parameters of a = 73 A, b = 78 A and c = 80 A, with one molecular in the asymmetric unit. Diffraction intensity measurements have been made on the tetragonal crystal form to a limiting resolution of 4.1 A, and reflections have been observed on X-ray still photographs to a limiting resolution of 2.5 A for the orthorhombic form. An activity assay of redissolved tetragonal form crystals indicates that the uncleaved, functional serpin has been crystallized.  相似文献   

5.
The design, synthesis, characterization and self-assembling properties of a new class of amphiphilic peptides, constructed from a bifunctional polar core attached to totally hydrophobic arms, are presented. The first series of this class, represented by the general structure Py(Aibn)2 (Py=2,6-pyridine dicarbonyl unit; Aib=alpha, alpha'-dimethyl glycine; n=1-4), is prepared in a single step by the condensation of commercially available 2,6-pyridine dicarbonyl dichloride with the methyl ester of homo oligoAib peptide (Aibn-OMe) in the presence of triethyl amine. 1H NMR VT and ROESY studies indicated the presence of a common structural feature of 2-fold symmetry and an NH...N hydrogen bond for all the members. Whereas the Aib3 segment in Py(Aib3)2 showed only the onset of a 3(10)-helical structure, the presence of a well-formed 3(10)-helix in both Aib4 arms of Py(Aib4)2 was evident in the 1H NMR of the bispeptide. X-ray crystallographic studies have shown that in the solid state, whereas Py(Aib2)2 molecules organize into a sheet-like structure and Py(Aib3)2 molecules form a double-stranded string assembly, the tetra Aib bispeptide, Py(Aib4)2, is organized to form a tetrameric assembly which in turn extends into a continuous channel-like structure. The channel is totally hydrophobic in the interior and can selectively encapsulate lipophilic ester (CH3COOR, R=C2H5, C5H11) molecules, as shown by the crystal structures of the encapsulating channel. The crystal structure parameters are: 1b, Py(Aib2)2, C25H37N5O8, sp. gr. P2(1)2(1)2(1), a=9.170(1) A, b=16.215(2) A, c=20.091(3) A, R=4.80; 1c, Py(Aib3)2, C33H51N7O10H2O, sp. gr. P1, a=11.040(1) A, b=12.367(1) A, c=16.959(1) A, alpha =102.41 degrees, beta =97.29 degrees, gamma =110.83 degrees, R1=6.94; 1 da, Py(Aib4)2.et ac, C41H65N9O12.1.5H2O.C4H8O2, sp. gr. P1, a=16.064(4) A, b=16.156 A, c=21.655(5) A, alpha =90.14(1)degrees, beta=101.38(2) degrees, gamma=97.07(1)degrees, Z=4, R1=9.03; 1db, Py(Aib4)2.amylac, C41H65N9O12.H2O.C7H14O2, P2(1)/c, a=16.890(1) A, b=17.523(1)A, c=20.411(1) A, beta=98.18 degrees, Z=4, R=11.1 (with disorder).  相似文献   

6.
A single crystal X-ray diffraction study of the title complex carried out at room temperature revealed space group P2(1), a = 21.199(12), b = 9.973(3), c = 15.271(8) A, beta = 110.87(3) degrees, V = 3017(3) A3, 4681 unique reflections with Fo greater than 1 sigma (Fo). The structure was refined to R = 0.069, resolution lambda/2sin theta max = 0.89 A. The crystal packing is of the cage type and is isomorphous to that of beta-cyclodextrin (beta CD) dodecahydrate. One 1,4-butanediol and approximately 1.25 water molecules are enclosed in each beta CD cavity. The hydroxyl groups of the 1,4-butanediol molecule are located at each end of the cavity and form hydrogen bonds with neighboring water and beta CD molecules. The flexible (CH2)4 moiety vibrates extensively in the central part of the cavity. Water molecules and hydroxyl groups are chelated between O-6 and O-5 of at least five glucose residues.  相似文献   

7.
The crystal structures of synthetic unsymmetrical 1-glucosamide- and 1-galactosamide bolaamphiphiles, 13-[(beta-d-glucopyranosyl)carbamoyl]tridecanoic acid (1) and 15-[(beta-d-galactopyranosyl)carbamoyl]pentadecanoic acid (2), respectively, were elucidated by single-crystal X-ray analysis. The space group for 1 is P2(1), Z=2 with cell dimensions: a=8.6816(9), b=4.8578(5), c=26.250(3)A, beta=91.460(2) degrees ; that for 2P2(1), Z=2 with cell dimensions: a=4.90(1), b=40.139(1), 6.289(1)A, beta=106.48(1) degrees . The glucopyranosyl and galactopyranosyl rings in 1 and 2, respectively, take a (4)C(1) chair conformation. In the crystal lattice, the 1-glucosamide 1 forms a symmetrical monolayer lipid membrane (MLM) structure in which the molecules are packed in an antiparallel fashion, while 1-galactosamide 2 has an unsymmetrical MLM with parallel molecular packing. The stereochemistry of the sugar hydroxy group proved to affect their hydrogen-bonding networks and induce the polymorphism of the MLM.  相似文献   

8.
Crystals of modified bovine neurophysin II   总被引:1,自引:0,他引:1  
An enzymatically modified form of bovine neurophysin II has been crystallized in three unique crystal forms. The orthorhombic form crystallizes in space group P2(1)2(1)2 with a = 15.33 nm, b = 6.92 nm, c = 3.63 nm, with four molecules in the asymmetric unit. The monoclinic form crystallizes in space group P2(1) with a = 6.22 nm, b = 9.55 nm, c = 5.45 nm and beta = 110.2 degrees, with eight molecules in the asymmetric unit. The tetragonal form crystallizes in space group P4(1)2(1)2 or P4(3)2(1)2 with a = 14.1 nm and c = 14.2 nm, with twelve molecules in the asymmetric unit. We report here the crystallization conditions, as well as the crystal data.  相似文献   

9.
The hydrated 1:1 complex of meclofenamic acid with choline crystallizes in the orthorhombic space group Pna2(1) with a = 9.637(1), b = 12.962(5), c = 33.099(4) A and Z = 8. Crystals of the corresponding anhydrous complex with ethanolamine are triclinic, space group P1, with a = 9.232(3), b = 12.287(5), c = 17.033(3) A, alpha = 70.21(2), beta = 76.72(2), gamma = 68.21(3) degrees and Z = 4. The structures have been solved by direct methods and refined to R values of 0.062 and 0.079, respectively for 1942 and 2852 observed reflections. The four crystallographically independent meclofenamate anions in the complexes have nearly the same molecular geometry which in turn is very similar to that found in the crystal structure of free meclofenamic acid. The choline and ethanolamine molecules assume a gauche conformation with respect to the central C-C bond. The invariant structural features observed in the crystals of the free fenamates are retained by the meclofenamate ions in the complexes. These features are the rigid coplanar geometry of the six-membered ring carrying the carboxyl group, the carboxyl group and the imino nitrogen atom, and the internal hydrogen bond connecting the imino and the carboxyl groups. The crystal structures are stabilised by ionic interactions between the carboxylate groups of meclofenamate ions and choline or ethanolamine cations, and hydrogen bonds. The choline complex exhibits pseudosymmetry and the distribution of molecules in it is nearly centrosymmetric although the space group is noncentrosymmetric. The packing of molecules in the crystals is such that the polar columns are surrounded by non-polar regions. The core of each column in the choline complex is made up of water molecules connected by hydrogen bonds involving disordered protons. The results of the X-ray structure analysis of fenamates and their crystalline complexes provide some insights into structure-function relationships in this family of drugs.  相似文献   

10.
At 295 K, crystals of form I of cholesteryl cis-9-hexadecenoate (palmitoleate) and cholesteryl trans-9-hexadecenoate (palmitelaidate) are difficult to distinguish by X-ray diffraction. Both form monoclinic thin plates, space group P21 with two molecules (C43H74O2) A and B in the asymmetric unit. Unit cell dimensions for cholesteryl palmitelaidate (I) are a = 12.827(4), b = 9.075(4), c = 35.67(1) A, beta = 93.42(3) degrees, very similar to those of the palmitoleate crystals. Other crystals (form II) of the palmitelaidate ester are described. The crystal structure of form I of cholesteryl palmitelaidate has been determined from 3657 reflections (sin theta/lambda less than 0.46 A-1) measured at 295 K using CuK alpha X-radiation and refined to give Rw(F) = 0.095. The molecular packing arrangement is isostructural to that of the previously determined crystal structure of cholesteryl palmitoleate. In both crystals, the fatty acid chains of the A molecules are kinked at the double bond but are nearly straight. The chains of B molecules have more complicated dislocations and are bent. It is remarkable that, neglecting their detailed conformations, corresponding fatty acid chains in the two crystal structures have similar overall shapes, although palmitoleate chains have cis-ethylenic groups and palmitelaidate chains have trans groups.  相似文献   

11.
The single crystal structure of CaCl(2).C(5)H(10)O(5).3H(2)O was determined with M(r)=315.16, a=7.537(3), b=11.426(5), c=15.309(6) A, beta=90 degrees, V=1318.3(9) A(3), P2(1)2(1)2(1), Z=2, mu=0.71073 A and R=0.0398 for 2322 observed reflections. The ribose moiety of the complex exists as a furanose with alpha-D configuration. All five oxygen atoms of the ribose molecule are involved in calcium binding. Each calcium ion is shared by two such sugar molecules, coordinating through O(1), O(2), O(3) of one molecule and O(4) and O(5) of the other. The C-C, O-H, C-O and C-O-H vibrations are shifted and the relative intensities changed in the complex IR spectrum, corresponding to the changes in bond distances and angles of the sugar structure. All the hydroxyl groups, water molecules and chloride ions are involved in forming an extensive hydrogen-bond network of O-H...Cl...O-H structure, and the chloride ions play an important role in the crystal packing.  相似文献   

12.
The structure of cadaverine dihydrochloride monohydrate has been determined by X-ray crystallography with the following features: NH3+ (CH2)5NH3+.2Cl-.H2O, formula weight 191.1, monoclinic, P2, a = 11.814(2)A, b = 4.517(2)A, c = 20.370(3)A, beta = 106.56 degrees (1): V = 1041.9(2)A3; lambda = 1.541A; mu = 53.41; T = 296 degrees; Z = 4, Dx = 1.218 g.cm-3, R = 0.101 for 1383 observed reflections. The crystal is highly pseudo-symmetric with 2 molecules of cadaverine, 4 chloride ions and 2 partially disordered water molecules present in the asymmetric unit. Though both the cadaverine molecules in the asymmetric unit have an all trans conformation, the carbon backbones are slightly bent. Between the concave surfaces of two bent cadaverine molecules exists water channels all along the short b axis. The water molecules present in the channels are partially disordered.  相似文献   

13.
The crystal structures of Boc-(D) Val-(D) Ala-Leu-Ala-OMe (vaLA) and Boc-Val-Ala-Leu-(D) Ala-OMe (VALa) have been determined. vaLA crystallises in space group P2(1),2(1),2(1), with a = 9.401 (4), b = 17.253 (5), c = 36.276 (9)A. V = 5,884 (3) A3, Z = 8, R = 0.086. VALa crystallises in space group P2(1) with a = 9.683 (9), b = 17.355 (7), c = 18.187 (9) A, beta = 95.84 (8) degrees , V = 3,040(4) A3, Z = 4, R = 0.125. There are two molecules in the asymmetric unit in antiparallel beta-sheet arrangement in both the structures. Several of the Calpha hydrogens are in hydrogen bonding contact with the carbonyl oxygen in the adjacent strand. An analysis of the observed conformational feature of D-chiral amino acid residues in oligopeptides, using coordinates of 123 crystal structures selected from the 1998 release of CSD has been carried out. This shows that all the residues except D-isoleucine prefer both extended and alphaL conformation though the frequence of occurence may not be equal. In addition to this, D-leucine, valine, proline and phenylalanine have assumed alphaR conformations in solid state. D-leucine has a strong preference for helical conformation in linear peptides whereas they prefer an extended conformation in cyclic peptides.  相似文献   

14.
The molecular structure of diosgenone, a natural steroidal sapogenin, closely related to diosgenin and isolated from Solanum nudum, was solved by single crystal X-ray diffractometry at 120 K and refined by full-matrix least-squares to an agreement factor, R1 = 0.054. It crystallizes in the monoclinic space group P2(1), with a = 15.1870(4) A, b = 7.2710(2) A, c = 21.2840(6) A, beta = 99.251(1) degrees, and four molecules in the unit cell (Z = 4). The results constitute the first structural report on a steroidal sapogenin from the diosgenin group.  相似文献   

15.
This paper describes the synthesis and properties of two new palladium(II) complexes with 2,6-dimethyl-4-nitro-pyridine (dmnp): mononuclear [Pd(dmnp)2Cl2] and dinuclear [Pd2(dmnp)2Cl4]. Complexes were characterized on the basis of chemical and chromatographic analyses, MS and conductometric measurements, as well as by IR and NMR (1H and 13C) spectral studies. The crystal structures of ligand and mononuclear complex, trans-dichlorobis(2,6-dimethyl-4-nitro-pyridine)palladium(II), were determined by three-dimensional X-ray methods. The crystals of both compounds are monoclinic, space groups P21/c with a=19.075(4), b=5.419(1), c=15.045(3) A and beta=108.15(3)degrees for (dmnp), and a=7.544(2), b=14.509(3), c=8.032(2) A and beta=90.32(3)degrees for [Pd(dmnp)2Cl2]. In the (dmnp) there are two crystallographically independent molecules in the unit cell. The nitro groups and methyl C atoms are coplanar with the ring plane. The hydrogen bond of the type C-H...O links the molecules into pairs around center of symmetry. These dimers are held together by contacts of the van der Waals type. In the crystal structure of [Pd(dmnp)2Cl2] the Pd atom lies on an inversion center and is four-coordinated by two pyridine N atoms and by two Cl atoms in trans positions. The coordination geometry is square-planar, with Pd-N and Pd-Cl distances of 2.033(2) and 2.311(1) A, respectively. The two pyridine rings are mutually parallel, but they are twisted from the PdN2Cl2 coordination plane by about 88.5degrees. The preliminary assessments of anti-tumor properties of both complexes and ligand were evaluated as in vitro anti-proliferative activity in four human cancer cell lines: SW707 (adenocarcinoma of the rectum), T47D (breast cancer), HCV (bladder cancer) and A549 (non-small cell lung carcinoma). The [Pd(dmnp)2Cl2] exhibits strong cytotoxic activity against all cell lines whereas the free ligand and dinuclear [Pd2(dmnp)2Cl4] are only moderate active.  相似文献   

16.
HCO-Met-Leu-Ain-OMe (2), an analog of the chemotactic peptide HCO-Met-Leu-Phe-OH, containing the conformationally blocked residue of the 2-aminoindane-2-carboxylic acid (Ain) has been synthesized and its crystal and molecular conformation has been determined. Crystals of 2 are monoclinic, space group P2(1), with a = 15.059(7), b = 18.548(7), c = 9.600(4) A; beta = 85.04(3) degrees. The structure has been solved by direct methods and refined to R = 0.069 for 2813 independent reflections with I greater than 2.5 sigma (I). Two independent molecules A and B have been found in the asymmetric unit of the crystal of 2. Their conformation can be described as extended at the Met and Leu residues, but folded at the C-terminal Ain residue. The helical folding is left- and right-handed in the A and B molecule, respectively. The crystal packing is characterized by ribbons of intermolecular hydrogen bonded molecules extended along the c direction. The constrained analog 2 is highly active in the superoxide production, thus indicating that a stabilization of a helical folding at the C-terminal region of chemotactic tripeptides maintains the activity. The orientation of the aromatic ring, with respect to its adjacent backbone atoms, does not seem critical for the activity.  相似文献   

17.
Several new N1-substituted uncommon purine nucleosides, including doridosine (1-methyl-isoguanosine; m-iG), 1-allyl-isoguanosine (a-iG) and 1-allyl-xanthosine (a-X), have been synthesized and tested as agonists for the adenosine receptors. Some have smooth muscle relaxant or negative chronotropic activities. The X-ray crystal structure of these compounds has been determined at atomic resolution in order to understand the structure-activity relationship. The structures were solved by direct methods and refined by full-matrix least-squares refinement procedure. The crystallographic parameters are: a-iG, space group P2(1), a = 10.573 (1) A, b = 21.955 (2) A, c = 14.360 (1) A, beta = 110.65 (1) degree, no. of 3 sigma Fo's = 4585, R = 0.047; a-X, space group P2(1)2(1)2(1), a = 16.015 (2) A, b = 16.239 (1) A, (1) A, c = 5.3723 (5) A, no. of 3 sigma Fo's = 1169, R = 0.031. In the a-iG crystal, there are 4 independent molecules (with different conformation) per asymmetric unit. While all 4 molecules adopt anti chi CN glycosyl torsion angle, their riboses have 3 distinct puckers (C2'-exo, C2'-endo and C1'-exo). In contrast, the a-X structure adopts a syn chi CN glycosyl torsion angle, which is stabilized by an intramolecular hydrogen bond between the N3 of purine base and the O5' of the ribose (in C2'-endo pucker). Both purine bases (a-iG and a-X) are mainly in the keto tautomer form. For the isoguanine base, the averaged N1-C2 bond distance (1.42 A) is significantly longer than that (1.375 A) of the guanine base. For the xanthine base, N3 nitrogen has an imino proton attached which is unambiguously located in the electron density map. The surprising flexibility in the ribose ring of these N1-substituted uncommon purine nucleosides suggests that the ribose moiety may not participate in the binding of nucleoside to the adenosine receptors.  相似文献   

18.
Three crystalline polymorphs of the helical decapeptide, Boc-Aib-Ala-Leu-Ala-Leu-Aib-Leu-Ala-Leu-Aib-OMe, have been obtained. Antiparallel helix aggregation is observed in crystals grown from methanol (A), while completely parallel packing is observed in crystals from isopropanol (B) or an ethylene glycol-ethanol mixture (C). Crystals B and C are very similar in molecular conformation and packing. The packing motifs in crystals A and B consist of rows of parallel molecules, with an almost identical arrangement in both crystals. In crystal A, adjacent rows assemble with the helix axes pointed in opposite directions, whereas in crystal B all rows assemble with helix axes pointed in the same direction. Electrostatic interactions between helix dipoles do not appear to be a major determinant of packing modes. The structures also do not provide a ready rationalization of packing preferences in terms of side-chain interactions or solvation. The alpha-helix of the peptide in crystal A has seven 5----1 hydrogen bonds; the helix in crystal B is a mixed 3(10)/alpha-helix. The crystal parameters are as follows. Crystal A: C51H92N10O13.CH3OH, space group P2(1) with a = 10.498 (1) A, b = 18.189 (3) A, c = 16.475 (3) A, beta = 99.28 (1) degree, Z = 2, R = 9.6% for 1860 data. Crystal B: C51H92N10O13.C3H7OH, space group P2(1) with a = 10.534 (1) A, b = 28.571 (4) A, c = 11.055 (2) A, beta = 95.74 (1) degree, Z = 2, R = 6.5% for 3251 data. Crystal C: C51H92N10O13.C2H5OH, space group P2(1), with a = 10.450 (1) A, b = 28.442 (5) A, c = 11.020 (2) A, beta = 95.44(1) degree, Z = 2, R = 14.8% (isotropic) for 1948 data.  相似文献   

19.
Two different forms of crystals (potentially) suitable for x-ray structure analysis were obtained for recombinant human interleukin-2 (IL-2) using ammonium sulfate as a precipitant in the pH range of 6.3-7.3 (in the case of hexagonal bipyramidal crystals) and 4.5-5.5 (in the case of plate crystals). The hexagonal bipyramidal crystal belongs to a hexagonal space group P6(2)22 or P6(4)22 with a = b = 105.8 A and c = 122.2 A. The crystal diffracts up to 3.4 A resolution and contains 2 or 3 IL-2 molecules in an asymmetric unit. The plate crystal belongs to an orthorhombic space group P2(1)2(1)2 with a = 47.9 A, b = 79.6 A, and c = 31.9 A. The crystal diffracts up to 2.5 A resolution and contains only 1 IL-2 molecule in an asymmetric unit. These facts reconfirmed crystallographically the high homogeneity of the present preparation of human recombinant IL-2.  相似文献   

20.
The crystal structure of a synthetic depsipeptide ionophore hexadecaisoleucinomycin, cyclo [-(D-Ile-L-Lac-L-Ile-D-Hyi)4-] (C80H136N8O24), has been determined by single crystal x-ray diffraction techniques. The crystals are orthorhombic, space group P2(1)2(1)2(1), number of molecules per unit cell z = 4, and cell parameters a = 11,195, b = 17.853, c = 54.835 A. The values of the standard (R) and weighted (Rw) discrepancy factors after refinement are 0.122 and 0.135, respectively. The structure is characterized by an elongated bracelet form with a twofold axis of pseudosymmetry. It is stabilized by eight intramolecular 4----1 hydrogen bonds between the amide C = O and N - H groups. The ester carbonyls are directed toward the inside of the molecule, their oxygen atoms forming an ellipsoidal internal cavity. The side chains are located on the molecular periphery. The conformational states of hexadecaisoleucinomycin in solution are discussed in the light of the data obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号