首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saccharomyces cerevisiae Gre2 (EC1.1.1.283) serves as a versatile enzyme that catalyzes the stereoselective reduction of a broad range of substrates including aliphatic and aromatic ketones, diketones, as well as aldehydes, using NADPH as the cofactor. Here we present the crystal structures of Gre2 from S. cerevisiae in an apo-form at 2.00 Å and NADPH-complexed form at 2.40 Å resolution. Gre2 forms a homodimer, each subunit of which contains an N-terminal Rossmann-fold domain and a variable C-terminal domain, which participates in substrate recognition. The induced fit upon binding to the cofactor NADPH makes the two domains shift toward each other, producing an interdomain cleft that better fits the substrate. Computational simulation combined with site-directed mutagenesis and enzymatic activity analysis enabled us to define a potential substrate-binding pocket that determines the stringent substrate stereoselectivity for catalysis.  相似文献   

2.
Intracellular levels of iron are tightly regulated. Saccharomyces cerevisiae uses well-defined pathways to extract iron molecules from the environment. Once inside the cell, the iron molecules must be transferred to target sites via an intracellular iron transporter. Although analogous carriers have been described for other metals, such as copper, an iron transporter has yet to be identified. We used two-dimensional gel electrophoresis and mass spectrometry techniques to attempt to identify the iron transporter from cytosolic fraction of S. cerevisiae. In this study, we identified the iron-binding activity of thioredoxin reductase, and our data suggest a potential role for this enzyme in intracellular iron transport.  相似文献   

3.
Li X  Huang X  Zhao J  Zhao J  Wei Y  Jiang L 《FEMS yeast research》2008,8(5):715-724
Rck2p is a Hog1p-MAP kinase-activated protein kinase and regulates osmotic and oxidative stresses in budding yeast. In this study, we have demonstrated in both Saccharomyces cerevisiae and, the most medically important human fungal pathogen, Candida albicans that deletion of RCK2 renders cells sensitive to rapamycin, the inhibitor of target of rapamycin protein kinase controlling cell growth. The kinase activity of Rck2p does not seem to be required for this rapamycin sensitivity function in both eukaryotic microorganisms. Interestingly, the HOG pathway is not directly involved in cell sensitivity to rapamycin in S. cerevisiae, whereas disruption of CaHOG1 renders cells sensitive to rapamycin in C. albicans. In addition, we have shown that CaRck2p and its kinase activity are required for cell growth in C. albicans.  相似文献   

4.
To maximize redox coupling efficiency with recombinant cytochrome P450 hydroxylases from yew (Taxus) species installed in yeast for the production of the anticancer drug Taxol, a cDNA encoding NADPH:cytochrome P450 reductase from T. cuspidata was isolated. This single-copy gene (2,154 bp encoding a protein of 717 amino acids) resembles more closely other reductases from gymnosperms (approximately 90% similarity) than those from angiosperms (<80% similarity). The recombinant reductase was characterized and compared to other reductases by heterologous expression in insect cells and was shown to support reconstituted taxoid 10beta-hydroxylase activity with an efficiency comparable to that of other plant-derived reductases. Coexpression in yeast of the reductase along with T. cuspidata taxoid 10beta-hydroxylase, which catalyzes an early step of taxoid biosynthesis, demonstrated significant enhancement of hydroxylase activity compared to that supported by the endogenous yeast reductase alone. Functional transgenic coupling of the Taxus reductase with a homologous cytochrome P450 taxoid hydroxylase represents an important initial step in reconstructing Taxol biosynthesis in a microbial host.  相似文献   

5.
An integrated measuring system was developed that directly compares the shape of size distributions of Saccharomyces cerevisiae populations obtained from either microscopic measurements, electronic particle counter, or flow cytometer. Because of its asymmetric mode of growth, a yeast population consists of two different subpopulations, parents and daughters. Although electronic particle counter and flow cytometer represent fast methods to assess the growth state of the population as a whole, the determination of important cell cycle parameters like the fraction of daughters or budded cells requires microscopic observation. We therefore adapted a semiautomatic and interactive 2D-image processing program for rapid and accurate determination of volume distributions of the different sub-populations. The program combines the capacity of image processing and volume calculation by contour-rotation, with the potential of visual evaluation of the cells. High-contrast images from electron micrographs are well suited for image analysis, but the necessary air drying caused the cells to shrink to 35% of their hydrated volume. As an alternative, hydrated cells overstained with the fluorochrome calcofluor and visualized by fluorescence light microscopy were used. Cell volumes calculated from length, and diameter measurements with the assumption of an ellipsoid cell shape were underestimated as compared to volumes derived from 2D-image analysis and contour rotation, because of a deviating cell shape, especially in the older parent cells with more than one bud scar. The bimodal volume distribution obtained from microscopic measurements was identical to the protein distribution measured with the flow cytometer using cells stained with dansylchloride, but differed significantly from the size distribution measured with the electronic particle counter. Compared with the flow cytometer, 2-D image analysis can thus provide accurate distributions with important additional information on, for instance, the distributions of subpopulations like parents, daughters, or budded cells.  相似文献   

6.
7.
In Saccharomyces cerevisiae and Candida albicans, two enzymes of the ergosterol biosynthetic pathway, oxidosqualene cyclase (Erg7p) and 3-keto reductase (Erg27p) interact such that loss of the 3-keto reductase also results in a concomitant loss of activity of the upstream oxidosqualene cyclase. This interaction wherein Erg27p has a stabilizing effect on Erg7p was examined to determine whether Erg7p reciprocally has a protective effect on Erg27p. To this aim, three yeast strains each lacking the ERG7 gene were tested for 3-ketoreductase activity by incubating either cells or cell homogenates with unlabeled and radiolabeled 3-ketosteroids. In these experiments, the ketone substrates were effectively reduced to the corresponding alcohols, providing definitive evidence that oxidosqualene cyclase is not required for the 3-ketoreductase activity. This suggests that, in S. cerevisiae, the protective relationship between the 3-keto reductase (Erg27p) and oxidosqualene cyclase (Erg7p) is not reciprocal. However, the absence of the Erg7p, appears to affect other enzymes of sterol biosynthesis downstream of lanosterol formation. Following incubation with radiolabeled and non-radiolabeled 3-ketosteroids we detected differences in hydroxysteroid accumulation and ergosterol production between wild-type and ERG7 mutant strains. We suggest that oxidosqualene cyclase affects Erg25p (C-4 sterol oxidase) and/or Erg26p (C-3 sterol dehydrogenase/C-4 decarboxylase), two enzymes that, in conjunction with Erg27p, are involved in C-4 sterol demethylation.  相似文献   

8.
In order to produce a more potent replacement for trimethoprim (TMP) used as a therapy for Pneumocystis pneumonia and targets dihydrofolate reductase from Pneumocystis jirovecii (pjDHFR), it is necessary to understand the determinants of potency and selectivity against DHFR from the mammalian host and fungal pathogen cells. To this end, active site residues in human (h) DHFR were replaced with those from pjDHFR. Structural data are reported for two complexes of TMP with the double mutants Gln35Ser/Asn64Phe (Q35S/N64F) and Gln35Lys/Asn64Phe (Q35K/N64F) of hDHFR that unexpectedly show evidence for the binding of two molecules of TMP: one molecule that binds in the normal folate binding site and the second molecule that binds in a novel subpocket site such that the mutated residue Phe64 is involved in van der Waals contacts to the trimethoxyphenyl ring of the second TMP molecule. Kinetic data for the binding of TMP to hDHFR and pjDHFR reveal an 84-fold selectivity of TMP against pjDHFR (Ki 49 nM) compared to hDHFR (Ki 4093 nM). Two mutants that contain one substitution from pj- and one from the closely related Pneumocystis carinii DHFR (pcDHFR) (Q35K/N64F and Q35S/N64F) show Ki values of 593 and 617 nM, respectively; these Ki values are well above both the Ki for pjDHFR and are similar to pcDHFR (Q35K/N64F and Q35S/N64F) (305 nM). These results suggest that active site residues 35 and 64 play key roles in determining selectivity for pneumocystis DHFR, but that other residues contribute to the unique binding of inhibitors to these enzymes.  相似文献   

9.
10.
Xylose fermentation by Saccharomyces cerevisiae requires the introduction of a xylose pathway, either similar to that found in the natural xylose-utilizing yeasts Pichia stipitis and Candida shehatae or similar to the bacterial pathway. The use of NAD(P)H-dependent XR and NAD(+)-dependent XDH from P. stipitis creates a cofactor imbalance resulting in xylitol formation. The effect of replacing the native P. stipitis XR with a mutated XR with increased K(M) for NADPH was investigated for xylose fermentation to ethanol by recombinant S. cerevisiae strains. Enhanced ethanol yields accompanied by decreased xylitol yields were obtained in strains carrying the mutated XR. Flux analysis showed that strains harboring the mutated XR utilized a larger fraction of NADH for xylose reduction. The overproduction of the mutated XR resulted in an ethanol yield of 0.40 g per gram of sugar and a xylose consumption rate of 0.16 g per gram of biomass per hour in chemostat culture (0.06/h) with 10 g/L glucose and 10 g/L xylose as carbon source.  相似文献   

11.
Free fatty acids exhibit diverse biological effects such as the regulation of immune responses in humans and animals. To investigate the biological effect of fatty acids in the model eukaryotic organism yeast, we examined the activity of various fatty acids in a yeast-based drug-screening system designed to detect the small-molecule compounds that inhibit Ca2+-signal-mediated cell-cycle regulation. Among the fatty acids examined, ricinoleic acid markedly alleviated the deleterious physiological effects induced by the compelled activation of Ca2+ signaling by external CaCl2, such as the polarized bud growth and the growth arrest in the G2 phase. In accordance with the physiological consequences induced by ricinoleic acid, it diminished the Ca2+-induced phosphorylation of Cdc28p at Tyr-19, concomitant with the decrease in the Ca2+-stimulated expression levels of Cln2p and Swe1p.  相似文献   

12.
Aldehyde reductase (AKR1A), a member of the aldo–keto reductase superfamily, suppresses diabetic complications via a reduction in metabolic intermediates; it also plays a role in ascorbic acid biosynthesis in mice. Because primates cannot synthesize ascorbic acid, a principle role of AKR1A appears to be the reductive detoxification of aldehydes. In this study, we isolated and immortalized mouse embryonic fibroblasts (MEFs) from wild-type (WT) and human Akr1a-transgenic (Tg) mice and used them to investigate the potential roles of AKR1A under culture conditions. Tg MEFs showed higher methylglyoxal- and acrolein-reducing activities than WT MEFs and also were more resistant to cytotoxicity. Enzymatic analyses of purified rat AKR1A showed that the efficiency of the acrolein reduction was about 20% that of glyceraldehyde. Ascorbic acid levels were quite low in the MEFs, and while the administration of ascorbic acid to the cells increased the intracellular levels of ascorbic acid, it had no affect on the resistance to acrolein. Endoplasmic reticulum stress and protein carbonylation induced by acrolein treatment were less evident in Tg MEFs than in WT MEFs. These data collectively indicate that one of the principle roles of AKR1A in primates is the reductive detoxification of aldehydes, notably acrolein, and protection from its detrimental effects.  相似文献   

13.
AIM: A novel NADP(+)-dependent L-1-amino-2-propanol dehydrogenase was isolated from Rhodococcus erythropolis MAK154, and characterized. METHODS AND RESULTS: The enzyme was inducibly produced on cultivation with aminoalcohols such as 1-amino-2-propanol, 1-amino-2-butanol and 2-aminocyclohexanol. The enzyme catalyses the NADP(+)-dependent oxidation of several aminoalcohols, and also the NADPH-dependent asymmetric reduction of an aminoketone compound to a double chiral aminoalcohol, d-pseudoephedrine. Amino acid sequence analysis showed that the enzyme might belong to the short-chain dehydrogenase/reductase family. CONCLUSIONS: NADP(+)-dependent L-1-amino-2-propanol dehydrogenase isolated from R. erythropolis MAK154 reversibly catalysed dehydrogenation of aminoalcohols, and exhibited a unique sterospecifity for the reduction reaction. SIGNIFICANCE AND IMPACT OF THE STUDY: The enzyme is a promising catalyst for the production of double chiral compound, d-pseudoephedrine, from prochiral substrate.  相似文献   

14.
Epithelial ovarian cancer (EOC) is the leading cause of gynecological-related cancer deaths in the United States. There is, therefore, an urgent need to develop novel therapeutic strategies for this devastating disease. Cellular senescence is a state of stable cell growth arrest that acts as an important tumor suppression mechanism. Ribonucleotide reductase M2 (RRM2) plays a key role in regulating the senescence-associated cell growth arrest by controlling biogenesis of 2'-deoxyribonucleoside 5′-triphosphates (dNTPs). The role of RRM2 in EOC remains poorly understood. Here we show that RRM2 is expressed at higher levels in EOCs compared with either normal ovarian surface epithelium (P &lt; 0.001) or fallopian tube epithelium (P &lt; 0.001). RRM2 expression significantly correlates with the expression of Ki67, a marker of cell proliferation (P &lt; 0.001). Moreover, RRM2 expression positively correlates with tumor grade and stage, and high RRM2 expression independently predicts a shorter overall survival in EOC patients (P &lt; 0.001). To delineate the functional role of RRM2 in EOC, we knocked down RRM2 expression in a panel of EOC cell lines. Knockdown of RRM2 expression inhibits the growth of human EOC cells. Mechanistically, RRM2 knockdown triggers cellular senescence in these cells. Notably, this correlates with the induction of the DNA damage response, a known mediator of cellular senescence. These data suggest that targeting RRM2 in EOCs by suppressing its activity is a novel pro-senescence therapeutic strategy that has the potential to improve survival of EOC patients.  相似文献   

15.
MYO2 encodes a type V myosin heavy chain needed for the targeting of vacuoles and secretory vesicles to the growing bud of yeast. Here we describe new myo2 alleles containing conditional lethal mutations in the COOH-terminal tail domain. Within 5 min of shifting to the restrictive temperature, the polarized distribution of secretory vesicles is abolished without affecting the distribution of actin or the mutant Myo2p, showing that the tail has a direct role in vesicle targeting. We also show that the actin cable-dependent translocation of Myo2p to growth sites does not require secretory vesicle cargo. Although a fusion protein containing the Myo2p tail also concentrates at growth sites, this accumulation depends on the polarized delivery of secretory vesicles, implying that the Myo2p tail binds to secretory vesicles. Most of the new mutations alter a region of the Myo2p tail conserved with vertebrate myosin Vs but divergent from Myo4p, the myosin V involved in mRNA transport, and genetic data suggest that the tail interacts with Smy1p, a kinesin homologue, and Sec4p, a vesicle-associated Rab protein. The data support a model in which the Myo2p tail tethers secretory vesicles, and the motor transports them down polarized actin cables to the site of exocytosis.  相似文献   

16.
Bai Xiaojia  Dong Jian 《FEBS letters》2010,584(11):2333-1134
In the yeast Saccharomyces cerevisiae, Ras proteins are essential for the Ras-cAMP signaling pathway. A serine to alanine substitution at position 214 in the yeast Ras2p resulted in enhanced sensitivity to heat shock, reduced levels of storage glycogen and enhanced both basal cAMP level and glucose-induced cAMP signal. Further work showed that Ras2Ala214p had a higher GTP-binding capability than wild type Ras2p. These results suggested that serine 214 of Ras2p plays a role in the feedback regulation of the Ras-cAMP pathway.  相似文献   

17.
A recent rat genomic sequencing predicts a gene Akr1b10 that encodes a protein with 83% sequence similarity to human aldo-keto reductase (AKR) 1B10. In this study, we isolated the cDNA for the rat AKR1B10 (R1B10) from rat brain, and examined the enzymatic properties of the recombinant protein. R1B10 utilized NADPH as the preferable coenzyme, and reduced various aldehydes (including cytotoxic 4-hydroxy-2-hexenal and 4-hydroxy- and 4-oxo-2-nonenals) and α-dicarbonyl compounds (such as methylglyoxal and 3-deoxyglucosone), showing low Km values of 0.8-6.1 μM and 3.7-67 μM, respectively. The enzyme also reduced glyceraldehyde and tetroses (Km = 96-390 μM), although hexoses and pentoses were inactive and poor substrates, respectively. Among the substrates, 4-oxo-2-nonenal was most efficiently reduced into 4-oxo-2-nonenol, and its cytotoxicity against bovine endothelial cells was decreased by the overexpression of R1B10. R1B10 showed low sensitivity to aldose reductase inhibitors, and was activated to approximately two folds by valproic acid, and alicyclic and aromatic carboxylic acids. The mRNA for R1B10 was expressed highly in rat brain and heart, and at low levels in other rat tissues and skin fibroblasts. The results suggest that R1B10 functions as a defense system against oxidative stress and glycation in rat tissues.  相似文献   

18.
We here report the first comparative proteomics of purified yeast post-Golgi vesicles (PGVs). Vesicle samples isolated from PGV-accumulating sec6-4 mutants were treated with isobaric tags (iTRAQ) for subsequent quantitative tandem mass spectrometric analysis of protein content. After background subtraction, a total of 66 vesicle-associated proteins were identified, including known or assumed vesicle residents as well as a fraction not previously known to be PGV associated. Vesicles isolated from cells lacking the polarity protein Sro7p contained essentially the same catalogue of proteins but showed a reduced content of a subset of cargo proteins, in agreement with a previously shown selective role for Sro7p in cargo sorting.  相似文献   

19.
Btn2p is a novel coiled coil cytosolic protein in Saccharomyces cerevisiae. We report that Btn2p interacts with Yif1p, a component of a protein complex at the Golgi that functions in ER to Golgi transport. Deletion of Btn2p, btn2-delta, results in mis-localiztion of Yif1p to the vacuole. Therefore, Btn2p may have an apparent role in intracellular trafficking of proteins. Btn2p was originally identified as being up-regulated in a btn1-delta strain, which exhibits dysregulation of vacuolar pH, and this up-regulation of Btn2p was presumed to contribute to maintaining a stable vacuolar pH [Pearce et al. Nat. Genet. 22 (1999) 55]. We propose that up-regulation of Btn2p in btn1-delta is an indicator of altered trafficking within the cell, and as btn1-delta serves as a model for the lysosomal storage disorder Batten disease, that altered intracellular trafficking may contribute to some of the cellular pathological hallmarks of this disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号