首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract.  Parasitization of larvae of the tomato moth, Lacanonbia oleracea , by the ectoparasitic wasp, Eulophus pennicornis , results in the appearance of a 27 kDa parasitism-specific protein (PSP) in the plasma of the host. After isolation of this protein by native discontinuous polyacrylamide gel electrophoresis, whole gel elution and electroblotting, the N-terminal sequence of the 27 kDa PSP is determined by Edman degradation. The 20 amino acid residues obtained reveal 70% identity with a female-specific fat body protein from the moths Antheraea pernyi and Antheraea yamamai , 60% identity with a glutathione S-transferase (GST) isolated from Orthosia gothica , and a low level of identity with the N-termini of proteins belonging to the GST superfamily. Injection of the 27 kDa PSP into L. oleracea larvae has no significant effect on their ability to gain weight or the time at which they pupate. Furthermore, assays performed in vitro demonstrate that the 27 kDa PSP does not affect the ability of L. oleracea haemocytes to form aggregates. The precise source of the 27 kDa PSP remains unclear, although the current results suggest that it is most likely synthesized by host larvae in response to parasitism. The possible role(s) of the 27 kDa PSP are discussed with regard to the physiological effects of parasitism on the host.  相似文献   

2.
The braconid wasp Toxoneuron nigriceps induced qualitative and quantitative changes in the protein composition of the moth Heliothis virescens host hemolymph. Total protein concentration was found to be higher in parasitized host 4 days after parasitism as compared to control hosts, mainly due to changes in a particular group of proteins. Host proteins with a molecular mass of 173 and 72 kDa were found in higher levels in the hemolymph of parasitized larvae as control hosts approached pupation, while an 80 kDa peptide was found in reduced concentration in the hemolymph of parasitized hosts. Levels of these three peptides were maintained throughout parasitoid development, while two of them (173 and 72 kDa) were cleared from the host hemolymph close to pupation. Besides the regulation of host proteins, three parasitism-specific proteins (PSPs) were released into the host hemolymph. Two of them (PSP1-MW=116 kDa, pI=6.3; PSP2-MW=114 kDa, pI=6.2) first appeared in the hemolymph of parasitized hosts soon after pupation of control host and increased in concentration as the parasitoid developed. The third PSP (PSP3-MW=56 kDa, pI=5.8) was produced towards the end of parasitoid larval development, close to parasitoid egression. Database searches based on the amino acid composition and amino terminal sequence of PSP1 and PSP2 did not produce any significant matches, while PSP3 was identified as a putative chitinase. Incubation of host derived tissues, parasitoid larvae and teratocytes in 35S conditioned media suggested PSPs were a product of teratocytes. The role of the regulation of host proteins and release of PSPs by teratocytes for the successful development of T. nigriceps are discussed.  相似文献   

3.
When haemolymph from fifth instar Lacanobia oleracea was incubated in vitro, rapid melanization occurred. Similar levels of melanization occurred in haemolymph from larvae that had been experimentally injected with venom from the ectoparasitic wasp, Eulophus pennicornis. In contrast, haemolymph from larvae parasitized by this wasp melanized more slowly and less extensively. Phenoloxidase assays indicated that enzyme activity was present in haemocyte lysate supernatants, serum and plasma from L. oleracea and that on day 5 post-parasitization, fractions prepared from parasitized larvae had significantly less phenoloxidase activity than similar fractions from untreated or experimentally envenomated larvae. In addition, no PO activity was detectable in wasp venom, and the venom had no effect on L. oleracea plasma phenoloxidase activity in vitro. These results indicate that parasitism of L. oleracea by E. pennicornis suppresses host haemolymph phenoloxidase activity and that this suppression is not induced by adult wasp venom. The results are discussed with reference to the survival advantages of suppressing the activity of this host enzyme, and to the possible source(s) of putative suppressive factors.  相似文献   

4.
In contrast to the situation with endoparasitic wasps, little is known about the effects of ectoparasitoids and their secretions on the haemocytes of their insect hosts. To address this deficit, a study has been made of the ectoparasitic wasp, Eulophus pennicornis, and it's host, the tomato moth, Lacanobia oleracea. Using light microscopy, it was determined that L. oleracea has five main haemocyte types, namely, plasmatocytes, granular cells, spherule cells, oenocytoids and pro-haemocytes, representing 56%, 30%, 10%, 2% and 2% of the population, respectively. Parasitization by E. pennicornis, resulted in an increase in the number of circulating haemocytes up to day three, followed by a decrease towards day eight; the latter being associated with changes to the morphology and viability of the cells. For example, on day five after parasitization, plasmatocytes and granular cells had become more rounded and put out pseudopods less readily compared with those from non-parasitized controls, whilst from day seven onwards there was a significant decrease in haemocyte viability and by day nine, extensive haemocyte damage and disintegration was evident. These changes were not observed when larvae were injected with E. pennicornis venom, or when haemocytes were exposed directly to venom in vitro, neither did they occur in starved larvae. Thus, although the observed effects on L. oleracea haemocytes are definitely associated with parasitization they are not due to wasp venom components, nor are they a non-specific effect resulting from nutritional deprivation. The possibility that the feeding wasp larvae produce factors which perturb host haemocytes in order to help condition the host to ensure that successful parasitization occurs, is discussed.  相似文献   

5.
Snowdrop lectin (Galanthus nivalis agglutinin, GNA) has previously been shown to confer significant levels of protection against the lepidopteran pest Lacanobia oleracea when expressed in transgenic potato. The effect of GNA on the parasitism of L. oleracea by the gregarious ectoparasitoid Eulophus pennicornis was investigated. Maize-based, and potato leaf-based diets containing GNA, and excised transgenic potato leaves expressing GNA, were fed to L. oleracea larvae from the beginning of either the third or fourth larval instar. Lacanobia oleracea larvae were individually exposed to single mated adult female E. pennicornis parasitoids from the fifth instar onwards.The success of the wasp was not reduced by the presence of GNA in any of the diets, or by the length of feeding of the host prior to parasitism. However, the mean number of wasps that developed on L. oleracea reared from the third instar on the GNA-containing maize diet was significantly higher than on the controls (20.6 and 9.3 adults/host respectively). In all other cases differences were not significant. Eulophus pennicornis progeny that developed on L. oleracea reared on GNA-containing diets showed little or no alteration in size, longevity, egg load and fecundity when compared with wasps that had developed on hosts fed the respective control diets.The results suggest that expression of GNA in transgenic crops to confer resistance to lepidopteran pests will not adversely affect the ability of the ectoparasitoid E. pennicornis to utilise the pest species as a host.  相似文献   

6.
Parasitism of Lacanobia oleracea larvae by the ectoparasitic wasp Eulophus pennicornis suppressed host haemocyte-mediated encapsulation of Sephadex DEAE A-25 beads in vivo. Beads dissected out of parasitized larvae had fewer haemocytes associated with them. Moreover, those haemocytes that were associated with the beads tended to retain a rounded configuration and rarely flattened. Similar results were obtained using in vitro encapsulation assays. SDS PAGE indicated that for parasitized and PBS injected larvae, there were some differences in the plasma proteins that bound to Sephadex DEAE A-25 beads, suggesting that parasitism-mediated changes to host plasma proteins might contribute to the differences in the encapsulation response occurring in these larvae. However, in vitro encapsulation assays using beads that had been pre-incubated in plasma from parasitized and unparasitized larvae, demonstrated that major differences in the extent of encapsulation did not occur. These results, plus in vitro haemocyte attachment and spreading assays, suggest that parasitism-mediated suppression of encapsulation is primarily due to reductions in the ability of host haemocytes to attach to (i.e., recognize) and flatten over non-self surfaces and other haemocytes. This proposal is corroborated by staining of actin in the haemocyte cytoskeleton by FITC-labelled phalloidin, which indicated that parasitism disrupts the formation of stress fibers and focal adhesions in plasmatocytes. By contrast, experimental injection of adult female wasp venom into unparasitized L. oleracea larvae had no significant effect on in vivo encapsulation responses or the haemocyte cytoskeleton. Arch. Insect Biochem. Physiol. 49:108-124, 2002. Published 2002 Wiley-Liss, Inc.  相似文献   

7.
To successfully complete its development, the gregarious ectoparasitoid Eulophus pennicornis must inhibit the moult of its host, Lacanobia oleracea. In the present study, we examined the possibility that moult- and metamorphosis-associated endocrine events may be disrupted in caterpillars parasitized as newly moulted last (sixth) instars. Juvenile hormone (JH) titres on days 2 and 5 of the final stadium were significantly higher (> 100 fold) in parasitized than in non-parasitized hosts, in which JH was essentially absent. Elevated JH levels were associated with reduced haemolymph JH esterase (JHE) activity (down by 99.8%) and enhanced in vitro JH biosynthesis by the corpora allata (CA) (up to 4.5 fold). Wasp adults and/or larvae, in which we measured high levels of JH III (up to 2.7 ng/g), but little or no JH I or JH II, were not seen as likely sources of JH in parasitized hosts, in which we found mostly JH I and JH II. In addition, removal of parasitoid eggs or larvae after oviposition did not prevent the rise in JH titres seen in parasitoid-laden hosts, suggesting that wasp venom may be responsible for the observed hormonal dysfunction. Host haemolymph 20-hydroxyecdysone (20-E) levels were largely unaffected by parasitism during the final stadium although they were observed to increase earlier and decrease more rapidly in parasitized insects. We compare these results with those reported earlier for L. oleracea larvae parasitized by E. pennicornis as penultimate (fifth) instars, which display significantly depressed 20-E titres relative to control larvae. We conclude that E. pennicornis employs host endocrine-disruption strategies that differ according to whether the host is parasitized as a penultimate or final-stadium larva.  相似文献   

8.
Although many endoparasitic wasps suppress the haemocyte-mediated immune defences of their insect hosts, the effects of ectoparasitoids are virtually unknown. In view of this, a study has been made of the ectoparasitic wasp, Eulophus pennicornis, and its host, the tomato moth, Lacanobia oleracea. For unparasitized insects, in vitro assays indicated that less than 3.0% of L. oleracea haemocytes on a monolayer formed rosettes with yeast cells or fresh rabbit erythrocytes (rbc), and virtually no phagocytosis of these particles occurred. In addition, although fixed rbc formed rosettes with 51.21% of haemocytes, only about 3.0% of the haemocytes ingested one or more of these particles. In contrast to this, B. cereus and E. coli were readily phagocytosed by 14.75% and 53.70% of haemocytes, respectively. These results indicate that L. oleracea haemocytes can recognise different types of non-self particles and demonstrate that ingestion does not necessarily follow attachment. When rosetting and phagocytosis assays were performed with fixed rbc and FITC-labelled E. coli, and haemocytes from starved L. oleracea, PBS injected L. oleracea, and experimentally envenomated insects on day five of treatment, there was no significant difference in the percentage of rosetting or phagocytosis occurring. When haemocytes from parasitized insects on day five of treatment were utilised, however, rosetting and phagocytosis were reduced by 31.41% and 34.94%, respectively. Thus, the effects of parasitization and experimental envenomation are not the same. In addition, suppression of host haemocyte-mediated recognition and phagocytosis was not a secondary effect of nutritional deprivation and was not due to ectoparasitoid venom components, rather it was a direct result of parasitization of L. oleracea by E. pennicornis. The putative nature and source of the immunosuppressive factor(s) involved is discussed with reference to those produced by endoparasitic wasps.  相似文献   

9.
The current work demonstrates that larvae of the ectoparasitic wasp, Eulophus pennicornis, produce salivary secretions (Ep S) that contain a variety of hydrolases. This includes medium to high levels of N-acetyl-β-glucosaminidase activity, relatively low levels of esterase (C 4) and lipase (C 14) activity, and trace levels of esterase lipase (C 8), acid phosphatise, β-galactosidase, β-glucuronidase, and α-glucosidase activity. In addition, in vitro monolayer assays indicate that both a 4 h and an 18 h incubation of hemocytes from host Lacanobia oleracea larvae in Ep S significantly increases (P < 0.001) the percentage of cells dying by apoptosis compared to the controls. Moreover, an 18 h incubation of hemocytes in Ep S (but not a 4 h incubation), also significantly increased the percentage of dead cells detected using a trypan-blue exclusion assay. The role of ectoparasitoid salivary secretions in conditioning the host by disabling hemocyte-mediated wound healing responses, and providing food for the developing wasp larvae is discussed.  相似文献   

10.
Little is known about the effects of ectoparasitoids and their secretions on the plasma protein profiles of their insect hosts. To address this deficit, a study has been made of the interactions between an ectoparasitic wasp, Eulophus pennicornis, and its host, the tomato moth, Lacanobia oleracea. In particular, the quantitative and qualitative effects of parasitism or the experimental injection of wasp venom on host plasma proteins were investigated. Results demonstrated that both treatments caused an initial increase in L. oleracea total plasma protein concentration up to day 5 of treatment, but whereas the protein concentration remained high in the experimentally envenomated group, a decrease towards day 8 occurred in parasitized insects. Parasitism was also associated with the appearance of a protein with an estimated molecular weight of 27 kDa. This protein first appeared on day 3 after parasitization and its levels subsequently increased. The protein was not detected in any of the unparasitized larvae (including all the various control groups) or in experimentally envenomated L. oleracea larvae. In addition, the appearance of this protein was not a non-specific result of nutritional deprivation, nor was it a general injury, stress, or infection induced protein. Its appearance was strictly associated with parasitism of L. oleracea by E. pennicornis and thus, it may be described as a parasitism-specific protein (PSP). The PSP has been partially purified using whole gel elution. Gel filtration and SDS PAGE indicated that it has a native molecular weight of 27 kDa and that it does not appear to aggregate to produce higher molecular weight molecules, nor dissociate into lower molecular weight subunits held together by disulphide or covalent bonds. The precise site of synthesis of the 27 kDa PSP is not yet known but some evidence leads us to speculate that it may be synthesised by the feeding E. pennicornis larvae and introduced into their host. This possibility is discussed in relation to previous work detailing the effects of parasitism on L. oleracea haemocyte morphology, function and viability, and the effects of endoparasitoids on host plasma proteins.  相似文献   

11.
Teratocytes, cells which originate from the serosal membrane of some Braconidae and Scelionidae, can be found in the hemocoel of permissive hosts during part or all of the developmental time of the parasitoid larva. Teratocytes from Microplitis croceipes are known to secrete biologically active proteins, which contribute to developmental arrest and failure to pupate of Heliothis virescens larvae. One such protein, which has a molecular weight of approximately 14 kDa is called TSP14. The presence of parasitoid larvae is essential to maintain teratocytes under in vitro conditions with protein-free EX-CELL 400. The teratocyte viability was maintained in vitro for at least 12 days in the presence of larvae when medium was exchanged every three days. Western blots show that TSP14 was secreted during the entire period of exchanges. In the absence of parasitoid larvae, teratocyte viability was only 30% by day 6 and no TSP14 had been secreted. In the absence of parasitoid larvae, teratocytes maintained in vitro in EX-CELL 400 medium supplemented with 10% FBS remained viable for at least nine days and secreted TSP14 for at least six days. This suggests that parasitoid larval secretions are sufficient but not uniquely essential to maintain teratocyte viability. Parasitoid larvae maintained in the absence of teratocytes did not secrete TSP14 and their secretory products did not inhibit pupation of H. virescens larvae.  相似文献   

12.
SDS-PAGE电泳表明,黏虫Pseudaletia separa-ta、棉铃虫 Helicoverpa armigera、小地老虎 Agrotisypsilon的幼虫受中红侧沟茧蜂Microplitis mediator寄生后,血淋巴中都出现一个98.6 kDa的寄生特异蛋白(p98.6)。畸形细胞(teratocytes)的体外培养发现,p98.6是由来自中红侧沟茧蜂胚胎浆膜层的畸形细胞分泌的。这一结果将为研究寄生蜂的寄生生理和畸形细胞在协调寄生蜂和寄主关系中的作用打下基础。  相似文献   

13.
To protect its eggs, the endoparasitoid wasp Leptopilina boulardi injects immune suppressive factors into Drosophila melanogaster host larvae. These factors are localized in the female long gland and reservoir. We analyzed the protein content of these tissues and found that it strongly differed between virulent and avirulent parasitoid strains. Four protein bands present in virulent long glands were eluted and their immune suppressive effect was assessed in vivo, allowing demonstrating a major effect of one of these proteins. The corresponding cDNA encodes a predicted 30 kDa subunit containing a Ras homologous GTPase Activating Protein (RhoGAP) domain, suggesting a possible involvement in the regulation of actin cytoskeleton changes. Using Western-blot experiments, we showed that this protein is abundant in virulent female long glands but is undetectable in virulent females deprived of long glands or in long glands from avirulent wasps. Its potential role in modifying the morphology and the adhesive properties of the host lamellocytes, involved in Drosophila cellular immune responses, is discussed.  相似文献   

14.
Abstract. Attack by the ectoparasitoid Eulophus pennicornis Nees (Hymenoptera: Eulophidae) prevents larvae of Lacanobia oleracea L. (Lepidoptera: Noctuidae) from moulting. Prothoracic glands (PGs) excised from parasitized or artificially envenomated hosts show a reduced basal level of ecdysteroid release at a time when non-parasitized caterpillars produce an ecdysteroid surge (48 h post moult to 5th stadium = penultimate stadium in non-venomated hosts). By contrast, PGs from similarly parasitized or envenomated caterpillars release comparatively high levels of ecdysteroid at 120 h post-moult. Temporary inactivation of PGs cannot be attributed solely to a parasitoid-induced reduction in cell viability, and incubation in E. pennicornis venom in vitro does not exert any direct effect on either PG cell viability or ecdysteroid release. However, inactivated PGs are not stimulated by forskolin, which may indicate that the absence of the required pre-moult ecdysteroid surge in developmentally arrested L. oleracea is due to insensitivity to a prothoracicotropic hormone. Even though parasitized caterpillars never moult, reversed-phase HPLC separations and radioimmunoassay confirm that they produce active moulting hormone (20-hydroxyecdysone) at 120 h post-moult. These results suggest that E. pennicornis arrests host development through the indirect effects on their hosts' PGs. This effect is not achieved through the destruction of gland cells, but more likely reflects the interruption of an innate cycle in PG activity, such that they lose their ability to respond to a normal cue to produce an essential hormone peak at a crucial point in development.  相似文献   

15.
Mature larvae of the gregarious endoparasitoid Cotesia kariyai construct cocoons for pupation approximately 10 days after parasitization and emerge from their host Pseudaletia separata under a long day photo-regime (16L8D) at 25 +/- 1 degrees C. The parasitoid larvae make capsules in the host hemocoel just prior to their emergence. These capsules function as "anchors," which enable them to press against the host integument from inside the host. It was predicted that this anchor might be composed of silk proteins secreted from the parasitoid larvae, because a previous study showed that the anchor was made up of a glycoprotein and that the silk gland of parasitoid larvae developed from 2nd larval stage. Fibroin-like proteins in C. kariyai larva mainly consist of two proteins with molecular masses of the 300.6 and 46.7 kDa estimated by SDS-PAGE. The fibroin-like proteins with the same molecular mass were detected from the anchor proteins just prior to parasitoid emergence. These results indicate that the anchor was assembled with fibroin-like proteins and was formed just before parasitoid emergence while in the host body cavity. Injection of bovine pancreatic trypsin inhibited the emergence of parasitoid larvae from the host because the anchor was decomposed by trypsin. Trypsin activity in the parasitized host hemolymph increased only after parasitoid emergence.  相似文献   

16.
Abstract.  1. The strength or density dependence of pairwise species interactions can depend on the presence or absence of other species, especially potential mutualists.
2. The gall wasp Disholcaspis eldoradensis induces plant galls that secrete a sweet honeydew from their top surfaces while the wasp larvae are active. These galls are actively tended by Argentine ants, which collect the honeydew and drive off parasitoids attempting to attack the gall wasp.
3. When ants were excluded, the total rate of parasitism by seven species of parasitoids increased by 36%, and the rate of gall-wasp emergence decreased by 54%.
4. The total percentage parasitism was affected by gall density when ants were excluded but not when ants were unmanipulated, suggesting a change in parasitoid functional responses due to ant tending.
5. In addition, excluding ants significantly altered the proportions of different parasitoid species that emerged from galls; one parasitoid species increased from 1% to 34%, and another decreased from 46% to 19%.
6. The invasive Argentine ants studied are capable of maintaining the mutualism with the gall wasps that evolved in the presence of different ant species and also act as a selective filter for the local community of generalist parasitoids trying to attack this gall species.  相似文献   

17.
Ligand-blotting experiments on dipteran brush border membrane vesicles (BBMVs) showed binding of CryIVD toxin of Bacillus thuringiensis subsp. israelensis to proteins of 148 kDa in Anopheles stephensi and of 78 kDa in Tipula oleracea, both species being susceptible to CryIVD. Binding of CryIVD with BBMVs of A. stephensi resulted in a stronger signal than with BBMVs of T. oleracea. Likewise, larvae of A. stephensi are 10,000-fold more susceptible to the CryIVD toxin than are larvae of T. oleracea. Binding was also found with six proteins ranging in size from 48 to 110 kDa in BBMVs from the lepidopteran species Manduca sexta, but CryIVD was not toxic for M. sexta larvae. No binding of trypsinated CryIVD to BBMV proteins was observed. With the lepidopteran-specific toxin CryIA(b), no binding to dipteran BBMVs was found. Binding of CryIA(b) to nine different BBMV proteins ranging in size from 71 to 240 kDa was observed in M. sexta. The major binding signal was observed with a protein of 240 kDa for CryIA(b).  相似文献   

18.
Having shown earlier that the larva of C. inanitus is essential in inducing the precocious onset of metamorphosis in polydnavirus/venom containing S. littoralis, we here analysed release of proteins by parasitoid larvae and their effects on host development. Parasitoid larvae released proteins in vivo and in vitro in a stage dependent manner. An approximately 212 kD protein was released from the mid 1st instar onwards and additional smaller proteins could be associated mainly with the 2nd and 3rd instar. When parasitoids were implanted into S. littoralis larvae, parasitoid-released proteins were seen 6 hr later. When parasitoids were removed from hosts, parasitoid-released proteins persisted in the host haemolymph for some time. Injection of antiserum against parasitoid-released proteins after removal of the parasitoid larva accelerated the disappearance of the 212 kD protein and reduced the number of larvae entering metamorphosis precociously. Repeated injections of concentrated parasitoid medium into polydnavirus/venom containing larvae caused a reduction of the head capsule width and formation of miniature 6th instar larvae; this effect was not seen in the absence of polydnavirus/venom. These observations suggest that proteins released by the parasitoid might play a role in modifying host metamorphosis in the presence of polydnavirus/venom, and the temporal appearance of the 212 kD protein makes it the most interesting candidate for being involved in such an effect.  相似文献   

19.
1. Frugivorous and seed‐feeding insects may alter the traits of fruits, such as shape and size, which may influence fruit attractiveness to frugivorous birds. Consequently, trait‐mediated interactions may occur in systems where plants, seed‐dispersing frugivorous vertebrates, and frugivorous or seed‐feeding insects interact. We investigated colour manipulation in Ilex integra Thunb. berries caused by the seed parasitoid wasp Macrodasyceras hirsutum Kamijo and how that manipulation relates to fruit attractiveness for frugivorous birds. 2. In winter, the colour of I. integra berries varied from green to red, but most berries were greenish, indicating that the berries were immature. Berry dissection indicated that the number of live parasitoid larvae present within each berry was closely related to berry colour – the greater the number of live larvae, more intense is the green colour of the berry. However, the wasp larvae did not modify the shape or size of the berries. More than 98% of berries that were protected from the insects by gauze bags ripened and turned red. In the present study, berries with unfertilised seeds alone turned red. Field‐feeding preference tests showed that the brown‐eared bulbul Hypsipetes amaurotis Temminck preferred red berries to green berries. 3. We demonstrated that the seed parasitoid wasp manipulates the berry colour, but not its shape or size, in a density‐dependent manner. Because green berries suffered less from bird foraging, we believe that this colour manipulation helps the wasps to avoid being killed by the birds. The present study indicates that manipulation by wasps may reduce the level of mutualism between the tree and seed‐dispersing birds.  相似文献   

20.
Regulation of host diapause by an insect parasitoid   总被引:1,自引:0,他引:1  
Abstract. 1. The interaction between larval development and parasitism by the braconid wasp Cotesia koebelei (Riley), was investigated in a population of the butterfly Euphydryas editha (Boisduval) (Nymphalidae). In this population, the butterfly host has an obligatory overwintering larval diapause.
2. It was found that E. editha larvae harbouring parasitoids were more likely to pass through an extra feeding instar before entering diapause than were non-parasitized conspecifics.
3. In addition, some individuals that were experimentally exposed to multiple parasitoid attacks bypassed diapause completely; these larvae passed through five or six feeding instars, reaching sizes typical of final instar post-diapause larvae.
4. The observed effect of superparasitism occurred regardless of whether the host larvae subsequently produced mature parasitoids, suggesting that parasitoid attack is sufficient to invoke the response.
5. It is proposed that the parasitoid C.koebelei regulates the number of pre-diapause feeding instars of its insect host E. editha, and that some component of the female venom, injected at oviposition, is responsible for this regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号