首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Chromosomes of Brassica oleracea (2n=18) were dissected from the resynthesized amphidiploid B. napus Hakuran by repeated backcrosses to B. campestris (2n=20), creating a series of monosomic alien chromosome addition line plants (2n=21). Using morphological, isozyme and restriction fragment length polymorphism markers (RFLPs), 81 putative loci were identified. Of nine possible synteny groups, seven were represented in the 25 monosomic addition plants tested. Sequences homologous to 26% of the 61 DNA clones utilized (80% were cDNA clones) were found on more than one synteny group, indicating a high level of gene duplication. Anomalous synteny associations were detected in four 2n=21 plants. One of these plants showed two markers from one B. oleracea chromosome associated with a second complete B. oleracea synteny group, suggesting translocation or recombination between non-homologous chromosomes in Hakuran or the backcross derivatives. The other three 2n=21 plants each contained two or more B. oleracea synteny groups, suggesting chromosome substitution.  相似文献   

2.
Interspecific alien chromosome addition lines can be very useful for gene mapping and studying chromosome homoeology between closely related species. In this study we demonstrate a simple but robust manner of identifying individual C-genome chromosomes (C5, C8 and C9) in the A-genome background through the simultaneous use of 5S and 25S ribosomal probes on mitotic and meiotic chromosomes of three different Brassica rapa-B. oleracea var. alboglabra monosomic addition lines. Sequential silver staining and fluorescence in situ hybridisation indicated that 18S-5.8S-25S rRNA genes on the additional chromosome C9 are expressed in the A-genome background. Meiotic behaviour of the additional chromosomes was studied in pollen mother cells at diakinesis and metaphase I. In all of the addition lines the alien chromosome was most frequently observed as a univalent. The alien chromosome C5, which carries an intercalary 5S rDNA locus, occasionally formed trivalents that involved either rDNA- or non rDNA-carrying chromosomes from the A genome. In the case of chromosomes C8 and C9, the most frequently observed intergenomic associations involved the regions occupied by 18S-5.8S-25S ribosomal RNA genes. It is possible that not all such associations represent true pairing but are remnants of nucleolar associations from the preceding interphase. Variations in the numbers and distribution of 5S and 25S rDNA sites between cultivars of B. oleracea, B. oleracea var. alboglabra and B. rapa are discussed.This revised version was published online in April 2005 with corrections to Fig. 2.  相似文献   

3.
 A sesquidiploid hybrid (PPS, 2n=32) between Nicotiana plumbaginifolia (PP, 2n=20) and N. sylvestris (SS, 2n=24) was backcrossed to N. plumbaginifolia to produce monosomic alien addition lines. A total of 89 2n=21 plants, each containing two sets of N. plumbaginifolia chromosomes and a single N. sylvestris chromosome, were obtained in the BC1 and BC2 generations. These plants were classified into 12 groups based on morphological characteristics. The N. sylvestris chromosomes in these plants were identified by RFLP and karyotype analyses. Among the 84 probes tested, 20 could not detect N. sylvestris-specific DNA bands, and the remaining 64 were assigned to 9 normal and 6 aberrant synteny groups. The 9 normal synteny groups corresponded to chromosomes 2, 4, 5, 6, 7, 8, 9, 10 and 12, respectively. Four aberrant synteny groups were the result of chromosome translocations, and 2 were deletions. Received: 10 April 1996 / Accepted: 5 July 1996  相似文献   

4.
Two Brassica napus--Crambe abyssinica monosomic addition lines (2n=39, AACC plus a single chromosome from C. abyssinca) were obtained from the F2 progeny of the asymmetric somatic hybrid. The alien chromosome from C. abyssinca in the addition line was clearly distinguished by genomic in situ hybridization (GISH). Twenty-seven microspore-derived plants from the addition lines were obtained. Fourteen seedlings were determined to be diploid plants (2n=38) arising from spontaneous chromosome doubling, while 13 seedlings were confirmed as haploid plants. Doubled haploid plants produced after treatment with colchicine and two disomic chromosome addition lines (2n=40, AACC plus a single pair of homologous chromosomes from C. abyssinca) could again be identified by GISH analysis. The lines are potentially useful for molecular genetic analysis of novel C. abyssinica genes or alleles contributing to traits relevant for oilseed rape (B. napus) breeding.  相似文献   

5.

Background and Aims

Brassica rapa and B. oleracea are the progenitors of oilseed rape B. napus. The addition of each chromosome of B. oleracea to the chromosome complement of B. rapa results in a series of monosomic alien addition lines (MAALs). Analysis of MAALs determines which B. oleracea chromosomes carry genes controlling specific phenotypic traits, such as seed colour. Yellow-seeded oilseed rape is a desirable breeding goal both for food and livestock feed end-uses that relate to oil, protein and fibre contents. The aims of this study included developing a missing MAAL to complement an available series, for studies on seed colour control, chromosome homoeology and assignment of linkage groups to B. oleracea chromosomes.

Methods

A new batch of B. rapa–B. oleracea aneuploids was produced to generate the missing MAAL. Seed colour and other plant morphological features relevant to differentiation of MAALs were recorded. For chromosome characterization, Snow''s carmine, fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) were used.

Key Results

The final MAAL was developed. Morphological traits that differentiated the MAALs comprised cotyledon number, leaf morphology, flower colour and seed colour. Seed colour was controlled by major genes on two B. oleracea chromosomes and minor genes on five other chromosomes of this species. Homoeologous pairing was largely between chromosomes with similar centromeric positions. FISH, GISH and a parallel microsatellite marker analysis defined the chromosomes in terms of their linkage groups.

Conclusions

A complete set of MAALs is now available for genetic, genomic, evolutionary and breeding perspectives. Defining chromosomes that carry specific genes, physical localization of DNA markers and access to established genetic linkage maps contribute to the integration of these approaches, manifested in the confirmed correspondence of linkage groups with specific chromosomes. Applications include marker-assisted selection and breeding for yellow seeds.  相似文献   

6.
 Monosomic chromosome addition lines of Brassica oxyrrhina in the background of alloplasmic B. campestris carrying B. oxyrrhina cytoplasm were generated and characterised through morphology, cytology and molecular (RAPD) analysis. Four successive backcrosses of the synthetic alloploid B. oxycamp with B. campestris yielded 24 monosomic addition plants that were grouped into seven different synteny groups based on morphological similarity and RAPD patterns. Each synteny group exhibited morphological features diagnostic for the presence of individual B. oxyrrhina chromosomes including some novel phenotypes. Meiotic studies of the addition lines revealed the homoeology of four B. oxyrrhina chromosomes (synteny groups 1, 3, 5 and 6 ) with B. campestris chromosomes as indicated by trivalent associations, with the highest homoeology (44.23%) in synteny group 1 and the lowest (6.1%) in synteny group 3. Seed fertility of the addition lines ranged from 94.85% (synteny group 1) to 56.98% (synteny group 5). All of the addition lines were male-sterile except synteny group 6 which had 12–16% stainable pollen. Ovule transmission of the B. oxyrrhina chromosomes added to the progenies of addition lines ranged from 23.52% (synteny group 6) to 14% (synteny group 7). RAPD analysis confirmed the validity of synteny grouping based on morphological observations. Approximately 45% of the primers studied were informative, giving B. oxyrrhina-specific RAPD bands unique for each synteny group, except group 6. Received: 20 October 1997 / Accepted: 31 March 1998  相似文献   

7.

Key message

A complete set of monosomic alien addition lines of Brassica napus with one of the seven chromosomes of Isatis indigotica and the recombinant mitochondria was developed and characterized.

Abstract

Monosomic alien addition lines (MAALs) are valuable for elucidating the genome structure and transferring the useful genes and traits in plant breeding. Isatis indigotica (Chinese woad, 2n = 14, II) in Isatideae tribe of Brassicaceae family has been widely cultivated as a medicinal and dye plant in China. Herein, the intertribal somatic hybrid (2n = 52, AACCII) between B. napus cv. Huashuang 3 (2n = 38, AACC) and I. indigotica produced previously was backcrossed recurrently to parental B. napus, and 32 MAAL plants were isolated. Based on their phenotype, 5S and 45S rDNA loci and chromosome-specific SSR markers, these MAALs were classified into seven groups corresponding to potential seven types of MAALs carrying one of the seven I. indigotica chromosomes. One of the MAALs could be distinguishable by expressing the brown anthers of I. indigotica, other two hosted the chromosome with 5S or 45S rDNA locus, but the remaining four were identifiable by SSR markers. The simultaneous detection of the same SSR maker and gene locus in different MAALs revealed the paralogs on the chromosomes involved. The recombinant mitochondrial genome in MAALs was likely related with their male sterility with carpellody stamens, while the MAAL with normal brown anthers probably carried the restoring gene for the male sterility. The complete set of MAALs should be useful for exploiting the I. indigotica genome and for promoting the introgression of valuable genes to B. napus.  相似文献   

8.
小麦-中间偃麦草双体异附加系的鉴定   总被引:12,自引:1,他引:11  
利用形态学、细胞学、A-PADE和RAPD方法,对5个小麦-中间偃麦草(Thinopyrum intermedium)双体异附加系Line 1、Line 4、Line 10、Line 14和Line 15进行了鉴定。细胞学鉴定结果表明,它们根尖细胞染色体数目为2n=44,花粉母细胞减数分裂中期Ⅰ(PMCMⅠ)染色体构型为2n=22 Ⅱ,具有高度的细胞学稳定性;形态学鉴定和A-PADE电泳分析证明,Line 1和Line 15可能附加了中间偃麦草第7部分同源群的染色体,Line 10和Line 14可能附加了中间偃麦草第1部分同源群的染色体,Line4则可能同时存在多种染色体变异;RAPD分析表明,在供试的100个随机引物中,有5个引物S21、S29、S57、S121和S152能够在亲本中间偃麦草和双体异附加系中稳定扩增出特异带型,并可作为异附加系所附加染色体的特异RAPD标记。  相似文献   

9.
 Four different Brassica campestris-alboglabra monosomic addition lines (AA+1 chromosome from C, 2n=21) were obtained after consecutive backcrosses between resynthesized B. napus (AACC, 2n=38) and the parental B. campestris (AA, 2n=20) accession. The alien chromosomes of B. alboglabra (CC, 2n=18) in the addition lines were distinguished by random amplified polymorphic DNA (RAPD) marker analysis and morphology of mitotic chromosomes. Four RAPD marker synteny groups were established, which represented the four different alien chromosomes of B. alboglabra in the four addition lines. Three of the four addition lines were identified to harbour chromosomes 4, 8 or 9 of B. alboglabra. Studies on meiotic pairing in the addition lines revealed intergenomic homoeology relationships among specific chromosome arms between the A- and C-genomes. The long arm of B. campestris chromosome 9 was homoeologous with the long arm of B. alboglabra chromosome 4, while its short arm with the short arms of B. alboglabra chromosomes 8 and 9. Such an intergenomic homoeology relationship supports the hypothesis that B. campestris and B. alboglabra share a common ancestor but that chromosomal rearrangements have occurred during the evolution of the two species. Intergenomic introgression was observed in the progenies of the addition lines. The introgression of an entire B. alboglabra marker synteny group into the B. campestris genome implied the possible occurrence of interspecific chromosomal substitution. Received: 30 May 1996 / Accepted: 18 October 1996  相似文献   

10.
A cross between the open-pollinated Brassica oleracea cabbage cultivar Wisconsin Golden Acre and the hybrid broccoli cultivar Packman was used with molecular markers to investigate the genetic control of morphological variation. Twenty-two traits derived from leaf, stem, and flowering measurements were analyzed in 90 F2 individuals that were also classified for genotype by restriction fragment length polymorphism (RFLP) markers. Seventy-two RFLP loci, which covered the mapped genome at an average of 10 map-unit intervals on all nine linkage groups, were tested individually for associations to phenotypic measurements by single factor ANOVA, and markers with significant associations (P<0.05) were used to develop multilocus models. These data were utilized to describe the location, parental contribution of alleles, magnitude of effect, and the gene action of trait loci. Single marker loci that were significantly associated (P<0.05) with trait measurements accounted for 6.7–42.7% of the phenotypic variation. Multilocus models described as much as 60.1% of the phenotypic variation for a given trait. In some cases, different related traits had common marker-locus associations with similar gene action and genotypic class ranking. The numbers, action, and linkages, of genes controlling traits estimated with marker loci in this population corresponded to estimates based on classical genetic methods from other studies using similar, or similarly-wide, crosses. There was no evidence that genome duplication accounted for a significant portion of multiple genes controlling trait loci over the entire genome, but possible duplications of trait loci were identified for two regions with linked, duplicated marker loci.  相似文献   

11.
12.
小冰麦异附加系TAI系列的每一个材料中分别附加了1对来自中问偃麦草的染色体,附加染色体很容易丢失,使得失去附加染色体的小麦可以作为异附加系的对照材料。通过分析TAI系列异附加系及各自对照材料的高分子量麦谷蛋白亚基组成与低分子量麦谷蛋白基因的PCR图谱,鉴定出异附加系TAI-13和TAI-25中具有编码中问偃麦草麦谷蛋白的基因位点,附加的中间偃麦草染色体属于第一同源群。异附加系TAI-11中附加的中间偃麦草染色体只具有低分子量麦谷蛋白基因位点。  相似文献   

13.
14.
Summary Meiotic pairing in an interspecific triploid of Allium cepa and A. fistulosum, Delta Giant, exhibits preferential pairing between the two A. cepa genomes, leaving the A. fistulosum genome as univalents. Multivalent pairing involving A. fistulosum chromosomes occurs at a low level, allowing for recombination between the genomes. Ten trisomies were recovered from the backcross of Delta Giant x A. cepa cv., Temprana, representing a minimum of four of the eight possible alien addition lines. The alien addition lines possessed different A. fistulosum enzyme markers. Those markers, Adh-1, Idh-1 and Pgm-1 reside on different A. fistulosum chromosomes, whereas Pgi-1 and Idh-1 may be linked. Diploid, trisomic and hyperploid progeny were recovered that exhibited putative pink root resistance. The use of interspecific plants as a means to introgress A. fistulosum genes into A. cepa appears to be successful at both the trisomic and the diploid levels. If introgression can be accomplished using an interspecific triploid such as Delta Giant to generate fertile alien addition lines and subsequent fertile diploids, or if introgression can be accomplished directly at the diploid level, this will have accomplished gene flow that has not been possible at the interspecific diploid level.Journal article No. 1140, Agr. Expt. Stn. N.M. State Univ., Las Cruces, NM, USA  相似文献   

15.
L Barthes  A Ricroch 《Génome》2001,44(5):929-935
Monosomic alien addition lines (MAALs) are useful for assigning linkage groups to chromosomes. We examined whether the chromosomal rearrangements following the introduction of a single onion (Allium cepa) chromosome into the Allium fistulosum genome were produced by homeologous crossing over or by a nonreciprocal conversion event. Among the monosomic lines available, 17 were studied by fluorescent genomic in situ hybridisation, using total A. cepa genomic DNA as the probe and total A. fistulosum genomic DNA as the competitor. In this way, rearrangements such as chromosomal translocations between A. cepa and A. fistulosum were identified as terminal regions consisting of tandem DNA repeats. Homeologous crossing over between the two closely related genomes occurred in 4 of the 17 lines, suggesting that such events are not rare. On the basis of a detailed molecular cytogenetic characterisation, we identified true monosomic alien addition lines for A. cepa chromosomes 3, 4, 5, 7, and 8 that can reliably be used in genetic studies.  相似文献   

16.
Summary This study aimed at generating chromosome addition lines and disclosing genome specific markers in Brassica. These stocks will be used to study genome evolution in Brassica oleracea L., B. campestris L. and the derived amphidiploid species B. napus L. B. campestris-oleracea monosomic and disomic chromosome addition plants were generated by crossing and backcrossing the natural amphidiploid B. napus to the diploid parental species B. campestris. The pollen viability of the derived sesquidiploid and hyperploid ranged from 63% to 88%, while the monosomic and disomic addition plants had an average pollen fertility of 94% and 91%, respectively. The addition lines were genetically characterized by genome specific markers. The isozymes for 6PGD, LAP, PGI and PGM, and rDNA Eco RI restriction fragments were found to possess the desired genome specificity. Duplicated loci for several of these markers were observed in B. campestris and B. oleracea, supporting the hypothesis that these diploid species are actually secondary polyploids. A total of eight monosomic and eight disomic addition plants were identified and characterized on the basis of these markers. Another 51 plants remained uncharacterized due to the lack of additional markers. rDNA genes were found to be distributed in more than one chromosome, differing in its restriction sites. Intergenomic recombination for some of the markers was detected at frequencies between 6% and 20%, revealing the feasibility of intergenomic gene transfer.  相似文献   

17.
 Linolenic acid is a component of canola oil that is readily oxidized, which results in a reduced frying stability and shelf life of the oil. The reduction of linolenic acid in canola seed has therefore been an important breeding objective for many years. The inheritance of linolenic acid concentrations in seed oil is polygenic and is also strongly influenced by the environment. For these reasons, molecular markers are sought to assist in early and reliable selection of desired low linolenic acid genotypes in breeding programmes. Molecular markers associated with low linolenic acid loci were identified in a doubled-haploid population derived from a cross between the Brassica napus lines, ‘Apollo’ (low linolenic)×YN90-1016 (high linolenic) using RAPDs and bulked segregant analysis. A total of 16 markers were distributed over three linkage groups, which individually accounted for 32%, 14% and 5% of the phenotypic variation in linolenic acid content. The rapeseed fad3 gene was mapped near the locus controlling 14% of the variation. The mode of inheritance appeared to be additive, and a QTL analysis showed that collectively the three loci explained 51% of the phenotypic variation within this population. PCR fragments for low linolenic acid ‘Apollo’ alleles (3% linolenic acid) were identified at all three loci. Simultaneous selection for low linolenic acid ‘Apollo’ alleles at each locus resulted in a group of DH lines with 4.0% linolenic acid. The use of these makers in the breeding programme will enhance the breeding of low linolenic acid B. napus cultivars for production in Canada. Received: 23 September 1997 / Accepted: 21 October 1997  相似文献   

18.
Summary Nine different monosomic additions in Beta vulgaris from Beta webbiana were characterized through morphological characters and isozyme markers. The effect of the alien chromosome on the morphology of the recipient species is chromosome specific, and nine morphotypes could be distinguished. The added chromosome caused a growth reduction in the recipient plants. Eleven isozyme systems were used as marker systems. A 6PGDH band was found as a marker for chromosome 7, which contains a resistance gene for the beet cyst nematode in monosomic additions from Beta procumbens and Beta webbiana. A difference in the 6PGDH zymogram pattern between the two species with respect to this chromosome has been noted.  相似文献   

19.
Oryza latifolia, a tetraploid wild relative of cultivated rice is an important source of resistance to bacterial blight (BB), the brown planthopper (BPH) and the whitebacked planthopper (WBPH). Interspecific hybrids were obtained between an elite breeding line (IR31917-45-3-2) of Oryza sativa (2n=24 AA) and O. latifolia Acc. No. 100914 (2n=48 CCDD). The crossability in F1 was 7.58% and it ranged from 0.11 to 0.62 in backcross generations. The F1 hybrid showed 2-6 II, 0-2 III, 0-1 IV and 22-32 I; the mean being 3.92 II + 0.11 III + 0.02 IV + 27.30 I per cell at diakinesis. Monosomic alien addition lines (MAALs) having a 2n chromosome complement of O. sativa and one chromosome of O. latifolia were characterized based on morphology and isozyme banding pattern. The MAALs were designated as MAAL-1, MAAL-2, MAAL-4, MAAL-5, MAAL-6, MAAL-7, MAAL-8, MAAL-9, MAAL-10, MAAL-11 and MAAL-12. The female transmission rates of the alien chromosome varied from 4.4 to 35.5%, whereas 8 of the 11 MAALs transmitted the alien chromosome through the male gamete, the range being 1.7% (MAAL 10) to 11.9% (MAAL 12). Disomic progenies in BC3 and BC4 generations had complete resemblance to the O. sativa parent. Of the 2,295 disomic BC3F3 progenies, 309 showed introgression for resistance to BPH and 188 each for WBPH and BB resistance. Four plant progenies which were resistant to both BPH and WBPH were also resistant to BB race 2 of the Philippines. Nine of the 34 BC3F1 plants showed introgression for ten allozymes of O. latifolia, such as Est5, Amp1, Pgi1, Mdh3, Pgi2, Amp3, Pgd2, Est9, Amp2 and Sdh1, located on 8 of the 12 chromosomes. Alien introgression was also detected for morphological traits such as long awns, earliness, black hull, purple stigma and apiculus. Abnormal plants with many wild-species traits suddenly appeared in normal disomic progenies. These plants showing instability and abnormal segregation behaviour are being investigated for the activation of transposons.  相似文献   

20.
The close relationship between Brassica oleracea and Arabidopsis thaliana has been used to explore the genetic and physical collinearity of the two species, focusing on an inverted segmental chromosome duplication within linkage group O6 of B. oleracea. Genetic evidence suggests that these segments share a common origin with a region of Arabidopsis chromosome 1. Brassica oleracea and Arabidopsis bacterial artificial chromosome probes have been used for fluorescence in situ hybridization analysis of B. oleracea pachytene chromosomes to further characterize the inverted duplication. This has been highly effective in increasing the local resolution of the cytogenetic map. We have shown that the physical order of corresponding genetic markers is highly conserved between the duplicated regions in B. oleracea and the physical lengths of the regions at pachytene are similar, while the genetic distances are considerably different. The physical marker order is also well conserved between Arabidopsis and B. oleracea, with only one short inversion identified. Furthermore, the relative physical distances between the markers in one segment of B. oleracea and Arabidopsis have stayed approximately the same. The efficacy of using fluorescence in situ hybridization, together with other forms of physical and genetic mapping, for elucidating such issues relating to synteny is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号