首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of a Na+/Ca2+ exchanger in bovine adrenal chromaffin cells was demonstrated by measuring the efflux of 45Ca2+ which had been preloaded into cells by a brief depolarization. The efflux of 45Ca2+ was dependent on extracellular Na+ (Na+o); 45Ca2+ efflux was significantly decreased by replacing Na+o with N-methylglucamine (NMG), or Li+. Replacement of Na+o by NMG increased the resting intracellular Ca2+ concentration ([Ca2+]i) of freshly isolated chromaffin cells. This could be reversed by adding Na+, suggesting that Na+/Ca2+ exchanger activity was involved in maintaining [Ca2+]i at its resting level. The initial rate of Na(+)-dependent [Ca2+]i recovery after Ca2+ loading by depolarization was dependent on the level of [Ca2+]i. There was an apparent linear relationship between the activity of the Na+/Ca2+ exchanger and [Ca2+]i both in the presence and absence of Na+o. When cells were treated with other stimuli, including 10 microM DMPP or 40 mM caffeine, the ability of the stimulated cells to decrease [Ca2+]i was significantly reduced upon replacing Na+o with NMG. Our data show that the Na+/Ca2+ exchanger is one of the major pathways for regulating [Ca2+]i in chromaffin cells in both resting and stimulated states.  相似文献   

2.
A number of cell functions, such as flagellar beating, swimming velocity, acrosome reaction, etc., are triggered by a Ca2+ influx across the cell membrane. For appropriate physiological functions, the motile human sperm maintains the intracellular free calcium concentration ([Ca2+]i) at a submicromolar level. The objective of this study was to determine the role of the Na+/Ca2+ exchanger (NCX) in the maintenance of [Ca2+]i in human spermatozoa. Spermatozoa maintained in extracellular medium containing>or=1 microM Ca2+ exhibited motility similar to that of the control. In addition to several calcium transport mechanisms described earlier, we provide evidence that the NCX plays a crucial role in the maintenance of [Ca2+]i. Three chemically unrelated inhibitors of the NCX (bepridil, DCB (3',4'-dichlorobenzamil hydrochloride), and KB-R7943) all blocked human sperm motility in a dose and incubation time dependent manner. The IC50 values for bepridil, DCB, and KB-R7943 were 16.2, 9.8, and 5.3 microM, respectively. The treatment with the above-mentioned blockers resulted in an elevated [Ca2+]i and a decreased [Na+]i. The store-operated calcium channel (SOCC) inhibitor SKF 96365 also blocked the sperm motility (IC50=2.44 microM). The presence of the NCX antigen in the human spermatozoa was proven by flow cytometry, confocal laser scanning microscopy, and immunoblotting techniques. Calcium homeostasis of human spermatozoa is maintained by several transport proteins among which the SOCC and the NCX may play a major role.  相似文献   

3.
J B Smith  T Zheng  R M Lyu 《Cell calcium》1989,10(3):125-134
Ionomycin (1 microM) produced a large spike in cytosolic free Ca2+ [( Ca2+]i). The ionophore had no effect on [Ca2+]i if the sarcoplasmic reticulum had previously been Ca2+ depleted by stimulating neurohormone receptors. Ionomycin markedly increased 45Ca2+ efflux and decreased total cell Ca2+ by 60 to 70% in 1 min. Replacing extracellular Na+ [( Na+]o) with choline or N-methyl-D-glucamine strongly inhibited the effects of ionomycin on 45Ca2+ efflux and total Ca2+. Ionomycin caused similar peak increases in [Ca2+]i in the presence and absence of [Na+]o, but the exponential fall from the peak was faster in the presence of [Na+]o. Dimethylbenzamil, a potent blocker of Na+/Ca2+ exchange in these cells, strongly inhibited the effects of ionomycin on 45Ca2+ efflux and total cell Ca2+. We conclude that the increase in cytosolic free Ca2+ produced by ionomycin may be sufficient to activate the plasma membrane Na+/Ca2+ exchanger which removes Ca2+ from the cytosol and helps restore basal [Ca2+]i.  相似文献   

4.
Intracellular free calcium concentration ([Ca2+]i) was measured in fura-2-loaded single rat mesangial cells by dual wavelength spectrofluorometry. Stimulation with arginine vasopressin (AVP) caused an initial sharp rise of [Ca2+]i followed by repetitive spikes. The frequency of the oscillations was dependent on the concentration of AVP. At 0.1, 1.0, 10.0, and 100.0 nM AVP, the frequencies of oscillations were 0.17 +/- 0.05 (n = 6), 0.32 +/- 0.05 (n = 6), 0.49 +/- 0.05 (n = 6), and 0.48 +/- 0.05 min-1 (n = 5), respectively. Reduction in extracellular [Ca2+] reduced the frequency of AVP-induced oscillations but did not abolish the oscillations. The frequency of calcium oscillations, upon stimulation with 1.0 nM AVP, was directly correlated with the basal [Ca2+]i prior to stimulation. Oscillation frequency increased with increasing temperature. An Arrhenius plot between 24 and 37 degrees C indicated a strong temperature dependency of the oscillations with a Q10 of 3.0. Protein kinase C stimulation by active phorbol esters inhibited AVP-induced calcium oscillations but not the initial [Ca2+] response to AVP. These observations are consistent with a model incorporating a feedback loop linking [Ca2+]i to the mechanism of [Ca2+]i increase. Ca(2+)-induced Ca2+ release may be involved, whereby inositol 1,4,5-trisphosphate (inositol 1,4,5-P3) formation releases Ca2+ from an inositol 1,4,5-P3-sensitive pool, with subsequent Ca2+ uptake and release from an inositol 1,4,5-P3-insensitive pool.  相似文献   

5.
Routine activation of nuclear transfer (NT) eggs involves the application of a single intracellular calcium [Ca2+]i rise, stimulated by an electrical pulse, as opposed to [Ca2+]i oscillations, which is the natural mode of sperm-induced activation at fertilization in all mammalian species tested to date. It has yet to be shown that caprine oocytes exhibit an increase in calcium at fertilization in a manner similar to other mammals. The objective of the present study was to evaluate and characterize the ([Ca2+]i) oscillation patterns of caprine metaphase II (MII) oocytes during IVF and during an activation techniques used in nuclear transfer. Additionally, the effect of cytochalasin B (cyto B) in the NT process was evaluated for its impact on [Ca2+]i oscillations and subsequent embryo development. Mature in vitro and in vivo derived caprine oocytes were activated by 5 microM ionomycin, an electrical pulse(s), or IVF. The intracellular Ca2+ response was determined using the [Ca2+]i indicator Fura-2 dextran (Fura-2D). Ova treated with ionomycin or stimulated by an electrical pulse exhibited a single [Ca2+]i rise, whereas IVF-derived oocytes showed oscillations. IVF [Ca2+]i showed some variation, with 62% of in vitro matured oocytes exhibiting oscillations, whereas 8% of in vivo matured oocytes exhibited oscillations demonstrating a correlation between [Ca2+]i responses and maturation technique. Knowing the [Ca2+]i profile of activated eggs, one may be able to optimize the activation methodology used in a production nuclear transfer setting which could potentially improve development to term for NT embryos.  相似文献   

6.
Regulation of intracellular Ca2+ homeostasis was characterized in epimastigote forms of Trypanosoma cruzi using the fluorescence probe Fura-2. Despite an increase in extracellular Ca2+, [Ca2+]o, from 0 to 2 mM, cytosolic Ca2+, [Ca2+]i, increased only from 85 +/- 9 to 185 +/- 21 nM, indicating the presence of highly efficient mechanisms for maintaining [Ca2+]i. Exposure to monovalent Na+ (monensin)-, K+ (valinomycin, nigericin)-, and divalent Ca2+ (ionomycin)-specific ionophores, uncouplers of mitochondrial respiration (oligomycin), inhibitors of Na+/K(+)-ATPase (ouabain), and Ca(2+)-sensitive ATPase (orthovanadate) in 0 or 1 mM [Ca2+]o resulted in perturbations of [Ca2+]i, the patterns of which suggested both sequestration and extrusion mechanisms. Following equilibration in 1 mM [Ca2+]o, incubation with orthovanadate markedly increased [Ca2+]i, results which are compatible with an active uptake of [Ca2+]i by endoplasmic reticulum. In contrast, equilibration in 0 or 1 mM [Ca2+]o did not influence the relatively smaller increase in [Ca2+]i following incubation with oligomycin, suggesting a minor role for the mitochondrial compartment. In cells previously equilibrated in 1 mM [Ca2+]o, exposure to monensin or ouabain, conditions known to decrease the [Na+]o/[Na+]i gradient, upon which the Na+/Ca2+ exchange pathways are dependent, markedly increased [Ca2+]i. In a complementary manner, decreasing the extracellular Na+ gradient with Li+ increased [Ca2+]i in a dose-dependent manner. Finally, the calcium channel blockers verapamil and isradipine inhibited the uptake of Ca2+ by greater than 50%, whereas diltiazem, nifedipine, and nicardipine were ineffective. The results suggest that epimastigote forms of T. cruzi maintain [Ca2+]i by uptake, sequestration, and extrusion mechanisms, with properties common to eukaryotic organisms.  相似文献   

7.
The Na+/Ca2+ exchanger of squid axons, barnacle muscle and sarcolemma requires micromolar intracellular calcium for activation in the Na+i/Ca2+o exchange mode ('reverse' Na+/Ca2+ exchange). The requirement for [Ca2+]i has been demonstrated with the use of intracellular calcium buffers, such as Quin-2, to inhibit Na+i/Ca2+o exchange. However, the inhibition of Na+i/Ca2+o exchange in mammalian nerve terminals loaded with Quin-2 has not been observed [7], suggesting a lower sensitivity to low [Ca2+]i for this system. In contrast, the results reported herein indicate that 45Ca2+ uptake in synaptosomes through Na+i/Ca2+o exchange is inhibited by Quin-2 much in the same way as it is in the squid, provided that synaptosomes are preincubated in low Ca2+ medium to avoid saturation of Quin-2. Under these conditions, 45Ca2+ efflux via Ca2+i/Ca2+o exchange is also inhibited. Our results indicate that the Na+i/Ca2+o and Ca2+i/Ca2+o modes of the Na+/Ca2+ exchanger from rat brain synaptosomes require intracellular calcium for activation. However, because no clear relationship between the observed [Ca2+]i values and the inhibition of Na+i/Ca2+o exchange has been found, it is suggested that localised submembrane calcium concentrations not detected by the [Ca2+]i probe might regulate the exchanger.  相似文献   

8.
The free intracellular calcium ion concentration ([Ca2+]i) was measured in single cells of a population containing 65-80% somatotrophs, using the fluorescent Ca(2+)-indicator Fura-2 and digital imaging microscopy. Spontaneous oscillations in [Ca2+]i ranging in frequency up to 1.5 oscillations per minute were observed in 30% of somatotrophs. These Ca2+ oscillations were blocked by the Ca2+ channel blocker CoCl2 and were thus proposed to be the result of influx of Ca2+ into the cell, possibly as the result of spontaneous electrical activity. GHRH (10-100 nM) increased [Ca2+]i in 61% of the cells studied, although the amplitude and dynamics of the response varied from cell to cell. Typically [Ca2+]i rose from 170 +/- 26 nM to 321 +/- 44 nM (n = 13) in response to a challenge with 66 nM GHRH. GHRH also increased the frequency of Ca2+ oscillations in a number of cells, and some previously quiescent cells showed Ca2+ oscillations following addition of GHRH. Forskolin, which raises cAMP levels in bovine anterior pituitary cells, also stimulated a sustained rise in [Ca2+]i in 10 out of 14 cells tested. Somatostatin (SS) (10-80 nM) rapidly reduced basal [Ca2+]i, blocked Ca2+ oscillations, and blocked the [Ca2+]i response to GHRH. The Ca2+ channel blocker CoCl2 (4 mM) had similar actions on [Ca2+]i to those of SS. These results suggest that GHRH and SS may regulate GH release by modulating Ca2+ entry into the cell through the cell membrane. The [Ca2+]i oscillations seen in a proportion of the somatotrophs were modulated in frequency by GHRH and SS, and are probably generated by influx of Ca2+ through channels in the cell membrane. Thus GH secretion may be regulated by changes in the mean level of [Ca2+]i, which in turn, may be influenced by the frequency of [Ca2+]i oscillations in bovine somatotrophs.  相似文献   

9.
Dual wavelength microfluorometry was used to characterize the changes in cytosolic free Ca2+ concentration [( Ca2+]i) in individual cultured rat aortic vascular smooth muscle cells (VSMC). Angiotensin II (ANG II) at 10(-8) M induced a transient rise in [Ca2+]i from 43 +/- 2 to 245 +/- 23 nM, lasting for approximately 60 s (n = 42). In half of the population, discrete oscillations in [Ca2+]i of smaller amplitude occurred after the initial [Ca2+]i peak, with a period of 58 +/- 8 s and a maximum height of 132 +/- 24 nM. A similar oscillatory pattern was observed with arginine vasopressin (AVP). The oscillations depended upon the presence of extracellular Ca2+. Cytosolic free Na+ concentration ([Na+]i) in VSMC was also measured using the fluorescent Na+ probe sodium-binding benzofuran isophthalate. ANG II induced a gradual and sustained elevation of [Na+]i, from 24.0 +/- 6.2 to 36 +/- 9.7 mM. In response to AVP, [Na+]i rose to 41.0 +/- 11.6 mM. Video imaging of individual VSMC, with on-line ratio calibration of [Ca2+]i, revealed an inhomogeneous distribution of Ca2+ within the cell. [Ca2+] in the nucleus was invariably lower than in the cytoplasm in resting cells. In the cytoplasm, there were small regions in which [Ca2+] was elevated, or "hot spots." In Ca(2+)-containing medium, the initial rise in [Ca2+]i triggered by ANG II and AVP appeared to emanate from the hot spots and to spread evenly throughout the cytoplasm. Between [Ca2+]i oscillations, Ca2+ retreated back to the original hot spots. This study demonstrates the cellular and subcellular heterogeneity of [Ca2+]i both in resting VSMC and during stimulation by ANG II and AVP and reports the direct measurement of [Na+]i in VSMC. The results suggest an action of Ca2+ in both the initial and sustained phases of the response in VSMC and a link between changes in [Ca2+]i and [Na+]i.  相似文献   

10.
Nakada K  Mizuno J 《Theriogenology》1998,50(2):269-282
The objectives of the present study were to clarify and compare the characteristics of the transient rises in intracellular calcium concentrations ([Ca2+]i) induced either by spermatozoa or by stimulation with artificial activators in bovine oocytes. These transient rises in [Ca2+]i in oocytes matured in vitro were recorded with Ca2+ imaging using the Ca2+ indicator fura-2. During fertilization, a series of transient rises in [Ca2+]i was observed. The first Ca2+ response peaked at a concentration of 521 +/- 39 nM (n = 20) and lasted for 4 min, while the subsequent Ca2+ responses were significantly smaller and shorter, with a peak of 368 +/- 13 nM (n = 23) and a duration of 2 min. Injection of inositol 1,4,5- triphosphate (InsP3) into unfertilized oocytes caused a transient rise in [Ca2+]i in a dose-dependent manner. The maximum response was induced by 20 nA x 1 sec injection of InsP3. Thimerosal, a sulfhydryl reagent, induced the repetitive transient rises in [Ca2+]i. The peak and the duration of the rises in [Ca2+]i induced by InsP3 or thimerosal were smaller and shorter, respectively, than those of the first rise induced by spermatozoa. Ethanol and Ca2+ ionophore IA23187, which are general parthenogenetic activators of unfertilized oocytes, each induced a single transient rise in [Ca2+]i. The duration of the rise in [Ca2+]i by ethanol or Ca2+ ionophore was significantly longer than that by spermatozoa at fertilization, although the peaks were smaller. These results clarified the characteristics of the rises in [Ca2+]i induced by spermatozoa and by several artificial reagents, and showed that the first rise in [Ca2+]i induced by spermatozoa had a higher peak [Ca2+]i and a longer duration compared with each the subsequent rises in [Ca2+]i and the rises in [Ca2+]i induced by artificial reagents. These indicate that a mode like as the first rise in [Ca2+]i induced by spermatozoa is an effective trigger for artificial activation of oocytes.  相似文献   

11.
Rat hearts were depleted of Ca2+ (less than 10(-9) M) for 10 min, followed by 15 min of Ca2+-repletion. The calcium paradox injury occurs during Ca2+-repletion, after a period of calcium depletion. The calcium paradox injury was assessed by percent recovery (hemodynamics, [Ca2+]i, and energy levels) during Ca2+-repletion. A decrease in Na+ concentration during Ca2(+)-depletion did not allow for recovery during Ca2(+)-repletion, however 2.5% and 5% ethanol during Ca2(+)-depletion allowed for an approximate 50% recovery during Ca2(+)-repletion. A combination of ethanol (2.5% or 5%) with a low extracellular Na+ concentration (88 mM) allowed for complete recovery. Ethanol prevented a depletion of diastolic [Ca2+]i during Ca2(+)-depletion, and allowed for a return of normal diastolic [Ca2+]i during Ca2(+)-repletion. Ethanol modulates the activity of the Na+/Ca2+ exchanger and protects against the Ca2(+)-paradox injury.  相似文献   

12.
Studies with fluorescent Ca2+ indicators in large populations of neutrophils in suspension reveal a stable base line followed by a rapid agonist-induced elevation of cytosolic free calcium, [Ca2+]i, concomitant with other parameters of cellular activation. To study the role of adhesion in cell activation, we monitored [Ca2+]i in single neutrophils adhered to albumin-coated or fibronectin-coated glass coverslips before and after stimulation with the chemotactic peptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP). Human neutrophils loaded with 2 microM fura 2/AM were allowed to adhere to coverslips for 15-20 min at 37 degrees C. [Ca2+]i was monitored with a dual excitation microfluorimeter with a time resolution of 200 ms. Statistical analysis was performed using an algorithm allowing to detect significant [Ca2+]i peaks. 54% of the cells showed spontaneous [Ca2+]i oscillations. The amplitude of these [Ca2+]i peaks averaged 77 +/- 10 nM above basal levels (mean value of 110 +/- 20 nM), and their mean duration was 28 +/- 5 s; periods of [Ca2+]i bursts could last up to 15 min. In "silent" cells exhibiting a stable [Ca2+]i base line without spontaneous oscillations, low concentrations of fMLP (10(-10)-10(-9) M) could induce sustained [Ca2+]i oscillations. By contrast, higher agonist concentrations (10(-6) M) induced a single [Ca2+]i transient followed by a stable base line. 47% of the cells showing spontaneous [Ca2+]i oscillations did not respond to fMLP. Spontaneous [Ca2+]i oscillations depended on the continuous presence of extracellular Ca2+. Therefore: (i) spontaneous oscillations of [Ca2+]i occur in neutrophils adherent to various substrata; (ii) these oscillations do not preclude and can be dissociated from the response to fMLP; (iii) neutrophil functions might be controlled by [Ca2+]i oscillations rather than by sustained alterations of [Ca2+]i.  相似文献   

13.
Immature oocytes of many species are incompetent to undergo cortical granule (CG) exocytosis upon fertilization. In mouse eggs, CG exocytosis is dependent primarily on an inositol 1,4,5-trisphosphate (IP3)-mediated elevation of intracellular calcium ([Ca2+]i). While deficiencies upstream of [Ca2+]i release are known, this study examined whether downstream deficiencies also contribute to the incompetence of preovulatory mouse oocytes to release CGs. The experimental strategy was to bypass upstream deficiencies by inducing normal, fertilization-like [Ca2+]i oscillations in fully grown, germinal vesicle (GV) stage oocytes and determine if the extent of CG exocytosis was restored to levels observed in mature, metaphase II (MII)-stage eggs. Because IP3 does not stimulate a normal Ca2+ response in GV-stage oocytes, three alternate methods were used to induce oscillations: thimerosal treatment, electroporation, and sperm factor injection. Long-lasting oscillations from thimerosal treatment resulted in 64 and 10% mean CG release at the MII and GV stages, respectively (P < 0.001). Three electrical pulses induced mean [Ca2+]i elevations of approximately 730 and 650 nM in MII- and GV-stage oocytes, respectively, and 31% CG release in MII-stage eggs and 9% in GV-stage oocytes (P < 0.001). Sperm factor microinjection resulted in 86% CG release in MII-stage eggs, while similarly treated GV-stage oocytes exhibited < 1% CG release (P < 0.001). Taken together, these results demonstrate a deficiency downstream of [Ca2+]i release which is developmentally regulated in the 12 h prior to ovulation.  相似文献   

14.
The influx and efflux of calcium (as 45Ca) and influx of sodium (as 24Na) were studied in internally dialyzed squid giant axons. The axons were poisoned with cyanide and ATP was omitted from the dialysis fluid. The internal ionized Ca2+ concentration ([Ca2+]i) was controlled with Ca-EGTA buffers. With [Ca2+]i greater than 0.5 muM, 45Ca efflux was largely dependent upon external Na and Ca. The Nao-dependent Ca efflux into Ca-free media appeared to saturate as [Ca2+]i was increased to 160 muM; the half-saturation concentration was about 8 muM Ca2+. In two experiments 24Na influx was measured; when [Ca2+]i was decreased from 160 muM to less than 0.5 muM, Na influx declined by about 5 pmoles/cm2 sec. The Nao-dependent Ca efflux averaged 1.6 pmoles/cm2 sec in axons with a [Ca2+]i of 160 muM, and was negligible in axons with a [Ca2+]i of less than 0.5 muM. Taken together, the Na influx and Ca efflux data may indicate that the fluxes are coupled with a stoichiometry of about 3 Na+-to-1 Ca2+. Ca efflux into Na-free media required the presence of both Ca and an alkali metal ion (but not Cs) in the external medium. Ca influx from Li-containing media was greatly reduced when [Ca2+]i was decreased from 160 to 0.23 muM, or when external Li was replaced by choline. These data provide evidence for a Ca-Ca exchange mechanism which is activated by certain alkali metal ions. The observations are consistent with a mobile carrier mechanism which can exchange Ca2+ ions from the axoplasm for either 3 Na+ ions, or one Ca2+ and an alkali metal ion (but not Cs) from the external medium. This mechanism may utilize energy from the Na electrochemical gradient to help extrude Ca against an electrochemical gradient.  相似文献   

15.
Calcium is an important regulator of cell function, and may be influenced by the intracellular sodium content. In the present study, the Na(+)-ionophore, monensin, was used to investigate the interrelationship between changes in intracellular Na+ concentration ([Na+]i) and elevation of cytosolic Ca2+ concentration ([Ca2+]i) in FRTL-5 thyroid cells. Cytoplasmic Ca2+ levels were measured using the fluorescent dye, indo-1. Monensin induced a dose-dependent increase in [Ca2+]i in FRTL-5 cells. Inhibitors of intracellular Ca2+ release, TMB-8 and ryanodine, were unable to prevent the monensin effect on [Ca2+]i. The alpha 1-receptor antagonist, prazosin, did not block the monensin-stimulated increase in [Ca2+]i. In the absence of extracellular calcium there was a marked diminution in the monensin effect on [Ca2+]i, yet calcium channel antagonists (nifedipine, diltiazem and verapamil) did not inhibit the response. Replacement of Na+ by choline chloride in the medium depressed the monensin-evoked rise in [Ca2+]i by up to 84%. Furthermore, addition of the Na(+)-channel agonist, veratridine, elicited an increase in [Ca2+]i, even though less dramatic than that caused by monensin. Ouabain increased the resting cytosolic Ca2+ concentration as well as the magnitude of the monensin effect on [Ca2+]i. The absence of any effect on the Na(+)-ionophore evoked increase in [Ca2+]i upon addition of tetrodotoxin (TTX) excluded a possible involvement of TTX-sensitive Na+ channels. These data show that the rise in [Ca2+]i induced by increasing [Na+]i is largely dependent on both external Na+ and Ca2+. Calcium entry appears not to involve voltage-dependent or alpha 1-receptor sensitive Ca2+ channels, but may result from activation of an Na(+)-Ca2+ exchange system.  相似文献   

16.
This study explores the effect of extracellular Ca2+ concentration ([Ca2+]o), on the intracellular Na+ concentration ([Na+]i), in frog intact hearts using nuclear magnetic resonance spectroscopy, which allows for the measurement of [Na+]i in perfused, beating hearts. Decreases in [Ca2+]o yielded marked increases in [Na+]i. A similar effect was seen during inhibition of the Na+/K+ pump and was fully reversible. This sensitivity of [Na+]i to [Ca2+]o, previously observed using microelectrodes, supports a crucial physiological role for Na+/Ca2+ exchange in frog intact, beating hearts.  相似文献   

17.
Increased calcium influx in dystrophic muscle   总被引:16,自引:0,他引:16  
We examined pathways which might result in the elevated resting free calcium [( Ca2+]i) levels observed in dystrophic mouse (mdx) skeletal muscle fibers and myotubes and human Duchenne muscular dystrophy myotubes. We found that mdx fibers, loaded with the calcium indicator fura-2, were less able to regulate [Ca2+]i levels in the region near the sarcolemma. Increased calcium influx or decreased efflux could lead to elevated [Ca2+]i levels. Calcium transient decay times were identical in normal and mdx fibers if resting [Ca2+]i levels were similar, suggesting that calcium-sequestering mechanisms are not altered in dystrophic muscle, but are slowed by the higher resting [Ca2+]i. The defect appears to be specific for calcium since resting free sodium levels and sodium influx rates in the absence of Na+/K(+)-ATPase activity were identical in normal and dystrophic cells when measured with sodium-binding benzofuran isophthalate. Calcium leak channels, whose opening probabilities (Po) were voltage independent, could be the major calcium influx pathway at rest. We have shown previously that calcium leak channel Po is significantly higher in dystrophic myotubes. These leak channels were selective for calcium over sodium under physiological conditions. Agents that increased leak channel activity also increased [Ca2+]i in fibers and myotubes. These results suggest that increased calcium influx, as a result of increased leak channel activity, could result in the elevated [Ca2+]i in dystrophic muscle.  相似文献   

18.
Regulation of cytosolic Ca2+ in clonal human muscle cell cultures   总被引:4,自引:0,他引:4  
Human muscle cells were grown in culture and clonally selected for fusion potential. The concentration of cytoplasmic ionized calcium, [Ca2+]i, was measured in monolayers of fused myotubes using the Ca2+ indicator indo-1. The contributions of independent routes of Ca2+ influx and efflux to/from the cytoplasm on [Ca2+]i were investigated. The resting [Ca2+]i was 170-190 nM in different cell clones. Acetylcholine increased [Ca2+]i by about 2-fold in the presence of absence of extracellular Ca2+. Cell depolarization by K+ elevated [Ca2+]i about 3-fold, and this increase was largely dependent on extracellular Ca2+. Replacing Na+ by N-methylglucammonium+ raised [Ca2+]i greater than 5-fold, and 50% of this increase was dependent on extracellular Ca2+. All these increases in [Ca2+]i were transient, returning to basal [Ca2+]i within 2 min. It is concluded that cells in culture [Ca2+]i can be elevated transiently by acetylcholine through Ca2+ release from intracellular stores, and by K through Ca2+ influx. The return to basal [Ca2+]i is due to Na+/Ca2+ exchange and Ca2+-ATPase activity.  相似文献   

19.
Coupled Na+ exit/Ca2+ entry (Na/Ca exchange operating in the Ca2+ influx mode) was studied in giant barnacle muscle cells by measuring 22Na+ efflux and 45Ca2+ influx in internally perfused, ATP-fueled cells in which the Na+ pump was poisoned by 0.1 mM ouabain. Internal free Ca2+, [Ca2+]i, was controlled with a Ca-EGTA buffering system containing 8 mM EGTA and varying amounts of Ca2+. Ca2+ sequestration in internal stores was inhibited with caffeine and a mitochondrial uncoupler (FCCP). To maximize conditions for Ca2+ influx mode Na/Ca exchange, and to eliminate tracer Na/Na exchange, all of the external Na+ in the standard Na+ sea water (NaSW) was replaced by Tris or Li+ (Tris-SW or LiSW, respectively). In both Na-free solutions an external Ca2+ (Cao)-dependent Na+ efflux was observed when [Ca2+]i was increased above 10(-8) M; this efflux was half-maximally activated by [Ca2+]i = 0.3 microM (LiSW) to 0.7 microM (Tris-SW). The Cao-dependent Na+ efflux was half-maximally activated by [Ca2+]o = 2.0 mM in LiSW and 7.2 mM in Tris-SW; at saturating [Ca2+]o, [Ca2+]i, and [Na+]i the maximal (calculated) Cao-dependent Na+ efflux was approximately 75 pmol#cm2.s. This efflux was inhibited by external Na+ and La3+ with IC50's of approximately 125 and 0.4 mM, respectively. A Nai-dependent Ca2+ influx was also observed in Tris-SW. This Ca2+ influx also required [Ca2+]i greater than 10(-8) M. Internal Ca2+ activated a Nai-independent Ca2+ influx from LiSW (tracer Ca/Ca exchange), but in Tris-SW virtually all of the Cai-activated Ca2+ influx was Nai-dependent (Na/Ca exchange). Half-maximal activation was observed with [Na+]i = 30 mM. The fact that internal Ca2+ activates both a Cao-dependent Na+ efflux and a Nai-dependent Ca2+ influx in Tris-SW implies that these two fluxes are coupled; the activating (intracellular) Ca2+ does not appear to be transported by the exchanger. The maximal (calculated) Nai-dependent Ca2+ influx was -25 pmol/cm2.s. At various [Na+]i between 6 and 106 mM, the ratio of the Cao-dependent Na+ efflux to the Nai-dependent Ca2+ influx was 2.8-3.2:1 (mean = 3.1:1); this directly demonstrates that the stoichiometry (coupling ratio) of the Na/Ca exchange is 3:1. These observations on the coupling ratio and kinetics of the Na/Ca exchanger imply that in resting cells the exchanger turns over at a low rate because of the low [Ca2+]i; much of the Ca2+ extrusion at rest (approximately 1 pmol/cm2.s) is thus mediated by an ATP-driven Ca2+ pump.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
We investigated the mechanisms of Ca2+ extrusion from cultured rat aortic smooth muscle cells while monitoring changes in the cytosolic Ca2+ concentration ([Ca2+]i) using fura 2 fluorescence. 45Ca2+ efflux from these cells consisted of two major mechanisms; one was dependent on the extracellular sodium concentration (Na+o) and the other was independent of Na+o. Na+o-dependent efflux increased monotonically with increasing [Ca2+]i between 0.1 and 1.0 microM, whereas Na+o-independent efflux reached a plateau at 0.6-1 microM [Ca2+]i with a half-maximum obtained at about 0.16 microM. At [Ca2+]i below 1 microM, the latter was significantly greater than the former. Unlike the Na+o-dependent mechanism, Na+o-independent 45Ca2+ efflux was inhibited almost entirely by extracellularly added La3+ or a combination of high extracellular pH (pH 8.8) and 20 mM Mg2+. It was also inhibited, although not completely, by compound 48/80, a calmodulin antagonist, and vanadate. These results strongly suggest that Na+o-dependent and Na+o-independent 45Ca2+ effluxes occur via the Na+/Ca2+ exchanger and the ATP-dependent Ca2+ pump, respectively. Sodium nitroprusside and atrial natriuretic factor, which are agents that stimulate intracellular production of cGMP, and 8-BrcGMP significantly accelerated the Na+o-independent 45Ca2+ efflux especially at low [Ca2+]i. Forskolin, dibutyryl cAMP, and 8-Br-cAMP, however, showed no stimulation. These results suggest that the plasma membrane Ca2+ pump is regulated by cGMP but not by cAMP in intact vascular smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号