首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cel gene from Bacteroides succinogenes inserted into the vector pUC8 coded for an enzyme which exhibited high hydrolytic activity on carboxymethylcellulose, p-nitrophenylcellobioside, and lichenan and low activity on laminarin and xylan. The enzyme was not synthesized by the Escherichia coli host when cells were cultured in complex medium containing added glucose. In the absence of added glucose, the endoglucanase and cellobiosidase activities synthesized were partitioned into the periplasmic space during growth, and practically all enzyme was located in the periplasm when the stationary phase of growth was reached. The enzyme exhibited 17- and sixfold higher Km values for the hydrolysis of carboxymethylcellulose and lichenan, respectively, than did the extracellular endoglucanase complex from B. succinogenes. The Cel endoglucanase had a pH optimum similar to that of the B. succinogenes enzyme except that the range was narrower, and the Cel endoglucanase was more readily inactivated on exposure to high temperature, detergents, and certain metals. Its activity was stimulated by calcium and magnesium. Nondenaturing polyacrylamide gel electrophoresis at different acrylamide concentrations revealed the presence of three endoglucanase components, two with molecular weights of 43,000 and one with a molecular weight of 55,000.  相似文献   

2.
A gene coding for xylanase synthesis in Bacteroides succinogenes was isolated by cloning, with Escherichia coli HB101 as the host. After partial digestion of B. succinogenes DNA with Sau3A, fragments were ligated into the BamHI site of pBR322 and transformed into E. coli HB101. Of 14,000 colonies screened, 4 produced clear halos on Remazol brilliant blue-xylan agar. Plasmids from two stable clones recovered exhibited identical restriction enzyme patterns, with the same 9.4-kilobase-pair (kbp) insert. The plasmid was designated pBX1. After subcloning of restriction enzyme fragments, a 3-kbp fragment was found to code for xylanase activity in either orientation when inserted into pUC18 and pUC19. The original clone possessed approximately 10-fold higher xylanase activity than did clones harboring the 3-kbp insert in pUC18, pUC19, or pBR322. The enzyme was partially secreted into the periplasmic space of E. coli. The periplasmic enzyme of the BX1 clone had 2% of the activity on carboxymethyl cellulose and less than 0.2% of the activity on p-nitrophenyl xyloside and a range of other substrates that it exhibited on xylan. The xylanase gene was not subject to catabolite repression by glucose or induction by either xylan or xylose. The xylanase activity migrated as a single broad band on nondenaturing polyacrylamide gels. The Km of the pBX1-encoded enzyme was 0.22% (wt/vol) of xylan, which was similar to that for the xylanase activity in an extracellular enzyme preparation from B. succinogenes. Based on these data it appears that the xylanase gene expressed in E. coli is fully functional and codes for an enzyme with properties similar to the B. succinogenes enzyme(s).  相似文献   

3.
A gene coding for xylanase synthesis in Bacteroides succinogenes was isolated by cloning, with Escherichia coli HB101 as the host. After partial digestion of B. succinogenes DNA with Sau3A, fragments were ligated into the BamHI site of pBR322 and transformed into E. coli HB101. Of 14,000 colonies screened, 4 produced clear halos on Remazol brilliant blue-xylan agar. Plasmids from two stable clones recovered exhibited identical restriction enzyme patterns, with the same 9.4-kilobase-pair (kbp) insert. The plasmid was designated pBX1. After subcloning of restriction enzyme fragments, a 3-kbp fragment was found to code for xylanase activity in either orientation when inserted into pUC18 and pUC19. The original clone possessed approximately 10-fold higher xylanase activity than did clones harboring the 3-kbp insert in pUC18, pUC19, or pBR322. The enzyme was partially secreted into the periplasmic space of E. coli. The periplasmic enzyme of the BX1 clone had 2% of the activity on carboxymethyl cellulose and less than 0.2% of the activity on p-nitrophenyl xyloside and a range of other substrates that it exhibited on xylan. The xylanase gene was not subject to catabolite repression by glucose or induction by either xylan or xylose. The xylanase activity migrated as a single broad band on nondenaturing polyacrylamide gels. The Km of the pBX1-encoded enzyme was 0.22% (wt/vol) of xylan, which was similar to that for the xylanase activity in an extracellular enzyme preparation from B. succinogenes. Based on these data it appears that the xylanase gene expressed in E. coli is fully functional and codes for an enzyme with properties similar to the B. succinogenes enzyme(s).  相似文献   

4.
A DNA fragment coding for a cellodextrinase of Bacteroides succinogenes S85 was isolated by screening of a pBR322 gene library in Escherichia coli HB101. Of 100,000 colonies screened on a complex medium with methylumbelliferyl-beta-D-cellobioside as the indicator substrate, two cellodextrinase-positive clones (CB1 and CB2) were isolated. The DNA inserts from the two recombinant plasmids were 7.7 kilobase pairs in size and had similar restriction maps. After subcloning from pCB2, a 2.5-kilobase-pair insert which coded for cellodextrinase activity was isolated. The enzyme was located in the cytoplasm of the E. coli host. It exhibited no activity on carboxymethyl cellulose, Avicel microcrystalline cellulose, acid-swollen cellulose, or cellobiose but hydrolyzed p-nitrophenyl-beta-D-cellobioside and p-nitrophenyl-beta-D-lactoside. The Km (0.1 mM) for the hydrolysis of p-nitrophenyl-cellobioside by the enzyme expressed in E. coli was similar to that reported for the purified enzyme from B. succinogenes. Expression of the cellodextrinase gene was subjected to catabolite repression by glucose and was not induced by cellobiose. The origin of the DNA insert from B. succinogenes was confirmed by Southern blot analysis. Western blotting (immunoblotting) using antibodies raised against the purified B. succinogenes cellodextrinase revealed a protein with a molecular weight of approximately 50,000 in E. coli clones which comigrated with the native enzyme isolated from B. succinogenes. These data indicate that the cellodextrinase gene expressed in E. coli is fully functional and codes for an enzyme with properties similar to those of the native enzyme.  相似文献   

5.
A DNA fragment coding for a cellodextrinase of Bacteroides succinogenes S85 was isolated by screening of a pBR322 gene library in Escherichia coli HB101. Of 100,000 colonies screened on a complex medium with methylumbelliferyl-beta-D-cellobioside as the indicator substrate, two cellodextrinase-positive clones (CB1 and CB2) were isolated. The DNA inserts from the two recombinant plasmids were 7.7 kilobase pairs in size and had similar restriction maps. After subcloning from pCB2, a 2.5-kilobase-pair insert which coded for cellodextrinase activity was isolated. The enzyme was located in the cytoplasm of the E. coli host. It exhibited no activity on carboxymethyl cellulose, Avicel microcrystalline cellulose, acid-swollen cellulose, or cellobiose but hydrolyzed p-nitrophenyl-beta-D-cellobioside and p-nitrophenyl-beta-D-lactoside. The Km (0.1 mM) for the hydrolysis of p-nitrophenyl-cellobioside by the enzyme expressed in E. coli was similar to that reported for the purified enzyme from B. succinogenes. Expression of the cellodextrinase gene was subjected to catabolite repression by glucose and was not induced by cellobiose. The origin of the DNA insert from B. succinogenes was confirmed by Southern blot analysis. Western blotting (immunoblotting) using antibodies raised against the purified B. succinogenes cellodextrinase revealed a protein with a molecular weight of approximately 50,000 in E. coli clones which comigrated with the native enzyme isolated from B. succinogenes. These data indicate that the cellodextrinase gene expressed in E. coli is fully functional and codes for an enzyme with properties similar to those of the native enzyme.  相似文献   

6.
A Fibrobacter succinogenes S85 gene that encodes endoglucanase hydrolysing CMC and xylan was cloned and expressed in Escherichia coli DH5 by using pUC19 vector. Recombinant plasmid DNA from a positive clone hydrolysing CMC and xylan was designated as pCMX1, harboring 2,043 bp insert. The entire nucleotide sequence was determined, and an open-reading frame (ORF) was deduced. The nucleotide sequence accession number of the cloned gene sequence in Genbank is U94826. The endoglucanase gene cloned in this study does not have amino sequence homology to the other endoglucanase genes from F. succinogenes S85, but does show sequence homology to family 5 (family A) of glycosyl hydrolases from several species. The ORF encodes a polypeptide of 654 amino acids with a measured molecular weight of 81.3 kDa on SDS-PAGE. Putative signal sequences, Shine-Dalgarno-type ribosomal binding site and promoter sequences (-10) related to the consensus promoter sequences were deduced. The recombinant endoglucanase by E. coli harboring pCMX1 was partially purified and characterized. N-terminal sequences of endoglucanase were Ala-Gln-Pro-Ala-Ala, matched with deduced amino sequences. The temperature range and pH for optimal activity of the purified enzyme were 55 approximately 65 degrees C and 5.5, respectively. The enzyme was most stable at pH 6 but unstable under pH 4 with a K(m) value of 0.49% CMC and a V(max) value of 152 U/mg.  相似文献   

7.
Endoglucanase 2 (EG2) of the cellulolytic ruminal anaerobe Bacteroides succinogenes is a 118-kilodalton (kDa) enzyme which binds to cellulose and produces cellotetraose as the end product of hydrolysis. The purified enzyme was treated with the protease trypsin in an attempt to isolate peptides which retained the ability to either hydrolyze soluble carboxymethyl cellulose or bind to insoluble cellulose. There was no loss in endoglucanase activity (carboxymethylcellulase) over a period of 2 h following the addition of trypsin. In comparison, there was a greater than eightfold reduction in the binding of carboxymethylcellulase activity to crystalline cellulose. A Lineweaver-Burk plot with amorphous cellulose as the substrate revealed that the trypsin-digested enzyme had an identical Vmax but a 1.9-fold-lower Km in comparison with the intact enzyme. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the trypsin-digested enzyme revealed two major peptides of 43 and 51 kDa (p43 and p51). The 43-kDa peptide was able to bind to both amorphous and crystalline cellulose, whereas p51 did not. Purified p51 had a molar activity toward carboxymethyl cellulose which was identical to that of the intact enzyme, but activity toward both amorphous and crystalline cellulose was reduced approximately twofold. Two high-titer monoclonal antibodies from mice immunized with the intact protein recognized p43 but not p51. The results are consistent with a bifunctional organization of EG2, in which the 118-kDa enzyme is composed of a 51-kDa catalytic domain and a highly antigenic 43-kDa substrate-binding domain. In terms of its domain structure and activity toward cellulose, EG2 is very similar to cellobiohydrolase II of Trichoderma reesei.  相似文献   

8.
The cel-3 gene cloned from Fibrobacter succinogenes into Escherichia coli coded for the enzyme EG3, which exhibited both endoglucanase and cellobiosidase activities. The gene had an open reading frame of 1,974 base pairs, coding for a protein of 73.4 kilodaltons (kDa). However, the enzyme purified from the osmotic shock fluid of E. coli was 43 kDa. The amino terminus of the 43-kDa protein matched amino acid residue 266 of the protein coded for by the open reading frame, indicating proteolysis in E. coli. In addition to the 43-kDa protein, Western immunoblotting revealed a 94-kDa membranous form of the enzyme in E. coli and a single protein of 118 kDa in F. succinogenes. Thus, the purified protein appears to be a proteolytic degradation product of a native protein which was 94 kDa in E. coli and 118 kDa in F. succinogenes. The discrepancy between the molecular weight expected on the basis of the DNA sequence and the in vivo form may be due to anomalous migration during electrophoresis, to glycosylation of the native enzyme, or to fatty acyl substitution at the N terminus. One of two putative signal peptide cleavage sites bore a strong resemblance to known lipoprotein leader sequences. The purified 43-kDa peptide exhibited a high Km (53 mg/ml) for carboxymethyl cellulose but a low Km (3 to 4 mg/ml) for lichenan and barley beta-glucan. The enzyme hydrolyzed amorphous cellulose, and cellobiose and cellotriose were the major products of hydrolysis. Cellotriose, but not cellobiose, was cleaved by the enzyme. EG3 exhibited significant amino acid sequence homology with endoglucanase CelC from Clostridium thermocellum, and as with both CelA and CelC of C. thermocellum, it had a putative active site which could be aligned with the active site of hen egg white lysozyme at the highly conserved amino acid residues Asn-44 and Asp-52.  相似文献   

9.
Li W  Li Z  Yang J  Ye Q 《Journal of biotechnology》2011,154(4):261-268
Glutathione (GSH) is one of the most ubiquitous non-protein thiols that is involved in numerous cellular activities. The gene coding for a novel bifunctional enzyme catalyzing the reaction for glutathione synthesis, gshF, was cloned from Streptococcus thermophilus SIIM B218 and expressed in Escherichia coli JM109. In the presence of the precursor amino acids and ATP, the induced cells of E. coli JM109 (pTrc99A-gshF) could accumulate 10.3 mM GSH in 5 h. The S. thermophilus GshF was insensitive to feedback inhibition caused by GSH even at 20 mM. At elevated concentrations of the precursor amino acids and ATP, E. coli JM109 (pTrc99A-gshF) produced 36 mM GSH with a molar yield of 0.9 mol/mol based on added cysteine and of 0.45 mol/mol based on added ATP. When ATP was replaced with glucose, E. coli JM109 (pTrc99A-gshF) produced 7 mM in 3 h. Saccharomyces cerevisiae was used to generate ATP for GSH production. In the presence of glucose and the pmr1 mutant of S. cerevisiae BY4742, JM109 (pTrc99A-gshF) produced 33.9 mM GSH in 12 h with a yield of 0.85 mol/mol based on added l-cysteine. It is shown that the S. thermophilus GshF can be successfully used for GSH production.  相似文献   

10.
H J Goodman  J R Parker  J A Southern  D R Woods 《Gene》1987,58(2-3):265-271
The recombinant plasmid pHG100, containing a 5.2-kb DNA fragment from Bacteroides fragilis, complemented defects in homologous recombination, DNA repair and prophage induction to various levels in an Escherichia coli recA mutant strain. There was no DNA homology between the cloned B. fragilis recA-like gene and E. coli chromosomal DNA. pHG100 produced two proteins with Mr of approx. 39,000 and 37,000 which cross-reacted with antibodies raised against E. coli RecA protein. The production of these proteins was not increased after UV induction. The cloned B. fragilis recA-like gene product did not enhance the production of native but defective E. coli RecA protein after UV irradiation.  相似文献   

11.
A genomic library consisting of 4- to 7-kb EcoRI DNA fragments from Fibrobacter succinogenes 135 was constructed using a phage vector, lambda gtWES lambda B, and Escherichia coli ED8654 as the host bacterium. Two positive plaques, designated lambda FSX101 and lambda FSX102, were identified. The inserts were 10.5 and 9.8 kb, respectively. A 2.3-kb EcoRI fragment that was subcloned from lambda FSX101 into pBR322 also showed xylanase activity. Southern blot analysis showed that the cloned EcoRI fragment containing the xylanase gene had originated from F. succinogenes 135. The cloned endo-(1,4)-beta-D-xylanase gene (pFSX02) was expressed constitutively in E. coli HB101 when grown on LB and on M9 medium containing either glucose or glycerol as the carbon source. Most of the beta-D-xylanase activity was located in the periplasmic space. Zymogram activity stains of nondenaturing polyacrylamide gels and isoelectric focusing gels showed that several xylanase isoenzymes were present in the periplasmic fraction of the E. coli clone FSX02 and they probably were due to posttranslational modification of a single gene product. Comparison of the FSX02 xylanase and the xylanase from the extracellular culture fluids of F. succinogenes 135 and S85 for their ability to degrade oat spelt xylan showed that, for equal units of beta-D-xylanase activity, hydrolysis by the cloned gene product was more complete. However, unlike the unfractionated mixture of xylanases from F. succinogenes 135 and S85, the enzyme from E. coli FSX02 was unable to release arabinose from oat spelt xylan.  相似文献   

12.
13.
14.
Isolation of a Cellodextrinase from Bacteroides succinogenes   总被引:8,自引:13,他引:8       下载免费PDF全文
An enzyme which released the cellobiose group from p-nitrophenyl cellobioside was isolated from the periplasmic space of Bacteroides succinogenes grown on Avicel crystalline cellulose in a continuous cultivation system and separated from endoglucanases by column chromatography. The molecular weight of the enzyme was approximately 40,000, as estimated by gel filtration. The enzyme has an isoelectric point of 4.9. The enzyme exhibited low hydrolytic activity on acid-swollen cellulose and practically no activity on carboxymethyl cellulose, Avicel cellulose, and cellobiose, but it hydrolyzed p-nitrophenyl lactoside and released cellobiose from cellotriose and from higher cello-oligosaccharides. These data demonstrate that the enzyme is a cellodextrinase with an exotype of function.  相似文献   

15.
A gene coding for xylanase activity in the ruminal bacterial strain 23, the type strain of Bacteroides ruminicola, was cloned into Escherichia coli JM83 by using plasmid pUC18. AB. ruminicola 23 genomic library was prepared in E. coli by using BamHI-digested DNA, and transformants were screened for xylanase activity on the basis of clearing areas around colonies grown on Remazol brilliant blue R-xylan plates. Six clones were identified as being xylanase positive, and all six contained the same 5.7-kilobase genomic insert. The gene was reduced to a 2.7-kilobase DNA fragment. Xylanase activity produced by the E. coli clone was found to be greater than that produced by the original B. ruminicola strain. Southern hybridization analysis of genomic DNA from the related B. ruminicola strains, D31d and H15a, by using the strain 23 xylanase gene demonstrated one hybridizing band in each DNA.  相似文献   

16.
17.
Summary Two genes coding for endoglucanase activity in Clostridium cellulolyticum were cloned and expressed in Escherichia coli by using plasmid pUC18. The sizes of two fragments harbouring endoglucanase genes are 4.4 kb and 2.0 kb, respectively. The 2.0-kb fragment was identical with a reported DNA fragment encoding an endoglucanase of C. cellulolyticum. The 4.4-kb fragment was obtained first in this study. Deletion analysis showed that a 1.3-kb portion of the 4.4-kb fragment is necessary for the endoglucanase expression by its own promoter. The 4.4-kb fragment hybridized with several different fragments of the genomic DNA in C. cellulolyticum.Offprint requests to: T. Kodama  相似文献   

18.
The complete nucleotide sequence of endAFS, an endoglucanase gene isolated from the ruminal anaerobe Fibrobacter succinogenes AR1, was determined. endAFS encodes two overlapping open reading frames (ORF1 and ORF2), and it was proposed that a -1 ribosomal frameshift was required to allow contiguous synthesis of a 453-amino-acid endoglucanase. A proline- and threonine-rich region at the C terminus of ORF1 and rare codons for arginine and threonine were coincident with the proposed frameshift site. ENDAFS is proposed to be a member of subgroup 1 of family E endoglucanases, of which endoglucanases from Thermomonospora fusca and Persea americana (avocado) are also members. Endoglucanases from Clostridium thermocellum and Pseudomonas fluorescens form subgroup 2.  相似文献   

19.
The gene encoding a glucosyltransferase which synthesized water-insoluble glucan, gtfI, previously cloned from Streptococcus sobrinus strain MFe28 (mutans serotype h) into a bacteriophage lambda vector, was subcloned into the plasmid pBR322. The recombinant plasmid was stable in Escherichia coli and gtfI was efficiently expressed. The GTF-I expressed in E. coli was compared to the corresponding enzymes in S. sobrinus strains MFe28 (serotype h), B13 (serotype d) and 6715 (serotype g) and shown to resemble them closely in molecular mass and isoelectric point. The insoluble glucan produced by GTF-I from recombinant E. coli consisted of 1,3-alpha-D-glycosyl residues (approximately 90%). An internal fragment of the gtfI gene was used as a probe in hybridization experiments to demonstrate the presence of homologous sequences in chromosomal DNA of other streptococci of the mutans group.  相似文献   

20.
A gene coding for xylanase activity in the ruminal bacterial strain 23, the type strain of Bacteroides ruminicola, was cloned into Escherichia coli JM83 by using plasmid pUC18. AB. ruminicola 23 genomic library was prepared in E. coli by using BamHI-digested DNA, and transformants were screened for xylanase activity on the basis of clearing areas around colonies grown on Remazol brilliant blue R-xylan plates. Six clones were identified as being xylanase positive, and all six contained the same 5.7-kilobase genomic insert. The gene was reduced to a 2.7-kilobase DNA fragment. Xylanase activity produced by the E. coli clone was found to be greater than that produced by the original B. ruminicola strain. Southern hybridization analysis of genomic DNA from the related B. ruminicola strains, D31d and H15a, by using the strain 23 xylanase gene demonstrated one hybridizing band in each DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号