首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary DNA molecules of seven T7 mutants with overlapping deletions in the early region were cleaved by restriction enzymes HindII, HpaI and II, and HaeIII. The differences in the cleavage patterns after electrophoresis have been used to generate a cleavage map of the restriction sites of this enzyme. It covers the first 9% of the T7 DNA molecule. Cleavage points for HindII are at 0.60, 1.33, 1.59, 1.76, 5.26, 6.27, 7.4 and 8.38%; for HpaI and II at 1.36, 1.62, 4.46, 6.29, 6.62, 7.56, and 8.76%; for HaeIII at 3.85, 6.98, 7.88 and 8.26%. Some fragments have been located in the region containing the early promoters, others carry the complete sequences of gene 0.3.  相似文献   

2.
A study of sequence homologies in four satellite DNAs of man.   总被引:4,自引:0,他引:4  
Satellites I, II, III and IV (Corneo et al., 1968,1970,1971) have been purified from human male placental DNA. The sequences present in these four DNA components have been characterized by analytical buoyant density, thermal denaturation, DNA reassociation, DNA hybridization and gel electrophoresis coupled with hybridization following either HaeIII or EcoRI restriction endonuclease digestion. Satellites III and IV were found to be virtually indistinguishable by a variety of criteria. Cross-satellite reassociation showed that 40% of the molecules present in satellite III contain sequences that are homologous to 10% of the molecules of either satellite I or satellite II. Reassociated satellite I melts as a single component, as do the hybrid duplexes between satellite I and satellite III. In contrast, reassociated satellites II, III and IV, and the hybrid duplexes formed between satellites II and III and between satellites II and IV, melt as two distinct components with different thermal stabilities.Digestion of satellite III with HaeIII gives rise to a series of fragments whose sizes are 2, 3, 4, 5, 6, 7, 8 and 11 times the size of the smallest 0.17 × 103 basepair fragment, in addition to a 3.4 × 103 base-pair male-specific fragment (Cooke, 1976) and high molecular weight material. The sequences contained in the fragments of the HaeIII ladder are diverged from each other as well as being non-homologous with those of the 3.4 × 103 base-pair and high molecular weight fragments. The latter contain EcoRI recognition sites. Satellite II has a similar pattern of fragments to satellite III following digestion with HaeIII, although it can be distinguished from satellite III on the basis of the products of EcoRI digestion. Satellite I contains neither HaeIII nor EcoRI recognition sites. The cross-satellite homologies of the sequences present in fragments of differing sizes produced by restriction enzyme digestion have also been studied.  相似文献   

3.
The entire genome and the DNA fragments of the lipid-containing bacteriophage pM2 were cloned in the pBR322 plasmid vector. A physical map including the sites for the following restriction enzymes was obtained: HpaII, HaeIII, TthI, Sau96I, AvaII, PstI, BstNI, AccI, HincII, HpaI and HindIII. No restriction sites on PM2 DNA were found for BalI, BamHI, BclI, BglI, BglII, BstEII, KpnI, PvuII, SacI, SalI, Sau3A, XbaI and XhoI.  相似文献   

4.
D Ojala  G Attardi 《Plasmid》1977,1(1):78-105
Twenty-one fragments have been identified among the products of digestion of HeLa cell mtDNA with the restriction enzyme Hpa II. The sum of the molecular sizes of these fragments, estimated from their mobility relative to that of known markers, accounts, within experimental error, for the total length of HeLa cell mtDNA. The 21 fragments have been ordered in a physical map by two approaches: (1) sequential digestion with Hpa II of the fragments produced by Eco RI, Hind III, andHpa I enzymes, and (2) fragment-primed DNA synthesis. The Hpa II map has been aligned with the maps constructed with the other three enzymes and with the unique cutting site produced by Bam I. The combined map thus obtained has resolved HeLa cell mtDNA into 27 recognizable segments in the molecular size range between 75 and 1950 base pairs. This physical map has been aligned with the known positions of the rRNA and 4 S RNA genes on the two mtDNA strands by RNA-DNA hybridization experiments utilizing purified 32P-labeled 12 and 16 S rRNA.  相似文献   

5.
J G Reilly  C A Thomas 《Plasmid》1980,3(2):109-115
We have studied the mitochondrial DNA in three wild type laboratory strains of Drosophila melanogaster, ry+5 and two Oregon R-substrains, called here R and E. Lengths of the restriction bands for EcoRI, BglII, HpaII, MspI, HaeIII, and HindIII were compared. The number of restriction sites was identical in all strains, with the exception of an extra HaeIII site in ry+5. Careful comparison of restriction fragment lengths showed that bands containing the AT-rich region were different in length among all strains. The laboratory strains, ry+5, proved to be a mixture of strains carrying different mtDNAs; these separated into substrains G1 and G2 in the progeny of single pair matings. Adult progeny of reciprocal crosses of G1 and R were analyzed by HaeIII restriction digestion. The results demonstrated maternal inheritance for both the extra restriction site and band containing the AT-rich region.  相似文献   

6.
The precise positions of the origin of replication3 and of the D-loop within the HpaII restriction map of HeLa cell mitochondrial DNA have been investigated. For this purpose, 7 S DNA, which is the heavy-chain initiation sequence, was used as a template for fragment-primed DNA synthesis by Escherichia coli DNA polymerase I. The results indicate clearly that the origin of replication lies in HpaII fragment 8 at about 80 base-pairs from the border with fragment 17, and that the D-loop region extends from this site, through fragment 17, to a position in fragment 10 which is about 365 base-pairs from the border with fragment 17. Sequential digestion of fragment 8 with HaeIII enzyme has allowed the isolation of a subfragment, about 200 base-pairs long, that contains the origin of replication.  相似文献   

7.
Genetic and physical mapping in the early region of bacteriophage T7 DNA.   总被引:14,自引:0,他引:14  
A detailed physical map of the early region of bacteriophage T7 DNA has been constructed. This map contains: locations for all the cuts made by the restriction endonucleases HindII, HpaII, HaeIII and HaeII, and many of the cuts by HhaI; the approximate end points for each of 61 different deletions; initiation sites and the termination site for RNAs made by Escherichia coli RNA polymerase; an initiation site for RNA made by T7 RNA polymerase; the five primary RNase III cleavage sites of the early region; and the coding sequences for perhaps nine different early proteins. Virtually all of the non-overlapping coding capacity of the five early messenger RNAs is used, except for untranslated stretches of perhaps 30 or so nucleotides at the ends. It seems likely that each of the nine early proteins is made from its own ribosome-binding and initiation site. The mapped restriction cuts provide fixed reference points, and allow DNA fragments containing specific genetic signals to be identified and isolated.The nucleotide sequences around the ends of three different T7 deletions have been determined. Each deletion eliminated a segment of DNA between repeated sequences of seven, eight or ten base-pairs, located 578 to 2100 base-pairs apart in the wild-type sequence. In each case, one copy of the repeated sequence was retained in the deletion mutant. This is consistent with the deletions having arisen by a genetic crossover between the repeated sequences. The approximate frequency of genetic recombination per base-pair has been estimated within two early genes; in both cases, the value was close to 0.01% recombination per base-pair, consistent with the value expected from the total length of the T7 genetic map. Genetic recombination between non-overlapping deletions appears to be severely depressed when the distance between the deletions is closer than about 40 to 50 base-pairs, but recombination between a point mutation and a deletion does not appear to be similarly depressed. This suggests that efficient genetic recombination in T7 may require a base-paired “synapse” of some minimum size between the recombining DNA molecules.  相似文献   

8.
A physical map of the streptococcal macrolides, lincomycin, and streptogramin B (MLS) resistance plasmid pDB101 was constructed using six different restriction endonucleases. Ten recognition sites were found for HindIII, seven for HindII, eight for HaeII, and one each for EcoRI, HpaII, and KpnI. The localization of the restriction cleavage sites was determined by double and triple digestions of the plasmid DNA or sequential digestions of partial cleavage products and isolated restriction fragments, and all sites were aligned with a single EcoRI reference site. Plasmid pDB101 meets all requirements essential for a potential molecular cloning vehicle in streptococci; i.e., single restriction sites, a MLS selection marker, and a multiple plasmid copy number. The vector plasmid described here makes it possible to clone selectively any fragment of DNA cleaved with EcoRI, HpaII, or KpnI, or since the sites are close to each other in map position, any combination of two of these restriction enzymes.  相似文献   

9.
10.
DNA bending induced by six DNA (cytosine-5) methyltransferases was studied using circular permutation gel mobility shift assay. The following bend angles were obtained: M.BspRI (GGm5CC), 46–50°; M.HaeIII (GGm5CC), 40–43°; M.SinI (GGWm5CC), 34–37°; M.Sau96I (GGNm5CC), 52–57°; M.HpaII (Cm5CGG), 30°; and M.HhaI (Gm5CGC), 13°. M.HaeIII was also tested with fragments carrying a methylated binding site, and it was found to induce a 32° bend. A phase-sensitive gel mobility shift assay, using a set of DNA fragments with a sequence-directed bend and a single methyltransferase binding site, indicated that M.HaeIII and M.BspRI bend DNA toward the minor groove. The DNA curvature induced by M.HaeIII contrasts with the lack of DNA bend observed for a covalent M.HaeIII–DNA complex in an earlier X-ray study. Our results and data from other laboratories show a correlation between the bending properties and the recognition specificities of (cytosine-5) methyltransferases: enzymes recognizing a cytosine 3′ to the target cytosine tend to induce greater bends than enzymes with guanine in this position. We suggest that the observed differences indicate different mechanisms employed by (cytosine-5) methyltransferases to stabilize the helix after the target base has flipped out.  相似文献   

11.
RFLP analyses of a portion of the 28S rDNA gene region were conducted by using four restriction endonucleases for 57 isolates of 13 intraspecific groups (ISGs) representing 7 anastomosis groups (AGs) ofRhizoctonia solani. Variations in the PCR-amplified rDNA products and the polymorphisms on digestion with restriction enzymes (BamHI,HaeIII,HhaI andHpaII) were observed among three AGs, AG 1, 2 and 4. These differences were also conserved among some ISGs of AG 1 and AG 2. Among ISGs of AG 1, the pattern of rDNA fragments of AG 1-IA obtained by digestion withHpaII was significantly different from those of AG 1-IB and IC. Such difference in the fragment pattern was also observed among AG 2-1, 2-2 IIIB and 2-2 IV by the digestion withHhaI andHpaII. A dendrogram derived from the restriction enzyme data showed that ISGs from AG 1 and AG 2 can each be subdivided into distinct groups, those are distantly related to the majority isolates of the other AGs.  相似文献   

12.
Summary Streptococcal plasmid pGB301 is an in vivo rearranged plasmid with interesting properties and potential for the molecular cloning of genes in streptococci. Transformation of S. sanguis (Challis) with the group B streptococcal plasmid pIP501 (29.7 kb) gave rise to the deletion derivative pGB301 (9.8 kb, copy number 10) which retained the multiple resistance phenotype of its ancestor (inducible MLS-resistance, chloramphenicol resistance). Among the eight restriction endonucleases used to physically map pGB301 were four that cleaved the plasmid at single sites yielding either sticky (HpaII, KpnI) or bluntends (HpaI, HaeIII/BspRI). Passenger DNA derived from larger streptococcal plasmids (pSF351C61, 69.5 kb; pIP800, 71 kb) was successfully inserted into the HpaII site and, by blunt-end cloning, into the HaeIII/BspRI site. The gentamicin/kanamycin resistance gene of pIP800 was expressed by recombinant plasmids carrying the insert in either orientation. Insertion of passenger DNA into the HaeIII/BspRI site (but not the HpaII site) caused instability of adjacent pGB301 sequences which were frequently deleted, thereby removing the chloramphenicol resistance phenotype. The vector pGB301 has a remarkable capacity for passenger DNA (inserts up to 7 kb) and the property of instability and loss of a resistance phenotype following insertion of passenger DNA into the HaeIII/BspRI site should facilitate the identification of cloned segments of DNA when using this plasmid in molecular cloning experiments.  相似文献   

13.
Polyoma DNA was cleaved with restriction endonuclease HpaII, the fragments were separated by gel electrophoresis and transferred in good yield to separate nitrocellulose filters by a modification of the procedure of E. M. Southern (1975, J. Mol. Biol.98, 503–517). The filters were then used in hybridization experiments to localize the isotope in different parts of the polyoma genome after in vitro incorporation of labeled deoxyribonucleoside triphosphates into the DNA.  相似文献   

14.
A HaeIIl monomer of a repetitive DNA family from Pennisetum glaucum (L.) R. Br. cv. Massue has been cloned and characterized. The repeat is 137 bp long and is organized in head-to-tail orientation in tandem arrays. The HaeIII monomer contains 55% A+T residues. The distribution of this highly repetitive sequence in different Pennisetum species and in other cereals was investigated. The HaeIII satellite is present in all Pennisetum species investigated but absent from other genera examined. In situ hybridization revealed a centromeric localization of this sequence on all seven chromosome pairs and indicated chromosome-specific differences in copy number. Methylation was investigated by comparative restriction enzyme analysis (Msp/HpaII) which showed a greater extent of methylation of the internal C of the enzyme recognition site 5′-CCGG. A South-Western analysis, using an anti-methylcytosine antibody to examine the methylation status in P. glaucum confirmed that the sequence is not highly methylated.  相似文献   

15.
The restriction endonuclease from Haemophilus parainfluenzae, endoR·HpaI cleaves λcI857s7 DNA into 14 fragments. The sizes of these fragments were determined and a physical map was constructed. The ordering of the fragments was carried out using different deletion and substitution mutants of λ phage, double cleavages with another restriction enzyme, endoR·BamHI, and partial protection of individual HpaI recognition sites by the antibiotics distamycin A and actinomycin D. HpaI produces fragments from the left arm of the λ DNA genome, which may help in investigating the structure and function of this part of the phage.  相似文献   

16.
One of the products of bacteriophage G4 DNA replication late in the infectious process is an open-circular, duplex replicative form DNA, RFII. These molecules contain a single discontinuity located at a specific site in the viral strand. Limited enzymatic repair of such RFII molecules with 32P-labeled deoxyribonucleoside triphosphates specifically labels restriction fragments HpaII A, HaeIII Z2, Hind(II and III) A and Hind(II and III) D2 and places the 3′OH terminus of the viral strand at a point approximately half-way round the genome from the single EcoRI site.These results taken together with the in vitro localization of the origin of the complementary strand at a point close to the EcoRI site (Zechel et al., 1975) suggest that G4 replicates by a mechanism involving distinct and widely separated origins of the individual strands (e.g., a displacement-loop mechanism).  相似文献   

17.
The break in the complementary DNA strand of early G4 replicative form II DNA (RFII) and in the viral DNA strand of late RFII DNA was located using two single cleavage restriction enzymes (EcoRI and PstI) and by limited nick translation of the break using DNA polymerase I and 32P-labelled deoxyribonucleotides followed by digestion with the restriction enzymes HaeIII and HindII. The break in the complementary DNA strand was unique and in HaeIII Z5 close to the EcoRI cleavage site whereas the break in the viral DNA strand was on the other side of the molecule in HaeIII Z2 approxiately 50% away from the EcoRI cleavage site. Distribution of a short 3H pulse in early G4 replicating intermediates that were synthesising both DNA strands at the same time showed that synthesis of the strands started on opposite sides of the molecule and proceeded in opposite convergent directions, suggesting that initiation of synthesis of the two strands was independent and not unified in a single growing fork.  相似文献   

18.
R T Kovacic  J C Wang 《Plasmid》1979,2(3):394-402
A new two-dimensional technique for the mapping of restriction sites is presented. Linear DNA labeled at both ends is first partially digested with the restriction endonuclease for which a map is desired. Following electrophoresis of the partial digest in an agarose gel, complete digestion of the fragments in the gel matrix with a second restriction enzyme is carried out. Electrophoresis in the second dimension resolves two sets of labeled spots: one set from the left and the other from the right end. For a given band of the autoradiogram of the first dimension gel, the mobility of the band gives the size of the DNA fragment, and therefore the distance of a particular restriction site from one of the ends of the original linear DNA. The mobility of the labeled spot derived from this band in the second dimension gel allows one to distinguish whether the distance deduced above is from one end or the other. Additional information about the location of one set of restriction sites for one enzyme relative to those for a second enzyme can also be obtained using the two-dimensional method. The advantages of the technique are the small amount of DNA required and the rapidity with which many maps can be constructed from one labeled DNA. As a test of the method, maps for the HindIII and HaeIII cleavage sites of circular phage PM2 DNA have been obtained, after first converting the DNA to the linear form by digestion with HpaII.  相似文献   

19.
We have used agarose gel electrophoresis to separate complementary DNA strands obtained from simian virus 40 DNA restriction fragments produced by HindII and III or by EcoRI and HpaII digestion. By modifying existing methods we have virtually eliminated the problematic renaturation of DNA during electrophoresis. This has allowed us to recover large quantities of separated DNA strands (approximately 20 μg of DNA per 12-mm-diameter preparative tube gel). By using a combination of low temperature and low buffer concentration during electrophoresis, we have also significantly improved the resolution of DNA strands.  相似文献   

20.
The 1.688 g/cm3 satellite DNA of Drosophila melanogaster is composed primarily of 359 base-pair units repeated in tandem. Most of these units contain a single cleavage site for both HaeIII and HinfI restriction endonucleases; however, some units lack one or both sites. Previously we had shown that the distribution of HaeIII and HinfI endonuclease sites varies widely between different regions of 1.688 g/cm3 satellite DNA; for example, some regions contain HaeIII sites in every unit and other regions (>10,000 base-pairs) contain no HaeIII sites (Carlson &; Brutlag, 1977). We have now cloned molecules of 1.688 g/cm3 satellite DNA which lack HaeIII sites and have shown that the absence of sites is caused by sequence variation rather than base modification. This result indicates that regions of 1.688 g/cm3 satellite DNA with different distributions of restriction sites differ in the sequence of their repeating units. We also show that a large fraction of the satellite DNA which is not cleaved by HaeIII endonuclease still contains HinfI endonuclease sites (and AluI sites) spaced about 359 base-pairs apart. However, one cloned segment lacking HaeIII sites was found to contain 33 tandem copies of a novel 254 base-pair unit. Sequence analysis showed that this 254 base-pair unit is homologous to the 359 repeat except for a 98 base-pair deletion. These data suggest that both units have evolved from a common ancestor and that each has subsequently become amplified into separate tandem arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号