首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Models of two simple genetic systems of two alleles segregating at two loci are used to study the evolution of dominance of a Batesian mimic maintained in a population by frequency-dependent selection. The alleles at one locus determine the mimetic patterns, and their dominance is modified by the alleles at the other locus. In the model, the modifiers of dominance may themselves be either fully dominant or have additive effects on the dominance of the mimics. When the modifier is fully dominant in its effect on the dominance of a new mimic, the mimic will evolve dominance irrespective of the initial frequency of the modifier. When the modifiers act additively on the dominance of the mimics, a new mimic will evolve either dominance or recessiveness depending on the initial frequency of the modifiers. Unless the modifier is initially at quite a high frequency dominance will not evolve. And dominance will not evolve fully unless the modifiers are more or less selectively neutral in their effects on all other characters except the mimicry. The significance of these results is discussed with reference to the different dominance relations of the mimics in different races of the butterfly Papilio dardanus.  相似文献   

2.
S. Merkle  J. Favor  J. Graw  S. Hornhardt    W. Pretsch 《Genetics》1992,131(2):413-421
Two ethylnitrosourea-induced heterozygous mouse mutants with approximately 58 and 50% of wild-type lactate dehydrogenase (LDH) activity and a gamma-ray-induced heterozygous mutant with 50% of wild-type LDH activity in blood, liver and spleen (expressing predominantly the Ldh-1 gene) were recovered in mutagenicity experiments following spermatogonial treatment. Physiological and genetic studies revealed no indications for differences in fertility as well as hematological or other physiological traits between heterozygotes of each mutant line and wild types. This suggests that neither the mutations in the heterozygous state per se nor the resulting approximate 42 to 50% LDH deficiency affect metabolism and fitness. Physicochemical and immunological studies clearly demonstrated that the two mutations with 50% deficiency in heterozygotes result from null alleles of the Ldh-1 structural locus, generating neither enzyme activity nor immunological cross-reacting material. In contrast, the heterozygous mutant with approximately 58% of normal blood LDH activity was shown to be due to a Ldh-1 allele creating protein subunits, which in random assortment with wild-type subunits in vivo exhibit a reduced specific activity and further alterations of kinetic and physicochemical characteristics. All the mutations in the homozygous state were found to be lethal at an early postimplantation stage of embryonic development, probably due to a block of glycolysis with the corresponding loss of the main source of metabolic energy during this ontogenetic stage. The distinct physiological consequences of the total absence of a functioning LDH-A subunit in mice and humans are discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We studied deterministic models of multilocus systems subject to mutation–selection balance with all loci unlinked, and with multiplicative interactions of the loci affecting fitness, in partially self-fertilizing populations. The aim was to examine the fitnesses of the zygotes produced by outcrossing and by selling, and the magnitude of inbreeding depression, in populations with different levels of inbreeding. The fates of modifiers of the outcrossing rate were also examined. With biologically plausible parameter values, inbreeding depression can be very large in moderately selfing populations, particularly when the mutant alleles are fairly recessive and selection is weak. A modifier allele reducing the selfing rate can be favored under these circumstances. In more inbred populations, inbreeding depression is lower, and selection favors alleles that increase the selfing rate. When inbreeding depression is caused by mutant alleles with strong selective disadvantage, modifiers causing large increases in selfing can often be favored even when the inbreeding depression exceeds one-half, though in these circumstances modifiers increasing selfing by smaller amounts are usually eliminated. Weaker selection appears to be more favorable to the maintenance of outcrossing.  相似文献   

4.
X-linked mutant alleles associated with prenatal male lethality are difficult to analyze because only heterozygous females are readily available for study. Genomic analysis of the mutant allele is facilitated by the construction of somatic cell hybrids because this enables the segregation of the X Chromosomes (Chrs) that carry the mutant and wild-type alleles. We describe here a method that ensures that the X Chr carrying the mutant allele is retained in somatic cell hybrids in an active selectable state. This is achieved by mating heterozygous females to males that carry a mutation at the hypoxanthine phosphoribosyl transferase (Hprt) locus. The resultant F1 females are compound heterozygotes, and when cells from these females are fused to HPRT− Chinese hamster cells and subjected to selection in HAT medium, the only survivors are those hybrid cells that retain an active X Chr carrying the mutant allele together with the wild-type Hprt allele. We use hybrids constructed by this method to demonstrate that there are no gross deletions or genomic rearrangements present in three mottled alleles associated with prenatal male lethality. Received: 8 January 1996 / Accepted: 29 February 1996  相似文献   

5.
Different point mutations have been identified in the T3-binding domain of the c-erbA beta thyroid hormone receptor gene that are associated with variant phenotypes of generalized thyroid hormone resistance (GTHR). In most cases of GTHR, heterozygotes are affected; a single mutant allele results in the inhibition of the function of normal thyroid hormone receptors. We report here a novel genetic abnormality, a 3-basepair (bp) deletion in the T3-binding domain of the beta-receptor in a kindred, S, with GTHR. One patient, S1, was the product of a consanguineous union of two heterozygotes and was homozygous for this defect. Heterozygotes from kindred S harbored a CAC deletion at nucleotides 1295-1297, which resulted in the deduced loss of amino acid residue threonine at codon 332, and they displayed elevated free T4 levels and inappropriately normal TSH levels characteristic of other kindreds with GTHR. However, patient S1, who had two mutant alleles, had markedly elevated TSH and free T4 levels and displayed profound abnormalities in brain development and linear growth. A fibroblast c-erbA beta cDNA extending from codon 175 to stop codon 457 was cloned from patient S1, sequenced, and used to create a full-length mutant cDNA. The kindred S mutant receptor was synthesized in vitro and did not bind T3. This mutant receptor did bind with similar avidity as the wild-type human beta-receptor to thyroid hormone response elements of the human TSH beta (-12 to 43 bp) and rat GH (-188 to -160 bp) genes. Kindred S showed the effect in man of heterozygous and homozygous expression of a dominant negative form of c-erbA beta.  相似文献   

6.
We have examined the effects of mutations in the six allele-specific modifier genes su(Hw), e(we), su(f), su(s), su(wa), and su(pr) on the expression of 18 modifiable alleles, situated at 11 loci. Ten of the modifiable alleles are associated with insertions of the gypsy retrotransposon and the others include alleles associated with insertions of copia and 412. We tested or retested 90 of the 108 possible combinations and examined the expression of modifiable alleles in flies mutant for pairs of modifier genes in various heterozygous and homozygous configurations. Our principal findings are: (1) a screen of 40,000 mutagenized X chromosomes yielded three new mutations in known modifier genes, but revealed no new modifier genes; (2) the modification effects of different mutations in a given modifier gene were qualitatively similar; (3) each of the six modifiers suppressed some modifiable alleles, enhanced others, and had no noticeable effect on still others; (4) the modifier genes could be placed in four classes, according to their effects on the gypsy-insertion alleles; and (5) the effects of mutations in different modifier genes combined additively. Implications of these results for models of modifier gene action are discussed.  相似文献   

7.
Meiotic silencing by unpaired DNA: properties,regulation and suppression   总被引:13,自引:0,他引:13  
Shiu PK  Metzenberg RL 《Genetics》2002,161(4):1483-1495
  相似文献   

8.
In Paramecium tetraurelia, stock 51, the A surface protein is coded by the wild type A51 gene, present in micronuclei in two copies and in macronuclei in about 1500 copies. DNA processing, comprised of DNA cleavage, copy number amplification and telomere addition occurs at autogamy and conjugation when old macronuclei degrade and new macronuclei are formed from micronuclei. In this paper we characterize mutants with macronuclear A gene deletions. These mutants are notable in three respects. First, the mutants do not appear to be simple micronuclear deletions. Although genetic analysis shows that the d12 mutant d12(-1300) is homozygous for the allele A-1300 and the mutant d12(+1) for A+1, analysis by the polymerase chain reaction indicates that the micronuclei in these two mutants contain intact, but presumably altered, micronuclear A genes. They undergo deletion during DNA processing when new macronuclei are formed. Second, the position of the deletions in these alleles has been shown to change. The deficiency present in the d12 allele A-1300 was originally determined to extend from position -1300 (relative to the start of translation of the A gene) to the end of the chromosome. Later, a derivative of this strain, homozygous for the d12 allele A+1 was isolated in which the start site of the deletion was found to have moved from -1300 to +1. Third, a surprising interaction occurs in crosses between a line homozygous for the d12 allele and one homozygous for the wild-type A51 allele. Previous work on the non-Mendelian d48 mutant (which has intact A51 genes in its micronucleus, but has truncated A51 genes in its macronucleus) has shown that intact A51 alleles must be present in the old macronucleus in order for A51 alleles to undergo proper processing. We find that d12 alleles act on A51 alleles in heterozygotes such that intact macronuclear A genes are no longer required for proper processing of A51. Thus, in crosses of 51 x d12 (either +1 or -1300) d12 exconjugants, as well as 51 exconjugants, give rise to clones carrying both intact A51 and truncated d12 alleles. Remarkably the d12 alleles, which are themselves deleted during processing, are capable in the heterozygote of fostering normal processing of the A51 allele.  相似文献   

9.
A. M. Delange 《Genetics》1981,97(2):237-246
A newly induced mutant of Neurospora, when crossed with an ad-3A mutant, produces asci with four viable black and four inviable white ascospores. The survivors always contain the new mutant allele, never ad-3A. The new allele, which is called SK(ad-3A) (for spore killer of ad-3A), is located at or very near the ad-3A locus.--In crosses homozygous for ad-3A, each ascus contains only inviable white ascospores. This defect in ascospore maturation is complemented by the wild-type allele, ad-3A+ (crosses heterozygous for ad-3A and ad-3A+ produce mainly viable ascospores), but it is not complemented by the new SK(ad-3A) allele (all ad-3A ascospores from crosses heterozygous for SK(ad-3A) and ad-3A are white and inviable). In crosses homozygous for SK(ad-3A) or heterozygous for SK(ad-3A) and ad-3A+, each ascus contains only viable black ascospores. SK(ad-3A) does not require adenine for growth, and forced heterokaryons between SK(ad-3A) and ad-3A grow at wild-type rates and produce conidia of both genotypes with approximately equal frequency. Thus, the action of SK(ad-3A) is apparently restricted to ascospore formation. Possible mechanisms of the action of this new allele are discussed.  相似文献   

10.
In genetic polymorphisms of two alleles, heterozygous individuals may contribute to the next generation on average more or fewer descendants than the homozygotes. Two different evolutionary responses that remove a disadvantageous heterozygote phenotype from the population are the evolution of strictly assortative mate choice, and that of a modifier making one of the two alleles completely dominant. We derive invasion fitness of mutants introducing dominance or assortative mate choice in a randomly mating population with a genetic polymorphism for an ecological trait. Mutations with small effects as well as mutants introducing complete dominance or perfect assorting are considered. Using adaptive dynamics techniques, we are able to calculate the ratio of fitness gradients for the effects of a dominance modifier and a mate choice locus, near evolutionary branching points. With equal resident allele frequencies, selection for mate choice is always stronger. Dominance is more strongly selected than assortative mating when the resident (common) alleles have very unequal frequencies at equilibrium. With female mate choice the difference in frequencies where dominance is more strongly selected is smaller than when mutants of both sexes can choose without costs. A symmetric resource-competition model illustrates the results.  相似文献   

11.
Petter Portin 《Genetics》1975,81(1):121-133
The mutations of the Abruptex locus in Drosophila melanogaster fall into three categories. There are recessive lethal alleles and viable alleles. The latter can be divided into suppressors and nonsuppressors of Notch mutations. The recessive lethals are lethal in heterozygous combination with Notch. As a rule the recessive lethals are lethal also in heterozygous combination with the viable alleles. Heterozygous combinations of certain viable alleles are also lethal. In such heterozygotes, one heteroallele is a suppressor of Notch and the other is a nonsuppressor. Other heterozygous combinations of viable alleles are viable and have an Abruptex phenotype. The insertion of the wild allele of the Abruptex locus as an extra dose (carried by a duplication) into the chromosomal complement of the fly fully restores the viability of the otherwise lethal heterozygotes if two viable alleles are involved. The extra wild allele also restores the viability of heterozygotes in which a lethal and a suppressor allele are present. If, however, a lethal and a nonsuppressor are involved, the wild allele only partly restores the viability, and the effect of the wild allele is weakest if two lethal alleles are involved. It seems likely that of the viable alleles the suppressors of Notch are hypermorphic and the nonsuppressors are hypomorphic. The lethal alleles share properties of both types, and are possibly antimorphic mutations. It is suggested that the locus is responsible for a single function which, however, consists of two components. The hypermorphic mutations are defects of the one component and the hypomorphic mutations of the other. In heterozygotes their cumulative action leads to decreased viability. The lethal alleles are supposed to be defects of the function as a whole. The function controlled by the locus might be a regulative function.  相似文献   

12.
Intrinsic biological resemblance between two types is measured in terms of a correlation between their fitnesses under various possible environmental conditions. A tendency toward dominance is defined as the intrinsic biological resemblance between homozygote and heterozygote. The effect of a tendency toward dominance on the à priori survival probability of a mutant gene is studied when the fitnesses of the mutated forms are given only by their distributions. Close intrinsic resemblance between homozygous and heterozygous forms of a new mutant gene is shown to substantially increase the à priori survival probability of this gene. A probabilistic effect of selection is, thus, shown to statistically favor dominant or near dominant mutant genes to start with.This probabilistic effect is suggested as complementary to the Fisherian process of selection on the heterozygote modifiers, taking place at further stages of the progress of a mutant gene.  相似文献   

13.
Allelic interactions at the nivea locus of Antirrhinum.   总被引:9,自引:4,他引:5       下载免费PDF全文
J Bollmann  R Carpenter    E S Coen 《The Plant cell》1991,3(12):1327-1336
Most null alleles at the nivea (niv) locus are recessive to Niv+ and, when homozygous, give white flowers rather than the red of the wild type. In contrast, the niv-571 allele is semidominant; although it gives white flowers when homozygous, very pale flowers result when this allele is heterozygous with NIV+. We showed that in heterozygotes, niv-571 acts in trans to inhibit expression of its Niv+ homology 25-fold to 50-fold. The inhibition is reversible after meiosis and partially reversible somatically. The niv-571 allele carries a transposable element Tam3 insertion and three truncated copies of the niv gene, one copy being in inverse orientation. Analysis of two further niv alleles, niv-572 and niv-527, showed that excision of Tam3 from niv-571 does not affect the ability of the allele to repress Niv+ and that one truncated niv copy alone is insufficient to confer semidominance. The detailed structures of various semidominant niv alleles suggest that their effects in trans are not readily explained by production of antisense RNA but are more easily reconciled with a direct recognition/interaction between homologous genes, reminiscent of cosuppression and transvection phenomena described in other systems.  相似文献   

14.
In the genome of Drosophila melanogaster there is only one locus, Tpl, that is triplo-lethal; it is also haplo-lethal. Previous work has identified 3 hypomorphic alleles of Tpl which rescue animals carrying a duplication of Tpl, but which are not dominant lethals as null mutations or deficiencies would be. We have found that all three hypomorphic alleles act as site-specific hotspots for recombination when heterozygous with a wild-type homolog. Recombination between the flanking markers ri and Ki is increased 6.5-10.5-fold in the presence of Tpl hypomorphic alleles. The increased recombination was found to occur between Tpl and Ki, while recombination in other adjacent regions is unchanged. The use of isogenic Tpl+ controls, and the use of flanking intervals in the mutant chromosomes allows us to rule out the interchromosomal effect as a cause. We have also observed premeiotic recombination occurring at the Tpl hypomorphic alleles in male heterozygotes. We hypothesize that transposons are responsible for both the hypomorphic phenotype and the high frequency of recombination.  相似文献   

15.
A relatively large number of genes have been described that are required for the normal spatial expression of the genes of the bithorax complex. Most of these regulators appear to act negatively and are required to prevent indiscriminate expression of bithorax complex (BX-C) functions. In this report we examine five negative BX-C regulators to determine whether these are maternally expressed in germ-line derived cells. The genes studied include Additional sex combs (Asx), Polycomblike (Pcl), Sex comb extra (Sce), Sex comb on midleg (Scm), and lethal(4)29 [l(4)29]. The maternal germ-line dependent expression of each of these genes is assessed by comparison of zygotes from mothers whose functional germ cells carry no wild-type alleles to zygotes from mothers whose germ cells contain one wild-type allele. Because mutant alleles of each of the genes studied are recessive lethals, mosaic females with homozygous or hemizygous mutant germ lines were produced by pole cell transplantation. The results demonstrate that all of the negative regulators tested are expressed in the maternal germ line and all play important roles in the regulation of BX-C activities during embryogenesis. The absence of maternally supplied products from all of the genes studied except l(4)29 can be largely or completely compensated for by the activity in the zygote of a paternally contributed wild-type allele. It is argued that, with the exception of l(4)29, the genes studied in this report are qualitatively similar in function to the previously described BX-C regulators Pc, esc, and sxc. The available evidence indicates that genes within this group have functions that are not restricted to the regulation of genes that control segmental identity.  相似文献   

16.
It is a long-standing observation that most mutations are recessive. That is, they do not lead to visible phenotypic effects when in heterozygous combination with the wild-type allele. The reason for this has long been debated. Fisher (1930) attributed the observed dominance of the wild type to the action of natural selection at modifier loci. Wright (1929) on the other hand asserted that dominance did not have a selective functionper se, but was a more-or-less automatic offshoot of genetic regulatory mechanisms. The present essay discusses these explanations from a contemporary standpoint and suggests that neither is likely to be valid exclusively. In particular, even when physiology appears to offer a sufficient explanation, evolution of dominance cannot be ruled out.  相似文献   

17.
1. The function of the wild-type alleles of the pleiotropic mutants cysB and cysE of Escherichia coli was investigated. 2. The wild-type allele cysB(+) is dominant to the mutant allele cysB in stable and transient heterozygotes. 3. The wild-type allele cysE(+) is dominant to the mutant allele cysE, as predicted. 4. Sulphur-starved cultures of cysB or cysE strains contain less than 0.2nmole of free cysteine/mg. dry wt. 5. Complementation in vitro is not observed between extracts of cysB mutants and mutants lacking sulphite reductase only. 6. A scheme, involving positive control of the enzymes of sulphate activation and reduction, is suggested to account for the control of cysteine biosynthesis.  相似文献   

18.
Ubeda F  Haig D 《Genetics》2005,170(3):1345-1357
We present a model of a primary locus subject to viability selection and an unlinked locus that causes sex-specific modification of the segregation ratio at the primary locus. If there is a balanced polymorphism at the primary locus, a population undergoing Mendelian segregation can be invaded by modifier alleles that cause sex-specific biases in the segregation ratio. Even though this effect is particularly strong if reciprocal heterozygotes at the primary locus have distinct viabilities, as might occur with genomic imprinting, it also applies if reciprocal heterozygotes have equal viabilities. The expected outcome of the evolution of sex-specific segregation distorters is all-and-none segregation schemes in which one allele at the primary locus undergoes complete drive in spermatogenesis and the other allele undergoes complete drive in oogenesis. All-and-none segregation results in a population in which all individuals are maximally fit heterozygotes. Unlinked modifiers that alter the segregation ratio are unable to invade such a population. These results raise questions about the reasons for the ubiquity of Mendelian segregation.  相似文献   

19.
Finkelstein RR 《Plant physiology》1994,105(4):1203-1208
Three abscisic acid (ABA)-controlled responses (seed dormancy, inhibition of germination by applied ABA, and stomatal closure) were compared in wild-type versus homo- and heterozygotes of two Arabidopsis thaliana ABA-insensitive mutants, abi1 and abi2. We found that sensitivity of seeds to applied ABA is partially maternally controlled but that seed dormancy is determined by the embryonic genotype. The effects of the abi1 and abi2 mutations on ABA sensitivity of seed germination ranged from recessive to nearly fully dominant, depending on the parental source of the mutant allele. This maternal effect disappeared during vegetative growth. Stomatal regulation in heterozygotes showed substantial variability, but the average water loss was intermediate between that of homozygous mutants and wild type.  相似文献   

20.
A recessive ascospore mutant of Neurospora tetrasperma, named bud, was isolated from a wild-collected heterokaryotic strain with four different nuclear components. bud segregates as a single mendelian gene. When bud is homozygous, meiosis is apparently normal but postmeiotic events are not. Abnormal orientation of spindles at the postmeiotic mitosis often results in failed pair-wise association of nuclei and their irregular distribution along the length of the ascus prior to spore delimitation. Consequently, many asci cut out more than four ascospores; some contain no nuclei while others contain more than two. The most dramatic effect of bud is on ascospore delimitation itself. Many ascospores are irregularly shaped and are often interconnected, because of incomplete spore delimitation. Ascospores also show one or two lobes or bud-like extensions of varying sizes. Over 75% of ascospores from bud x bud remain white or tan and are inviable. The interaction of bud with a dominant Eight-spore mutant (E) was examined in both heterozygous and homozygous crosses. When both bud and E are heterozygous, bud has no effect on ascospore delimitation or on the phenotype of E because bud is recessive; many asci produce 5-8 ascospores just as in E x E(+). And when bud is homozygous and E is heterozygous, ascospore delimitation is less affected than when E is absent. Moreover, when both bud and E are homozygous, the effect on ascospore development is less extreme than when E is homozygous singly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号