首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Daubie V  De Decker R  Nicaise C  Pochet R 《FEBS letters》2007,581(14):2611-2615
The cells responsible for bone formation express protease-activated receptors. Although serine protease thrombin has been shown to elicit functional responses in bone cells that impact on cell survival and alkaline phosphatase activity, nothing is known about tissue factor, factor VIIa, and factor Xa, the serine proteases that act upstream of thrombin in the coagulation cascade. This paper demonstrates that tissue factor is expressed in the osteoblast-like cell line SaOS-2 and, that tissue factor in a factor VIIa-bound complex induces a transient intracellular Ca(2+) increase through protease-activated receptor-2. In SaOS-2 cells, factor Xa induced a sustained intracellular Ca(2+) response, as does SLIGRL, a PAR2-activating peptide, and PAR-1-dependent cell viability.  相似文献   

2.
Coagulation proteases and human cancer   总被引:7,自引:0,他引:7  
Tumours are capable of activating blood coagulation through the expression of procoagulant molecules such as tissue factor, cancer procoagulant and hepsin. Initiation of the clotting cascade results in the generation of the activated serine proteases factor VIIa, factor Xa and thrombin. These proteases act via protease-activated receptors and tissue factor to alter gene expression, thereby modulating tumour cell growth, invasion, metastasis and angiogenesis.  相似文献   

3.
Tissue factor mediates inflammation   总被引:7,自引:0,他引:7  
The role of tissue factor (TF) in inflammation is mediated by blood coagulation. TF initiates the extrinsic blood coagulation that proceeds as an extracellular signaling cascade by a series of active serine proteases: FVIIa, FXa, and thrombin (FIIa) for fibrin clot production in the presence of phospholipids and Ca2+. TF upregulation resulting from its enhanced exposure to clotting factor FVII/FVIIa often manifests not only hypercoagulable but also inflammatory state. Coagulant mediators (FVIIa, FXa, and FIIa) are proinflammatory, which are largely transmitted by protease-activated receptors (PAR) to elicit inflammation including the expression of tissue necrosis factor, interleukins, adhesion molecules (MCP-1, ICAM-1, VCAM-1, selectins, etc.), and growth factors (VEGF, PDGF, bFGF, etc.). In addition, fibrin, and its fragments are also able to promote inflammation. In the event of TF hypercoagulability accompanied by the elevations in clotting signals including fibrin overproduction, the inflammatory consequence could be enormous. Antagonism to coagulation-dependent inflammation includes (1) TF downregulation, (2) anti-coagulation, and (3) PAR blockade. TF downregulation and anti-coagulation prevent and limit the proceeding of coagulation cascade in the generation of proinflammatory coagulant signals, while PAR antagonists block the transmission of such signals. These approaches are of significance in interrupting the coagulation-inflammation cycle in contribution to not only anti-inflammation but also anti-thrombosis for cardioprotection.  相似文献   

4.
Blood coagulation plays a key role among numerous mediating systems that are activated in inflammation. Receptors of the PAR family serve as sensors of serine proteinases of the blood clotting system in the target cells involved in inflammation.Activation of PAR-1 by thrombin and of PAR-2 by factor Xa leads to a rapid expression and exposure on the membrane of endothelial cells of both adhesive proteins that mediate an acute inflammatory reaction and of the tissue factor that initiates the blood coagulation cascade. Certain other receptors (EPR-1, thrombomodulin, etc.), which can modulate responses of the cells activated by proteinases through PAR receptors, are also involved in the association of coagulation and inflammation together with the receptors of the PAR family. The presence of PAR receptors on mast cells is responsible for their reactivity to thrombin and factor Xa and defines their contribution to the association of inflammation and blood clotting processes.  相似文献   

5.
Effects of thrombin, factor Xa (FXa), and protease-activated receptor 1 and 2 agonist peptides (PAR1-AP and PAR2-AP) on survival and intracellular Ca2+ homeostasis in hippocampal neuron cultures treated with cytotoxic doses of glutamate were investigated. It is shown that at low concentrations (相似文献   

6.
Fibroblast proliferation and procollagen production are central features of tissue repair and fibrosis. In addition to its role in blood clotting, the coagulation cascade proteinase thrombin can contribute to tissue repair by stimulating fibroblasts via proteolytic activation of proteinase-activated receptor-1 (PAR1). During hemostasis, the coagulation cascade proteinase factor X is converted into factor Xa. We have previously shown that factor Xa upregulates fibroblast proliferation via production of autocrine PDGF. In this study, we further examined the effects of factor Xa on fibroblast function and aimed to identify its signaling receptor. We showed that factor Xa stimulates procollagen promoter activity and protein production by human and mouse fibroblasts. This effect was independent of PDGF and thrombin production, but dependent on factor Xa proteolytic activity. We also showed that PAR1-deficient mouse fibroblasts did not upregulate procollagen production, mobilize cytosolic calcium, or proliferate in response to factor Xa. Desensitization techniques and PAR1-specific agonists and inhibitors were used to demonstrate that PAR1 mediates factor Xa signaling in human fibroblasts. This is the first report that factor Xa stimulates extracellular matrix production. In contrast with endothelial cells and vascular smooth muscle cells, fibroblasts appear to be the only cell type in which the effects of factor Xa are mediated mainly via PAR1 and not PAR2. These findings are critical for our understanding of tissue repair and fibrotic mechanisms, and for the design of novel approaches to inhibit the profibrotic effects of the coagulation cascade without compromising blood hemostasis.  相似文献   

7.
Coagulation cascade proteases and tissue fibrosis   总被引:7,自引:0,他引:7  
Fibrotic disorders of the liver, kidney and lung are associated with excessive deposition of extracellular matrix proteins and ongoing coagulation-cascade activity. In addition to their critical roles in blood coagulation, thrombin and the immediate upstream coagulation proteases, Factors Xa and VIIa, influence numerous cellular responses that may play critical roles in subsequent inflammatory and tissue repair processes in vascular and extravascular compartments. The cellular effects of these proteases are mediated via proteolytic activation of a novel family of cell-surface receptors, the protease-activated receptors (PAR-1, -2, -3 and -4). Although thrombin is capable of activating PAR-1, -3 and -4, there is accumulating in vitro evidence that the profibrotic effects of thrombin are predominantly mediated via PAR-1. Factor Xa is capable of activating PAR-1 and PAR-2, but its mitogenic effects for fibroblasts are similarly mediated via PAR-1. These proteases do not exert their profibrotic effects directly, but act via the induction of potent fibrogenic mediators, such as platelet-derived growth factor and connective tissue growth factor. In vivo studies using proteolytic inhibitors, PAR-1 antagonists and PAR-1-deficient mice have provided evidence that coagulation proteases play a key role in tissue inflammation and in a number of vascular pathologies associated with hyperproliferation of smooth muscle cells. More recently, coagulation proteases have also been shown to play a role in the pathogenesis of fibrosis but the relative contribution of their cellular versus their procoagulant effects awaits urgent evaluation in vivo. These studies will be informative in determining the potential application of PAR-1 antagonists as antifibrotic agents.  相似文献   

8.
Protease-activated receptor 2 (PAR2) is a G-protein coupled receptor that is cleaved and activated by serine proteases including the coagulation protease factor VIIa (FVIIa). There is evidence that PAR2 function contributes to angiogenesis, but the mechanisms involved are poorly defined. Here we show that PAR2 activation in human breast cancer cells leads to the upregulation of vascular endothelial growth factor (VEGF). Activation of PAR2 with agonist peptide (AP), trypsin or FVIIa results in a robust increase of VEGF message and protein. Incubation of cells with PAR1-AP, PAR3-AP, PAR4-AP, or thrombin has only a modest effect on VEGF production. Cleavage blocking antibodies show that FVIIa-mediated VEGF production is PAR2 mediated. Mitogen-activated protein kinase (MAPK) pathway inhibitors U0126 and SB203580 inhibit PAR2-mediated VEGF production. Incubation of cells with PAR2-AP leads to significant extracellular regulated kinase1/2 (ERK1/2) and p38 MAPK phosphorylation and activation. Collectively, these data suggest that PAR2 signaling through MAPK pathways leads to the production of proangiogenic VEGF in breast cancer cells.  相似文献   

9.
The activation of human coagulation factor IX by human tissue factor.factor VIIa.PCPS.Ca2+ (TF.VIIa.PCPS.Ca2+) and factor Xa.PCPS.Ca2+ enzyme complexes was investigated. Reactions were performed in a highly purified system consisting of isolated human plasma proteins and recombinant human tissue factor with synthetic phospholipid vesicles (PCPS: 75% phosphatidylcholine (PC), 25% phosphatidylserine (PS)). Factor IX activation was evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, [3H]factor IX activation peptide assay, colorimetric substrate thiobenzyl benzyloxycarbonyl-L-lysinate (Z-Lys-SBzl) hydrolysis, and specific incorporation of a fluorescent peptidyl chloromethyl ketone. Factor IX activation by the TF.VIIa.PCPS.Ca2+ enzyme complex was observed to proceed through the obligate non-enzymatic intermediate species factor IX alpha. The simultaneous activation of human coagulation factors IX and X by the TF.VIIa.PCPS.Ca2+ enzyme complex were investigated. When factors IX and X were presented to the TF.VIIa complex, at equal concentrations, it was observed that the rate of factor IX activation remained unchanged while the rate of factor X activation slowed by 45%. When the proteolytic cleavage products of this reaction were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it was observed that the intermediate species factor IX alpha was generated more rapidly when factor X was present in the reaction mixture. When factor IX was treated with factor Xa.PCPS in the presence of Ca2+, it was observed that factor IX was rapidly converted to factor IX alpha. The activation of factor IX alpha by the TF.VIIa.PCPS.Ca2+ complex was evaluated, and it was observed that factor IX alpha was activated more rapidly by the TF.VIIa.PCPS.Ca2+ complex than was factor IX itself. These data suggest that factors IX and X, when presented to the TF.VIIa.PCPS.Ca2+ enzyme complex, are both rapidly activated and that factor Xa, which is generated in the initial stages of the extrinsic pathway, participates in the first proteolytic step in the activation of factor IX, the generation of factor IX alpha.  相似文献   

10.
The presence of activation peptides (AP) of the vitamin K-dependent proteins in the phlebotomy blood of human subjects suggests that active serine proteases may circulate in blood as well. The goal of the current study was to evaluate the influence of trace amounts of key coagulation proteases on tissue factor-independent thrombin generation using three models of coagulation. With procoagulants and select coagulation inhibitors at mean physiological concentrations, concentrations of factor IXa, factor Xa, and thrombin were set either equal to those of their AP or to values that would result based upon the rates of AP/enzyme generation and steady state enzyme inhibition. In the latter case, numerical simulation predicts that sufficient thrombin to produce a solid clot would be generated in approximately 2 min. Empirical data from the synthetic plasma suggest clotting times of 3-5 min, which are similar to that observed in contact pathway-inhibited whole blood (4.3 min) initiated with the same concentrations of factors IXa and Xa and thrombin. Numerical simulations performed with the concentrations of two of the enzymes held constant and one varied suggest that the presence of any pair of enzymes is sufficient to yield rapid clot formation. Modeling of states (numerical simulation and whole blood) where only one circulating protease is present at steady state concentration shows significant thrombin generation only for factor IXa. The addition of factor Xa and thrombin has little effect (if any) on thrombin generation induced by factor IXa alone. These data indicate that 1) concentrations of active coagulation enzymes circulating in vivo are significantly lower than can be predicted from the concentrations of their AP, and 2) expected trace amounts of factor IXa can trigger thrombin generation in the absence of tissue factor.  相似文献   

11.
Tissue kallikrein and factor Xa were found to activate tissue plasminogen activator (t-PA) at a rate comparable with that of plasmin. During the activation reaction, the single-chain molecule was converted into a two-chain form. A slight t-PA activating activity was also found in plasma kallikrein. Other activated coagulation factors, factor XIIa, factor XIa, factor IXa, factor VIIa, thrombin and activated protein C had no effect on t-PA activation. t-PA was also activated by a tissue kallikrein-like enzyme that was isolated from the culture medium of melanoma cells. These results indicate that tissue kallikrein and factor Xa may participate in the extrinsic pathway of human fibrinolysis.  相似文献   

12.
Sulfated low molecular weight lignins (LMWLs), designed as oligomeric mimetics of low molecular weight heparins (LMWHs), have been found to bind in exosite II of thrombin. To assess whether sulfated LMWLs recognize other heparin-binding proteins, we studied their effect on serine proteases of the coagulation, inflammatory and digestive systems. Using chromogenic substrate hydrolysis assay, sulfated LMWLs were found to potently inhibit coagulation factor XIa and human leukocyte elastase, moderately inhibit cathepsin G and not inhibit coagulation factors VIIa, IXa, and XIIa, plasma kallikrein, activated protein C, trypsin, and chymotrypsin. Competition studies show that UFH competes with sulfated LMWLs for binding to factors Xa and XIa. These results further advance the concept of sulfated LMWLs as heparin mimics and will aid the design of anticoagulants based on their novel scaffold.  相似文献   

13.
Previous studies have demonstrated that overexpression of GRP78/BiP, an endoplasmic reticulum (ER)-resident molecular chaperone, in mammalian cells inhibits the secretion of specific coagulation factors. However, the effects of GRP78/BiP on activation of the coagulation cascade leading to thrombin generation are not known. In this study, we examined whether GRP78/BiP overexpression mediates cell surface thrombin generation in a human bladder cancer cell line T24/83 having prothrombotic characteristics. We report here that cells overexpressing GRP78/BiP exhibited significant decreases in cell surface-mediated thrombin generation, prothrombin consumption and the formation of thrombin-inhibitor complexes, compared with wild-type or vector-transfected cells. This effect was attributed to the ability of GRP78/BiP to inhibit cell surface tissue factor (TF) procoagulant activity (PCA) because conversion of factor X to Xa and factor VII to VIIa were significantly lower on the surface of GRP78/BiP-overexpressing cells. The additional findings that (i) cell surface factor Xa generation was inhibited in the absence of factor VIIa and (ii) TF PCA was inhibited by a neutralizing antibody to human TF suggests that thrombin generation is mediated exclusively by TF. GRP78/BiP overexpression did not decrease cell surface levels of TF, suggesting that the inhibition in TF PCA does not result from retention of TF in the ER by GRP78/BiP. The additional observations that both adenovirus-mediated and stable GRP78/BiP overexpression attenuated TF PCA stimulated by ionomycin or hydrogen peroxide suggest that GRP78/BiP indirectly alters TF PCA through a mechanism involving cellular Ca(2+) and/or oxidative stress. Similar results were also observed in human aortic smooth muscle cells transfected with the GRP78/BiP adenovirus. Taken together, these findings demonstrate that overexpression of GRP78/BiP decreases thrombin generation by inhibiting cell surface TF PCA, thereby suppressing the prothrombotic potential of cells.  相似文献   

14.
The serine proteinase inhibitor tissue factor pathway inhibitor-2 (TFPI-2) inhibits the tissue factor-factor VIIa complex and thereby impairs factor Xa and subsequently thrombin generation. Here we show that thrombin itself up-regulates TFPI-2 mRNA and protein expression in human liver myofibroblasts, a cell type shown to express high levels of TFPI-2 (Neaud, V., Hisaka, T., Monvoisin, A., Bedin, C., Balabaud, C., Foster, D. C., Desmoulière, A., Kisiel, W., and Rosenbaum, J. (2000) J. Biol. Chem. 275, 35565-35569). This effect required thrombin catalytic activity, as shown by its abolition with hirudin. Although the thrombin effect could be mimicked by agonists of both protease-activated receptor (PAR)-1 and PAR-4, it was largely blocked by a PAR-1 blocking antibody. Transactivation of the epidermal growth factor (EGF) receptor has been reported as a common event in thrombin signaling. However, thrombin did not detectably transactivate the EGF receptor in liver myofibroblasts, and blocking the EGF receptor did not affect TFPI-2 induction. On the other hand, thrombin increased the expression of cyclooxygenase-2 (COX-2) mRNA via a MAPK-dependent pathway, and a specific COX-2 inhibitor abolished the effect of thrombin on TFPI-2 expression. Thus, thrombin, through PAR-1 signaling, up-regulates the synthesis of TFPI-2 via a MAPK/COX-2-dependent pathway. The up-regulation of TFPI-2 expression by thrombin could in turn down-regulate thrombin generation and contribute to limit blood coagulation.  相似文献   

15.
Allergens are diverse proteins from mammals, birds, arthropods, plants, and fungi. Allergens associated with asthma (asthmagens) share a common protease activity that may directly impact respiratory epithelial biology and lead to symptoms of asthma. Alternaria alternata is a strong asthmagen in semiarid regions. We examined the impact of proteases from A. alternata on lung inflammation in vivo and on cleaving protease-activated receptor-2 (PAR(2)) in vitro. A. alternata filtrate applied to the airway in nonsensitized Balb/c mice induced a protease-dependent lung inflammation. Moreover, A. alternata filtrate applied to human bronchial epithelial cells (16HBE14o-) induced changes in intracellular Ca(2+) concentration ([Ca(2+)](i)), consistent with PAR(2) activation. These effects were blocked by heat inactivation or by serine protease inhibition of A. alternata filtrates, and mimicked by PAR(2) specific ligands SLIGRL-NH(2) or 2-furoyl-LIGRLO-NH(2), but not the PAR(1)-specific ligand TFLLR-NH(2). Desensitization of PAR(2) in 16HBE14o- cells with 2-furoyl-LIGRLO-NH(2) or trypsin prevented A. alternata-induced [Ca(2+)](i) changes while desensitization of PAR(1), PAR(3), and PAR(4) with thrombin had no effect on A. alternata-induced Ca(2+) responses. Furthermore, the Ca(2+) response to A. alternata filtrates was dependent on PAR(2) expression in stably transfected HeLa cell models. These data demonstrate that A. alternata proteases act through PAR(2) to induce rapid increases in human airway epithelial [Ca(2+)](i) in vitro and cell recruitment in vivo. These responses are likely critical early steps in the development of allergic asthma.  相似文献   

16.
We have developed a model of the extrinsic blood coagulation system that includes the stoichiometric anticoagulants. The model accounts for the formation, expression, and propagation of the vitamin K-dependent procoagulant complexes and extends our previous model by including: (a) the tissue factor pathway inhibitor (TFPI)-mediated inactivation of tissue factor (TF).VIIa and its product complexes; (b) the antithrombin-III (AT-III)-mediated inactivation of IIa, mIIa, factor VIIa, factor IXa, and factor Xa; (c) the initial activation of factor V and factor VIII by thrombin generated by factor Xa-membrane; (d) factor VIIIa dissociation/activity loss; (e) the binding competition and kinetic activation steps that exist between TF and factors VII and VIIa; and (f) the activation of factor VII by IIa, factor Xa, and factor IXa. These additions to our earlier model generate a model consisting of 34 differential equations with 42 rate constants that together describe the 27 independent equilibrium expressions, which describe the fates of 34 species. Simulations are initiated by "exposing" picomolar concentrations of TF to an electronic milieu consisting of factors II, IX, X, VII, VIIa, V, and VIIII, and the anticoagulants TFPI and AT-III at concentrations found in normal plasma or associated with coagulation pathology. The reaction followed in terms of thrombin generation, proceeds through phases that can be operationally defined as initiation, propagation, and termination. The generation of thrombin displays a nonlinear dependence upon TF, AT-III, and TFPI and the combination of these latter inhibitors displays kinetic thresholds. At subthreshold TF, thrombin production/expression is suppressed by the combination of TFPI and AT-III; for concentrations above the TF threshold, the bolus of thrombin produced is quantitatively equivalent. A comparison of the model with empirical laboratory data illustrates that most experimentally observable parameters are captured, and the pathology that results in enhanced or deficient thrombin generation is accurately described.  相似文献   

17.
Key hemostatic serine proteases such as thrombin and activated protein C (APC) are signaling molecules controlling blood coagulation and inflammation, tissue regeneration, neurodegeneration, and some other processes. By interacting with protease-activated receptors (PARs), these enzymes cleave a receptor exodomain and liberate new amino acid sequence known as a tethered ligand, which then activates the initial receptor and induces multiple signaling pathways and cell responses. Among four PAR family members, APC and thrombin mainly act via PAR1, and they trigger divergent effects. APC is an anticoagulant with antiinflammatory and cytoprotective activity, whereas thrombin is a protease with procoagulant and proinflammatory effects. Hallmark features of APC-induced effects result from acting via different pathways: limited proteolysis of PAR1 localized in membrane caveolae with coreceptor (endothelial protein C receptor) as well as its targeted proteolytic action at a receptor exodomain site differing from the canonical thrombin cleavage site. Hence, a new noncanonical tethered PAR1 agonist peptide (PAR1-AP) is formed, whose effects are poorly investigated in inflammation, tissue regeneration, and neurotoxicity. In this review, a concept about a role of biased agonism in effects exerted by APC and PAR1-AP via PAR1 on cells involved in inflammation and related processes is developed. New evidence showing a role for a biased agonism in activating PAR1 both by APC and PAR1-AP as well as induction of antiinflammatory and cytoprotective cellular responses in experimental inflammation, wound healing, and excitotoxicity is presented. It seems that synthetic PAR1 peptide-agonists may compete with APC in controlling some inflammatory and neurodegenerative diseases.  相似文献   

18.
125I-labeled heparin cofactor II (HCII) was mixed with plasma and coagulation was initiated by addition of CaCl2, phospholipids, and kaolin or tissue factor. In the presence of 67 micrograms/ml of dermatan sulfate, radioactivity was detected in a band which corresponded to the thrombin-HCII complex (Mr = 96,000) upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. No other complexes were observed. The thrombin-HCII complex was undetectable when 5 units/ml of heparin was present or when prothrombin-deficient plasma was used. In experiments with purified proteases, HCII did not significantly inhibit coagulation factors VIIa, IXa, Xa, XIa, XIIa, kallikrein, activated protein C, plasmin, urokinase, tissue plasminogen activator, leukocyte elastase, the gamma-subunit of nerve growth factor, and the epidermal growth factor-binding protein. HCII inhibited leukocyte cathepsin G slowly, with a rate constant of 8 X 10(4) M-1 min-1 in the presence of dermatan sulfate. These results indicate that the protease specificity of HCII is more restricted than that of other plasma protease inhibitors and suggest that the anticoagulant effect of dermatan sulfate is due solely to inhibition of thrombin by HCII.  相似文献   

19.
T Nakagaki  D C Foster  K L Berkner  W Kisiel 《Biochemistry》1991,30(45):10819-10824
Previous studies demonstrated proteolytic activation of human blood coagulation factor VII by an unidentified protease following complex formation with tissue factor expressed on the surface of a human bladder carcinoma cell line (J82). In the present study, an active-site mutant human factor VII cDNA (Ser344----Ala) has been constructed, subcloned, and expressed in baby hamster kidney cells. Mutant factor VII was purified to homogeneity in a single step from serum-free culture supernatants by immunoaffinity column chromatography. Mutant factor VII was fully carboxylated, possessed no apparent clotting activity, and was indistinguishable from plasma factor VII by SDS-PAGE. Cell binding studies indicated that mutant factor VII bound to J82 tissue factor with essentially the same affinity as plasma factor VII and was cleaved by factor Xa at the same rate as plasma factor VII. In contrast to radiolabeled single-chain plasma factor VII that was progressively converted to two-chain factor VIIa on J82 monolayers, mutant factor VII was not cleaved following complex formation with J82 tissue factor. Incubation of radiolabeled mutant factor VII with J82 cells in the presence of recombinant factor VIIa resulted in the time-dependent and tissue factor dependent conversion of single-chain mutant factor VII to two-chain mutant factor VIIa. Plasma levels of antithrombin III had no discernible effect on the factor VIIa catalyzed activation of factor VII on J82 cell-surface tissue factor but completely blocked this reaction catalyzed by factor Xa. These results are consistent with an autocatalytic mechanism of factor VII activation following complex formation with cell-surface tissue factor, which may play an important role in the initiation of extrinsic coagulation in normal hemostasis.  相似文献   

20.
The ability to regulate proteolytic functions is critical to cell biology. We describe events that regulate the initiation of the coagulation cascade on endothelial cell surfaces. The transmembrane protease receptor tissue factor (TF) triggers coagulation by forming an enzymatic complex with the serine protease factor VIIa (VIIa) that activates substrate factor X to the protease factor Xa (Xa). Feedback inhibition of the TF-VIIa enzymatic complex is achieved by the formation of a quaternary complex of TF-VIIa, Xa, and the Kunitz-type inhibitor tissue factor pathway inhibitor (TFPI). Concomitant with the downregulation of TF-VIIa function on endothelial cells, we demonstrate by immunogold EM that TF redistributes to caveolae. Consistently, TF translocates from the Triton X-100-soluble membrane fractions to low- density, detergent-insoluble microdomains that inefficiently support TF- VIIa proteolytic function. Downregulation of TF-VIIa function is dependent on quaternary complex formation with TFPI that is detected predominantly in detergent-insoluble microdomains. Partitioning of TFPI into low-density fractions results from the association of the inhibitor with glycosyl phosphatidylinositol anchored binding sites on external membranes. Free Xa is not efficiently bound by cell-associated TFPI; hence, we propose that the transient ternary complex of TF-VIIa with Xa supports translocation and assembly with TFPI in glycosphingolipid-rich microdomains. The redistribution of TF provides evidence for an assembly-dependent translocation of the inhibited TF initiation complex into caveolae, thus implicating caveolae in the regulation of cell surface proteolytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号