首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bovine papillomavirus type 1 (BPV-1) DNA replicates episomally and requires two virally expressed proteins, E1 and E2, for this process. Both proteins bind to the BPV-1 genome in the region that functions as the origin of replication. The binding sequences for the E2 protein have been characterized previously, but little is known about critical sequence requirements for E1 binding. Using a bacterially expressed E1 fusion protein, we examined binding of the BPV-1 E1 protein to the origin region. E1 strongly protected a 28-bp segment of the origin (nucleotides 7932 to 15) from both DNase I and exonuclease III digestion. Additional exonuclease III protection was observed beyond the core region on both the 5' and 3' sides, suggesting that E1 interacted with more distal sequences as well. Within the 28-bp protected core, there were two overlapping imperfect inverted repeats (IR), one of 27 bp and one of 18 bp. We show that sequences within the smaller, 18-bp IR element were sufficient for specific recognition of DNA by E1 and that additional BPV-1 sequences beyond the 18-bp IR element did not significantly increase origin binding by E1 protein. While the 18-bp IR element contained sequences sufficient for specific binding by E1, E1 did not form a stable complex with just the isolated 18-bp element. Formation of a detectable E1-DNA complex required that the 18-bp IR be flanked by additional DNA sequences. Furthermore, binding of E1 to DNA containing the 18-bp IR increased as a function of overall increasing fragment length. We conclude that E1-DNA interactions outside the boundaries of the 18-bp IR are important for thermodynamic stabilization of the E1-DNA complex. However, since the flanking sequences need not be derived from BPV-1, these distal E1-DNA interactions are not sequence specific. Comparison of the 18-bp IR from BPV-1 with the corresponding region from other papillomaviruses revealed a symmetric conserved consensus sequence, T-RY--TTAA--RY-A, that may reflect the specific nucleotides critical for E1-DNA recognition.  相似文献   

3.
4.
The EBNA1 protein of Epstein-Barr virus (EBV) activates DNA replication by binding to multiple copies of its 18-bp recognition sequence present in the Epstein-Barr virus latent origin of DNA replication, oriP. Using electrophoretic mobility shift assays, we have localized the minimal DNA binding domain of EBNA1 to between amino acids 470 and 607. We have also demonstrated that EBNA1 assembles cooperatively on the dyad symmetry subelement of oriP and that this cooperative interaction is mediated by residues within the minimal DNA binding and dimerization domain of EBNA1.  相似文献   

5.
6.
7.
E1 is the largest open reading frame (ORF) of bovine papillomavirus type 1 (BPV-1) and is highly conserved among all papillomaviruses, maintaining its size, amino acid composition, and location in the viral genome with respect to other early genes. Multiple viral replication functions have been mapped to the E1 ORF of BPV-1, and evidence suggested that more than one protein was encoded by this ORF. We previously identified a small protein (M) whose gene consists of two exons, one encoded by the 5' end of the E1 ORF. We show here that a 68-kilodalton (kDa) phosphoprotein made from the E1 ORF can be detected in BPV-1-transformed cells, and we present evidence that this protein is encoded by sequences colinear with the entire E1 ORF. The full-length E1 protein immunoprecipitated from virally transformed cells and identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis comigrates with a protein expressed from a recombinant DNA construct capable of producing only the complete E1 protein. In addition, two different antisera directed against polypeptides encoded from either the 3' or the 5' end of the E1 ORF both recognize the full-length E1 product. A mutation converting the first methionine codon in the ORF to an isoleucine codon abolishes BPV-1 plasmid replication and E1 protein production. Consistent with the notion that this methionine codon is the start site for E1, a mutant with a termination codon placed after the splice donor at nucleotide 1235 in E1 produces a truncated protein with the molecular mass predicted from the primary sequence as well as the previously identified M protein. When visualized by immunostaining, the E1 protein expressed in COS cells is localized to the cell nucleus. A high degree of similarity exists between the BPV-1 E1 protein and polyomavirus and simian virus 40 large-T antigens in regions of the T antigens that bind ATP. We show by ATP affinity labeling that the E1 protein produced in COS cells binds ATP and that this activity is abolished by a point mutation which converts the codon for proline 434 to serine. Furthermore, this mutation renders the viral genome defective for DNA replication, suggesting that the ATP-binding activity of E1 is necessary for its putative role in viral DNA replication.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
K A Jones  R M Myers    R Tjian 《The EMBO journal》1984,3(13):3247-3255
We have tested the effects of various mutations within SV40 T antigen DNA recognition sites I and II on specific T antigen binding using the DNase footprint technique. In addition, the replication of plasmid DNA templates carrying these T antigen binding site mutations was monitored by Southern analysis of transfected DNA in COS cells. Deletion mapping of site I sequences defined a central core of approximately 18 bp that is both necessary and sufficient for T antigen recognition; this region contains the site I contact nucleotides that were previously mapped using methylation-interference and methylation-protection experiments. A similar deletion analysis delineated sequences that impart specificity of binding to site II. We find that T antigen is capable of specific recognition of site II in the absence of site I sequences, indicating that binding to site II in vitro is not dependent on binding of T antigen at site I. Site II binding was not diminished by small deletion or substitution mutations that perturb the 27-bp palindrome central to binding site II, whereas extensive substitution of site II sequences completely eliminated specific site II binding. Analysis of the replication in COS7 cells of plasmids that contain these mutant origins revealed that sequences both at the late side of binding site I and within the site II palindrome are crucial for viral DNA replication, but are not involved in binding T antigen.  相似文献   

9.
Papillomavirus DNA replication requires the viral trans-acting factors E1 and E2 in addition to the host cell's general replication machinery. The origins of DNA replication in bovine and human papillomavirus genomes have been localized to a specific part of the upstream regulatory region (URR) which includes recognition sites for E1 and E2 proteins. To fine map cis-acting elements influencing human papillomavirus type 11 (HPV-11) DNA replication and to determine the relative contributions of such sites, we engineered consecutive linker substitution mutations across a region of 158 bp in the HPV-11 origin and tested mutant origins for replication function in a cell-based transient replication assay. Our results both confirm and extend the findings of others. E2 binding sites are the major cis components of HPV-11 DNA replication, and there is evidence for synergy between these sites. Differential capacity of the three E2 binding sites within the origin to affect replication may be attributed, at least in part, to context. At least one E2 binding site is essential for replication. The imperfect AT-rich palindrome of the E1 helicase binding site is not essential since replication occurs even in the absence of this sequence. However, replication is enhanced by the presence of the palindromic sequence in the HPV-11 origin. Sequence components adjacent to the E1 and E2 binding sites, comprising AT-rich and purine-rich elements and the consensus TATA box sequence, probably contribute to the overall efficiency of replication, though they are nonessential. None of the other cis elements of the HPV-11 origin region analyzed seems to influence replication significantly in the system described. The HPV-11 origin of DNA replication therefore differs from those of the other papovaviruses, simian virus 40 and polyomavirus, inasmuch as an intact helicase binding site and adjacent AT-rich components, while influential, are not absolutely essential.  相似文献   

10.
By using a DNA fragment immunoassay, the binding of simian virus 40 (SV40) and polyomavirus (Py) large tumor (T) antigens to regulatory regions at both viral origins of replication was examined. Although both Py T antigen and SV40 T antigen bind to multiple discrete regions on their proper origins and the reciprocal origin, several striking differences were observed. Py T antigen bound efficiently to three regions on Py DNA centered around an MboII site at nucleotide 45 (region A), a BglI site at nucleotide 92 (region B), and another MboII site at nucleotide 132 (region C). Region A is adjacent to the viral replication origin, and region C coincides with the major early mRNA cap site. Weak binding by Py T antigen to the origin palindrome centered at nucleotide 3 also was observed. SV40 T antigen binds strongly to Py regions A and B but only weakly to region C. This weak binding on region C was surprising because this region contains four tandem repeats of GPuGGC, the canonical pentanucleotide sequence thought to be involved in specific binding by T antigens. On SV40 DNA, SV40 T antigen displayed its characteristic hierarchy of affinities, binding most efficiently to site 1 and less efficiently to site 2. Binding to site 3 was undetectable under these conditions. In contrast, Py T antigen, despite an overall relative reduction of affinity for SV40 DNA, binds equally to fragments containing each of the three SV40 binding sites. Py T antigen, but not SV40 T antigen, also bound specifically to a region of human Alu DNA which bears a remarkable homology to SV40 site 1. However, both tumor antigens fail to precipitate DNA from the same region which has two direct repeats of GAGGC. These results indicate that despite similarities in protein structure and DNA sequence, requirements of the two T antigens for pentanucleotide configuration and neighboring sequence environment are different.  相似文献   

11.
The simian virus 40 origin of replication contains a 27-base-pair palindrome with the sequence 5'-CA-GAGGC-C-GAGGC-G-GCCTC-G-GCCTC-TG-3'. The four 5'-GAGGC-3'/5'-GCCTC-3' pentanucleotides are known contact sites for simian virus 40 T-antigen binding in vitro. We used oligonucleotide-directed cassette mutagenesis to identify features of this palindrome that are important for the initiation of DNA replication in vivo. Each base pair of a pentanucleotide is crucial for DNA replication. In contrast, sequences adjacent to pentanucleotides have little or no effect on replication. Thus, the pentanucleotide is the basic functional unit, not only for T-antigen binding but also for DNA replication. All four pentanucleotides are indispensable in the initiation process. The spacing of pentanucleotides is crucial because duplication of the single base pair between binding sites has a far greater effect on replication than does substitution of the same base pair. Inversion of any pentanucleotide blocks DNA synthesis. Thus, the pentanucleotide is not a functionally symmetrical unit. We propose that each pentanucleotide positions a monomer of T antigen at the proper distance, rotation, and orientation relative to other T-antigen monomers and to other origin domains and that such positioning leads to subsequent events in replication.  相似文献   

12.
13.
14.
15.
Chon SK  Rim BM  Im DS 《IUBMB life》1999,48(4):397-404
Adeno-associated virus type-2 (AAV-2) is a helper-dependent parvovirus that has been implicated in the inhibition of replication and oncogenic transformation of bovine papillomavirus type-1 (BPV-1) and other transforming DNA viruses. Previous studies have suggested that the Rep78 protein of AAV-2 is a key player mediating this effect. In this report we have analyzed the effect of AAV-2 Rep78 protein on the regulation of gene expression of a reporter gene under the control of the long control region (LCR) of BPV-1. Our results show that Rep78 is capable of down-regulating the promoter activity of the LCR in vivo in tissue culture cells. Inhibition of LCR activity in vivo suggested the need for Rep78 to bind to a region of the LCR promoter spanning the E2-responsive elements of BPV-1. This observation was further confirmed in vitro with gel shift assays showing specific binding of Rep78 to DNA oligonucleotides containing E2-responsive element 1 (E2RE1) sequences of BPV-1 LCR. Our results expand the understanding of the mechanism of trans-regulation mediated by Rep78 and involving this protein and DNA sequences with complex secondary structure.  相似文献   

16.
17.
Mutations were introduced into plasmid pMM984, a full-length infectious clone of the fibrotropic strain of minute virus of mice, to identify cis-acting genetic elements required for the excision and replication of the viral genome. The replicative capacity of these mutants was measured directly, using an in vivo transient DNA replication assay following transfection of plasmids into murine A9 cells and primate COS-7 cells. Experiments with subgenomic constructs indicated that both viral termini must be present on the same DNA molecule for replication to occur and that the viral nonstructural protein NS-1 must be provided in trans. The necessary sequences were located within 1,084 and 807 nucleotides of the 3' and 5' ends of the minute virus of mice genome, respectively. The inhibitory effect of deletions within the 206-bp 5'-terminal palindrome demonstrated that these sequences comprise a cis-acting genetic element that is absolutely essential for the excision and replication of viral DNA. The results further indicated a requirement for a stem-plus-arms T structure as well as for the formation of a simple hairpin. In addition, the removal of one copy of a tandemly arranged 65-bp repeat found 94 nucleotides inboard of the 5'-terminal palindrome inhibited viral DNA replication in cis by 10- and just greater than 100-fold in A9 and COS-7 cells, respectively. The latter results define a novel genetic element within the 65-bp repeated sequence, distinct from the terminal palindrome, that is capable of regulating minute virus of mice DNA replication in a species-specific manner.  相似文献   

18.
19.
M Ustav  E Ustav  P Szymanski    A Stenlund 《The EMBO journal》1991,10(13):4321-4329
Expression of the viral polypeptides E1 and E2 is necessary and sufficient for replication of BPV in mouse C127 cells. By providing these factors from heterologous expression vectors we have identified a minimal origin fragment from BPV that contains all the sequences required in cis for replication of BPV in short term replication assays. This same sequence is also required for stable replication in the context of the entire viral genome. The identified region is highly conserved between different papillomaviruses, and is unrelated to the previously identified plasmid maintenance sequences. The minimal ori sequence contains a binding site for the viral polypeptide E1, which we identify as a sequence specific DNA binding protein, but surprisingly, an intact binding site for the viral transactivator E2 at the ori is not required. The isolated origin shows an extended host region for replication and replicates efficiently in both rodent and primate cell lines.  相似文献   

20.
High risk types of human papillomavirus, such as type 18 (HPV-18), cause cervical carcinoma, one of the most frequent causes of cancer death in women worldwide. DNA replication is one of the central processes in viral maintenance, and the machinery involved is an excellent target for the design of antiviral therapy. The papillomaviral DNA replication initiation protein E1 has origin recognition and ATP-dependent DNA melting and helicase activities, and it consists of a DNA-binding domain and an ATPase/helicase domain. While monomeric in solution, E1 binds DNA as a dimer. Dimerization occurs via an interaction of hydrophobic residues on a single alpha-helix of each monomer. Here we present the crystal structure of the monomeric HPV-18 E1 DNA-binding domain refined to 1.8-A resolution. The structure reveals that the dimerization helix is significantly different from that of bovine papillomavirus type 1 (BPV-1). However, we demonstrate that the analogous residues required for E1 dimerization in BPV-1 and the low risk HPV-11 are also required for HPV-18 E1. We also present evidence that the HPV-18 E1 DNA-binding domain does not share the same nucleotide and amino acid requirements for specific DNA recognition as BPV-1 and HPV-11 E1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号