首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The overall distribution of substance P (SP) immunoreactive (IR) nerves surrounding the cerebral arteries of the bent-winged bat were investigated immunohistochemically. In this microchiropteran species, the walls from the vertebral artery to the caudal part of the basilar artery have considerably well-developed plexuses of SP-IR nerves, whereas no demonstrable SP-IR fibers were found in the crostral part of the basilar artery, and in more rostrally located arteries the nerve supply was very sparse or occasionally lacking. This innervation pattern has not yet been established for the cerebral arterial systems of other mammals that have been studied under normal conditions, but it is very similar to the pattern of SP-IR innervation observed in the guinea pig and cat of which the trigeminal ganglia have been destroyed. From the combination of this and other immunohistochemical findings, it is suggested that SP-IR nerves innervating the vertebral and basilar arteries of the bent-winged bat originate from the upper cervical dorsal root ganglia (DRG) and enter the cranial cavity along the vertebral artery and through the meninges.Abbreviations BA basilar artery - CSN cervical spinal nerves - ICS internal carotid system - SCG superior cervical ganglion - SNB sympathetic nerve bundle - VA vertebral artery - VBS vertebro-basilar system  相似文献   

2.
Summary The overall distribution and origins of vasoactive intestinal polypeptide (VIP)-immunoreactive (IR), acetylcholinesterase (AChE)-positive and adrenergic nerves in the walls of the cerebral arteries were investigated in the bent-winged bat. VIP-IR and AChE-positive nerves innervating the bat cerebral vasculature appear to arise mainly from VIP-IR and AChE-positive cell bodies within microganglia found in the nerve bundle accompanying the sympathetic nerve bundle within the tympanic cavity. These microganglia, as well as the nerve bundle containing them, do not emit catecholamine fluorescence, suggesting that they are of the cranial parasympathetic outflow, probably the facial or glossopharyngeal one. The axons from VIP-IR and AChE-positive microganglia run intermingled with sympathetic adrenergic nerves in the same thick fiber bundles, and reach the cranial cavity through the carotid canal. In addition, some of the VIP-IR fibers innervating the vertebro-basilar system, at least the basilar artery, originate from VIP-IR nerve cells located in the wall of this artery.The supply of VIP-IR fibers to the bat major cerebral arteries is the richest among mammals that have been studied, and differs from other mammals in that it is much greater in the vertebro-basilar system than in the internal carotid system: plexuses of VIP-IR nerves are particularly dense along the walls from the posterior ramus to posterior cerebral and basilar arteries. Small pial and intracerebral arteries of the vertebro-basilar system, especially those of the posterior cerebral artery which supply most parts of the diencephalon and cerebrum, are also richly innervated by peripheral VIP-IR fibers. This pattern corresponds well with the innervation pattern of adrenergic and AChE-positive nerves.  相似文献   

3.
Fluorescence histochemistry discloses that the carotid rete mirabile in the giraffe has a poor sympathetic innervation. In contrast, the efferent artery of the rete (internal carotid artery) and the cerebral arteries show moderate sympathetic innervation. A certain degree of regional variability was noted in which the rostral arteries (anterior and middle cerebral) receive more sympathetic nerves than the caudal (posterior communicating and basilar) arteries. The sympathetic nerves on the giraffe cerebral vessels may constitute part of a host of mechanisms by which regional blood flow to the brain is regulated. Conversely, the paucity of sympathetic innervation of the carotid rete mirabile may indicate that this structure does not play an active role in vasoconstrictor responses during postural changes of the head.  相似文献   

4.
Summary Adrenergic and cholinergic nerves innervating the cerebral arteries of the domestic fowl were examined by specific histochemical techniques.The adrenergic nerve plexuses of the cerebral carotid system are markedly denser than those of other vertebrates observed by similar techniques. They form longitudinally elongated meshworks of fine fibres in the vascular wall of the arterial branches. Those innervating the vertebro-basilar system are less dense and more elongated, and, as the size of the artery diminishes, the fibres of the plexus become coarser. In the small pial and parenchymal arteries they are reduced to a few fibres running parallel to, or spiralling around the vascular axis.The cholinergic nerve plexuses are not as dense as the adrenergic system. The acetylcholinesterase activity is very weak, except in the plexuses innervating the cerebral carotid artery and the proximal portion of the anterior and posterior rami. In the vertebro-basilar system, a few thick nerve bundles run alongside the blood vessels of the vertebral and basilar arteries. Cholinergic nerves enter the cranial cavity along the internal carotid, the vertebral and possibly the cerebro-ethmoidal arteries.Intracerebral capillaries and some arterioles are not innervated with cholinergic and adrenergic fibres of peripheral origin, but with ones arising from parenchymal nerve cells.  相似文献   

5.
Possible relationships between the density of peptide innervation and the contractile response of rat cerebral arteries to exogenously applied neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP) were examined. The effects of NPY on membrane potential and reactivity of cerebral arteries to exogenous norepinephrine also were studied. In normally innervated arteries there was no apparent correlation between degree of innervation and response to NPY. Marked, prolonged tachyphylaxis to NPY and VIP was observed following brief exposure to these peptides. Surgical removal of the superior cervical ganglia or the sphenopalatine ganglia greatly reduced and, in some cases, eliminated NPY- or VIP-immunoreactive perivascular nerves from cerebral arteries. However, responses of denervated middle cerebral arteries to exogenous NPY or VIP were not different from responses of innervated arteries. Doses of NPY that induced maximal contraction caused no change in membrane potential of the middle cerebral artery. NPY also did not alter the response of cerebral arteries to exogenous norepinephrine. Finally, electrical stimulation of normal or denervated arteries caused only minor constrictor or dilator responses. These results do not support a substantial role for peptidergic perivascular nerves in regulation of pial arterial contractility in the rat.  相似文献   

6.
This study investigated the pattern of autonomic innervation of the heart of the fat-tailed dunnart (Sminthopsis crassicaudata) using isolated cardiac preparations. While the pattern of autonomic innervation of the atria was consistent with that found in other mammals, the ventricles displayed an unusual pattern of mammalian cardiac innervation. Transmural stimulation of the intramural nerves of isolated right ventricular preparations caused a decrease in the force of contraction of 46.8+/-3.2% followed by a rebound increase in the force of contraction beyond basal levels of 40.9+/-6.9%. These responses could be blocked independently by the application of the muscarinic receptor antagonist hyoscine and beta-adrenoreceptor antagonist propranolol respectively and could also be mimicked by the application of the agonists acetylcholine (Ach) and noradrenaline (NA). These findings indicated the presence of a functional cholinergic innervation of the ventricles that was capable of reducing the force of contraction below basal levels. This pattern of innervation has only been found previously in one other mammal, the bent-winged bat (Miniopterus schreibersii). Given that both of these species are heterotherms, it is possible that such a pattern of innervation may relate to the control of cardiac output during torpor. These findings are the first that demonstrate the homogeneity of a physiological control mechanism in a so-called 'shallow, daily torpidator' (S. crassicaudata) and a 'deep hibernator' (M. schreibersii) that is absent in mammalian homeotherms. These findings are consistent with recent work suggesting that there may be little difference between these types of heterothermy.  相似文献   

7.
The pattern of uterine innervation by noradrenergic (NA) and acetylcholinesterase-positive (AChE) nerves in different reproductive stages of the adult Japanese long-fingered bats were investigated histochemically and immunohistochemically. In the non-pregnant bat, the uterine horn was supplied with abundant NA and AChE nerves. These two types of nerves were closely associated with the uterine arteries and myometrial smooth muscles. In the pregnant bat, NA and AChE nerves supplying the uterus did not degenerate much during hibernating period, but reduced markedly after arousal. In the postpartum bat, the density of nerves recovered progressively. The significant change in the innervation pattern of uterine NA and AChE nerves in the pregnant bats under and after hibernation, and in the postpartum bat must be considered in relation to the adrenergic and cholinergic controlling mechanisms on the uterine function that is matched for the unique reproductive cycle of this bat.  相似文献   

8.
Summary Dual innervation of snake cerebral blood vessels by adrenergic and cholinergic fibres was demonstrated with the use of histochemical methods. Although the nerve plexuses are somewhat less dense, the essential features of innervation of the blood vessels are similar to those of mammals with the exception that the adrenergic plexuses are more prominent than the cholinergic plexuses. The major arteries of the cerebral carotid system have a rich nerve supply. However, the innervation is less rich in the basilar and poor in the spinal (vertebral) arteries. Although the arteries supplying the right side of head are poorly developed, three pairs of arteries, cerebral carotids, ophthalmics and spinals, supply the snake brain. The carotids and ophthalmics are densely innervated and are accompanied by thick nerve bundles, suggesting that the nerves preferentially enter the skull along those arteries. Some parenchymal arterioles are also dually innervated. Connection between the brain parenchyma and intracerebral capillaries via both cholinergic and adrenergic fibres was observed. In addition cholinergic nerve fibres, connecting capillaries and the intramedullary nerve fibre bundles, were noticed. Capillary blood flow may be influenced by both adrenergic and cholinergic central neurons. The walls of capillaries also exhibit heavy acetylcholinesterase activity. This may indicate an important role for the capillary in the regulation of intracerebral blood flow.  相似文献   

9.
The flow in the basilar artery arises from the merging of the flows from the two vertebral arteries. This study deals with the question whether a parabolic (Poiseuille) profile will have been established before the basilar artery divides into both posterior cerebral arteries. The inlet length (that is, the downstream distance needed for the flow to become approximately equal to the limiting Poiseuille flow) and velocity profiles have been computed from two- and three-dimensional mathematical models in which flow pulsatility and vessel wall distensibility have been neglected and the complex geometry of the junction has been taken into account in a simplified form. The results show that the flow at the end of the basilar artery is far from being parabolic and that an asymmetry in the entrance flow will be carried along towards the end of the basilar artery, thus affecting flows in the circle of Willis.  相似文献   

10.
Artery loops at the root exit zones of cerebral nerves are regarded as causes of certain diseases, e.g. trigeminal neuralgia or hemifacial spasm. The factors, which may cause such loops and displacements of arteries, however, are still not known sufficiently. In order to find out more about such causes, 60 corpses were examined. We recorded the variations in the positions of vertebral and basilar arteries and correlated them with the respective age at the time of death. We found that those showing atypical artery positions and loops were generally of older age. We further examined possible influences of blood flow factors on variations of artery positions. Our sample indicated such influence of flow factors on displacements of basilar artery, but they seemed to be of lesser importance than the effect of ageing.  相似文献   

11.
The anatomy of the cephalic arterial system in the fowl was studied in 24 specimens by means of latex-injected preparations and by dissection. Branches of the external carotid artery supply the extracranial regions. The vertebral arteries unite with the occipitals and have no major communications with the encephalic system. Blood can reach the brain directly from the internal carotid artery and indirectly by way of the extensive cerebral-extracranial anastomoses; especially prominent are those to the palatine and sphenomaxillary arteries from the maxillary and facial branches of the external carotid artery. A large external ophthalmic artery supplies the temporal rete and eye musculature, and an internal ophthalmic artery links the rete and the cerebral vessels. The circle of Willis is incomplete both anteriorly and posteriorly; the anterior cerebral arteries do not unite and the basilar artery is generally asymmetrical in origin. The basilar artery tapers caudally and is continued as the ventral spinal artery.  相似文献   

12.
Fluorescence histochemistry was used to study the adrenergic innervation of the large arteries and veins at six points along the body of the semiarboreal rat snake Elaphe obsoleta. Apart from the vessels adjacent to the heart, there was a marked contrast in the density of adrenergic innervation of anterior and posterior systemic arteries and veins. The anterior arteries and veins have little adrenergic innervation in contrast to the extremely dense innervation of the arteries and veins posterior to the heart. The innervation pattern is consistent with known physiological adjustments to gravity and suggests a mechanism for regulating dependent blood flow via sympathetic nerves. In comparison to the posterior systemic arteries, parallel segments of pulmonary artery taken from the same body position of Elaphe contained a much sparser innervation by adrenergic nerves. The sparser innervation can be correlated with less gravitational disturbance in the pulmonary artery, which is relatively short in this and in other arboreal snakes.  相似文献   

13.
目的探讨ET-1(Endothelin-1,ET-1)能神经纤维分布与高血压鼠脑血管的神经源性调节的关系,探讨ET-1神经是否参与高血压时期脑血流的调节。方法应用免疫组织化学技术观察自发性高血压鼠和Wistar正常血压鼠脑底动脉(包括大脑前动脉、大脑中动脉、大脑后动脉和基底动脉)ET-1能神经纤维的分布密度和走行方式。结果自发性高血压鼠和Wistar正常血压鼠脑底动脉均可见棕褐色的ET-1能免疫反应阳性纤维,似细线状,攀附于血管壁上,自发性高血压鼠脑底动脉各主要分支ET-1能免疫反应阳性纤维密度较Wistar正常血压鼠明显增加,纤维走行大多呈网状。结论实验结果提示自发性高血压鼠脑底动脉增加的ET-1能免疫反应阳性纤维可能与脑血管的神经源性调节有关;高密度的ET-1能神经纤维可能涉及高血压时期脑血流的调节。  相似文献   

14.
The investigation was undertaken to compare the blood supply and venous drainage of the brain of the baboon P. ursinus, the vervet monkey C. pygerithrus, and the bushbaby G. senegalensis with that of man, because these animals are extensively used as research models. The blood supply of the three primates was found to be similar in each case. Like man they have a complete circulus arteriosus; but they have a single anterior cerebral artery, whereas man has paired anterior cerebral arteries. The arterial supply to the cerebellum in the primates is similar to that in man, the main difference being a "common inferior cerebellar artery" which bifurcates to form the anterior inferior cerebellar and posterior inferior cerebellar arteries. In man, these arteries arise separately from the basilar artery and vertebral arteries, respectively. The dural venous drainage was also found to be similar in these primates but was far more extensive than in man. The primates have additional sinuses--the more important of these being the "basisphenoid sinus" and the petrosquamous sinus. The former drains the basilar sinus and is itself drained via the vertebral venous plexus and internal jugular vein. The latter drains via the petrosquamous foramen into the retromandibular vein. The petrosquamous sinus has a rostral extension which drains through the foramen ovale and two lateral and medial connecting sinuses which drain the cavernous and basilar sinuses, respectively. These sinuses are not found in man.  相似文献   

15.
The flow in the basilar artery arises from the merging of the flows from the two vertebral arteries. To study the flow phenomena in the basilar artery, computations have been performed using a finite element (FE) method. We consider steady flow in a geometrically symmetric confluence. For simplicity, channels with a rectangular cross-section have been used. Both symmetric and asymmetric flow cases have been considered. The results show that for the Reynolds number of interest the flow downstream of the junction is highly three-dimensional, and that the flow at the end of the basilar artery, where it splits again, will not be fully developed. The computed phenomena have been confirmed by laser Doppler velocity measurements.  相似文献   

16.
Nerve fibres displaying neurokinin A (NKA)-immunoreactivity (IR) were seen in trigeminal nerve cell bodies and around cerebral blood vessels. NKA-positive fibres had the same general distribution as those displaying substance P (SP)-IR. Double or sequential immunostaining revealed coexistence of NKA- and SP-IR in a population of small nerve cell bodies in the trigeminal ganglion and in perivascular nerve fibres of brain vessels; both tachykinins were also noted to coexist with calcitonin gene-related peptide (CGRP)-IR. The presence of NKA- and SP-IR in cerebral vessels from guinea pig was verified by high-performance liquid chromatography and radioimmunochemistry. The levels NKA-IR were higher than those of SP-IR in cerebral vessels of rat, guinea pig and rabbit. In cat, pig, cow and human brain vessels, the levels of NKA- and SP-IR were equal. Major cerebral vessels at the base of the brain contained higher levels of NKA- and SP-IR than pial vessels on the cerebral convexities. Only low levels of NKA-IR and SP-IR were measured in choroid plexus and dura mater. Precontracted isolated arterial segments of middle cerebral (cat), basilar (rabbit, guinea pig and rat) and pial arteries (man) relaxed following the in vitro administration of NKA and SP. The responses occurred in the same concentration range; the IC50 value for NKA was, however, about 10 times higher than that for SP, while the maximum relaxation was equal. In basilar arteries from guinea pig, the peptides NKA, SP and CGRP all induced strong and potent relaxations. There was no evidence that one of the peptides might potentiate the relaxant effects in vitro of another. The present data suggest that NKA, SP and CGRP are costored and can be released together and cooperate in the mediation of vascular reactions in response to activation of the trigemino-cerebrovascular pathway.  相似文献   

17.
Carbon particles injected into the cortex of the cerebellum of the rat were found in the Virchow-Robin spaces of the adjacent capillaries, and in the adventitia of the cerebellar artery, basilar artery and vertebral artery--both inside and outside the skull. They were also found in some portions of the deeper cervical lymph nodes. However, while tracers injected into the cerebral hemispheres are drained via the tissue channels in the adventitia of the internal carotid arteries, tracers injected into the cerebellar hemispheres are drained via those of the vertebral arteries.  相似文献   

18.
Vertebral arteries are two arteries whose structure and location in human body result in development of special flow conditions. For some of the arteries, one can observe a significant difference between flow rates in the left and the right arteries during ultrasonography diagnosis. Usually the reason of such a difference was connected with pathology of the artery in which a smaller flow rate was detected. Simulations of the flow through the selected type of the vertebral artery geometry for twenty five cases of artery diameters have been carried out. The main aim of the presented experiment was to visualize the flow in the region of vertebral arteries junction in the origin of the basilar artery. It is extremely difficult to examine this part of human circulation system, thus numerical experiments may be helpful in understanding the phenomena occurring when two relatively large arteries join together to form one vessel. The obtained results have shown that an individual configuration and diameters of particular arteries can exert an influence on the flow in them and affect a significant difference between flow rates for vertebral arteries. It has been assumed in the investigations that modelled arteries were absolutely normal, without any pathology. In the numerical experiment, the non-Newtonian model of blood was employed.  相似文献   

19.
The present investigation was undertaken for the study of the comparative neurohistological observations of pancreatic-Artery (blood vessel) in Gallus domesticus (white leghorn) and Suncus murinus (Indian musk shrew) by cholinesterase technique. In Gallus, the innervation of arteries (blood vessel) was by a good number of non-myelinated nerevs, which formed the periarterial plexus in participation with the postganglionic fibres at one end and the fibres of the nerve cells of the other end. In Suncus, the periarterial and AChE-positive ganglia were arranged in chain-like fashion on the periphery of the artery. Periarterial plexus was formed by tortuous, myelinated nerves and the nerve fibres of the ganglia.  相似文献   

20.
The innervation of the rabbit ear vasculature by noradrenergic and substance P-immunoreactive (SP-IR) nerves was investigated in both young and adult animals. All vascular segments were supplied by both noradrenergic and SP-IR nerves. In the ear margins, the arteriovenous anastomoses (AVAs) were more densely innervated than other vessels. In general, the density of both noradrenergic and SP-IR nerves increased with age until 10-12 weeks postnatum. The ear vasculature was denervated in young rabbits to test whether the normal proliferation of AVAs in the growing ear was altered in the absence of nerves. Surgical resection of all auricular nerve trunks except the auricular branch of the auriculo-temporal nerve, and removal of the ipsilateral superior cervical ganglion in 10- to 12-day-old rabbits left the ear devoid of both noradrenergic and SP-IR nerves for at least four weeks. Repeated administration of 6-hydroxydopamine (6-OHDA) to young rabbits produced degeneration of noradrenergic terminal axons, but preterminal nerve trunks survived. SP-IR nerves did not appear to be affected by 6-OHDA. These denervation regimes resulted in a 1.5- to 2-fold increase in the number of AVAs formed in the growing ear. Surgical denervation and 6-OHDA treatment also led to retarded growth of the media of the central ear artery, but this effect of 6-OHDA was probably not due to a specific action on vascular smooth muscle. Surgical resection of most of the dorsal auricular nerves in adult rabbits did not affect AVA density. Large differences in AVA density were apparent between groups of control animals from different parts of the country, or groups examined at different times of the year. These results demonstrate that the labile nature of AVAs in the rabbit ear can result in considerable variability in the absolute number of AVAs and suggest that both intrinsic and extrinsic factors may influence development of the microvasculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号