首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim To investigate the historical distribution of the Cerrado across Quaternary climatic fluctuations and to generate historical stability maps to test: (1) whether the ‘historical climate’ stability hypothesis explains squamate reptile richness in the Cerrado; and (2) the hypothesis of Pleistocene connections between savannas located north and south of Amazonia. Location The Cerrado, a savanna biome and a global biodiversity hotspot distributed mainly in central Brazil. Methods We generated occurrence datasets from 1000 presence points randomly selected from the entire distribution of the Cerrado, as determined by two spatial definitions. We modelled the potential Cerrado distribution by implementing a maximum‐entropy machine‐learning algorithm across four time projections: current, mid‐Holocene (6 ka), Last Glacial Maximum (LGM, 21 ka) and Last Interglacial (LIG, 120 ka). We generated historical stability maps (refugial areas) by overlapping presence/absence projections of all scenarios, and checked consistencies with qualitative comparisons with available fossil pollen records. We built a spatially explicit simultaneous autoregressive model to explore the relationship between current climate, climatic stability, and squamate species richness. Results Models predicted the LGM and LIG as the periods of narrowest and widest Cerrado distributions, respectively, and were largely corroborated by palynological evidence. We found evidence for two savanna corridors (eastern coastal during the LIG, and Andean during the LGM) and predicted a large refugial area in the north‐eastern Cerrado (Serra Geral de Goiás refugium). Variables related to climatic stability predicted squamate richness better than present climatic variables did. Main conclusions Our results indicate that Bolivian savannas should be included within the Cerrado range and that the Cerrado’s biogeographical counterparts are not Chaco and Caatinga but rather the disjunct savannas of the Guyana shield plateaus. Climatic stability is a good predictor of Cerrado squamate richness, and our stability maps could be used in future studies to test diversity patterns and genetic signatures of different taxonomic groups and as a higher‐order landscape biodiversity surrogate for conservation planning.  相似文献   

2.
In order to develop niche models for tree species characteristic of the cerrado vegetation (woody savannas) of central South America, and to hindcast their distributions during the Last Glacial Maximum and Last Inter‐Glacial, we compiled a dataset of tree species checklists for typical cerrado vegetation (n = 282) and other geographically co‐occurring vegetation types, e.g. seasonally dry tropical forest (n = 355). We then performed an indicator species analysis to select ten species that best characterize typical cerrado vegetation and developed niche models for them using the Maxent algorithm. We used these models to assess the probability of occurrence of each species across South America at the following time slices: Current (0 ka pre‐industrial), Holocene (6 ka BP), Last Glacial Maximum (LGM – 21 ka BP), and Last Interglacial (LIG – 130 ka BP). The niche models were robust for all species and showed the highest probability of occurrence in the core area of the Cerrado Domain. The palaeomodels suggested changes in the distributions of cerrado tree species throughout the Quaternary, with expansion during the LIG into the adjacent Amazonian and Atlantic moist forests, as well as connections with other South American savannas. The LGM models suggested a retraction of cerrado vegetation to inter‐tableland depressions and slopes of the Central Brazilian Highlands. Contrary to previous hypotheses, such as the Pleistocene refuge theory, we found that the widest expansion of cerrado tree species seems to have occurred during the LIG, most probably due to its warmer climate. On the other hand, the postulated retractions during the LGM were likely related to both decreased precipitation and temperature. These results are congruent with palynological and phylogeographic studies in the Cerrado Domain.  相似文献   

3.
Examining how both climate and species distribution patterns correlate with leaf morphology can give insights into the ecological and evolutionary patterns that drive adaptive selection of leaf form and function. Drip-tips are a common feature of leaves in rain forest tree species; they are thought to be an adaptation that aids leaf drying and maximizes photosynthesis in areas with high-rainfall climates. We tested whether this macroecological pattern holds true across the precipitation gradients in a non-rain forest region—the woodland savannas of Brazil known as the Cerrado—and compared our results with previous studies from Amazonia. Drip-tips were, as expected, less common overall in the drier Cerrado than in Amazonia. In addition, within the Cerrado, drip-tips were more prevalent in areas with higher rainfall as well as in Cerrado sites that were closer to Amazonia. Moreover, species that occurred across both the Cerrado and Amazonia had drip-tips more often than species that were found only in the Cerrado. These findings support the hypothesis that drip-tips are adaptive and that either the cost of retaining drip-tips is low or that in drier regions they have other benefits.  相似文献   

4.
Aim  Evidence is accumulating of a general increase in woody cover of many savanna regions of the world. Little is known about the consequences of this widespread and fundamental ecosystem structural shift on biodiversity.
Location  South Africa.
Methods  We assessed the potential response of bird species to shrub encroachment in a South African savanna by censusing bird species in five habitats along a gradient of increasing shrub cover, from grassland/open woodland to shrubland dominated by various shrub species. We also explored historical bird species population trends across southern Africa during the second half of the 20th century to determine if any quantifiable shifts had occurred that support an ongoing impact of shrub encroachment at the regional scale.
Results  At the local scale, species richness peaked at intermediate levels of shrub cover. Bird species composition showed high turnover along the gradient, suggesting that widespread shrub encroachment is likely to lead to the loss of certain species with a concomitant decline in bird species richness at the landscape scale. Finally, savanna bird species responded to changes in vegetation structure rather than vegetation species composition: bird assemblages were very similar in shrublands dominated by Acacia mellifera and those dominated by Tarchonanthus camphoratus .
Main conclusions  Shrub encroachment might have a bigger impact on bird diversity in grassland than in open woodland, regardless of the shrub species. Species recorded in our study area were associated with historical population changes at the scale of southern Africa suggesting that shrub encroachment could be one of the main drivers of bird population dynamics in southern African savannas. If current trends continue, the persistence of several southern African bird species associated with open savanna might be jeopardized regionally.  相似文献   

5.
Distribution patterns of plant species endemic to Ecuador and adjacent parts of southern Colombia and northern Peru are analysed on the basis of information in the Flora of Ecuador. A total of 827 restricted-range species were found, many of which are known from extremely small areas, often only one or a few localities. A total of 27% of the species treated in the Flora of Ecuador are endemic to that country. The overall proportion of endemic and restricted-range species is greater in the Andes than in the lowland areas on either side of these mountains; particularly the southern Andes appears to be very rich in endemic species. Spatial analysis of distribution data results in the recognition of 15 floristic elements and 18 geographical endemism regions in Ecuador, the characteristics of which are discussed. Comparison with distribution patterns of restricted-range bird species show a general correspondence, with the main difference that birds tend to be more widely distributed than plants along the Andes. Comparison of the results with the location of national parks and other protected areas shows that the endemic floras in the northern and eastern parts of the country are much better protected than those of the southern and western parts.  相似文献   

6.
Aim  To determine if the distributions of lizard species from Seasonally Dry Tropical Forest (SDTF) enclaves within the Cerrado biome in central Brazil are associated with the Tropical Seasonal Forests Region, a recently proposed phytogeographic unit of South America, corroborating the existence of a Pleistocenic Arc of SDTFs.
Location  SDTF remnants in the Paranã River valley, municipality of São Domingos, Goiás, Brazil.
Methods  Lizards were extensively sampled using haphazard sampling, funnel traps, and pitfall traps with drift fences during four expeditions. The composition of the SDTF lizard assemblage was compared with those from other South American phytogeographic regions (Caatinga, Cerrado, Chaco, Llanos, and the dry forests of Colombia and Bolivia), based on the literature and our own unpublished data.
Results  The SDTF lizard assemblage contained 20 species, including 11 species with extensive distributions among the regions considered, seven species shared exclusively with Cerrado localities, a single species shared exclusively with other SDTFs, and one endemic species. The presence of Lygodactylus klugei (Smith, Martin & Swain, 1977), presumably endemic to the Pleistocenic Arc formed by the Tropical Seasonal Forests Region, considerably extends the known distribution of this species, suggesting historical connections between Caatinga and Cerrado SDTF enclaves.
Main conclusions  The composition of the lizard assemblage in Cerrado SDTF enclaves seems to corroborate the recent proposal that the SDTF should be recognized as a phytogeographic unit (or dominium). The presence of disjunct populations and endemic species highlights the urgency of considering the uniqueness of the Paranã River valley SDTFs and the importance of its conservation.  相似文献   

7.
Of the four species encompassing the genus Pelobates, only two overlap along a narrow contact zone, i.e., Pelobates fuscus and Pelobates syriacus. Our study investigated the shifts in niche similarity of these two closely related species from the Last Interglacial towards the end of the twenty-first century. We computed climatic suitability models using Maxent and projected them onto future and past climates. We used fossil occurrences to test the predictive accuracy of past projections. Niche similarity was assessed between the studied species using Schoener’s D index and a background similarity test. Finally, we evaluated niche differentiation by contrasting the species occurrences using a logistic regression analysis. The ecological niches are slightly extended outside the present geographical ranges in the Caucasus and the Balkans, south for P. fuscus and north and west for P. syriacus, suggesting that their present distribution is not at equilibrium with the climate. The Last Interglacial distribution of P. fuscus included British Isles and broad areas in western, central, and northern Europe, while P. syriacus extended northwards in the Balkans. The validation with fossil records revealed good predictive performance (omission error?=?4.1 % for P. fuscus and 16.6 % for P. syriacus). During the Last Glacial Maximum, climatic suitability persisted in refugia in southern Europe, Pannonian Basin, and Caucasus for P. fuscus, and Israel, southern Balkans, and Caucasus for P. syriacus. Present potential distributions revealed a low similarity of species’ ecological niches, comparable with Last Interglacial, but projections towards 2080 revealed a sharp increase.  相似文献   

8.
Capsule: This study documents evidence of interglacial refugia during the Last Interglacial for birds in the Mediterranean region, and emphasizes the importance of the Last Interglacial on the geographic distribution and genetic structure of Mediterranean species.

Aims: We focused on the historical biogeography of the subalpine warbler complex: Subalpine Warbler Sylvia cantillans and Moltoni’s Warbler Sylvia subalpina; we tested if this Mediterranean bird complex shared a similar demographic fate as the present-day widespread species in the temperate zones of Europe, through the late Quaternary glacial-interglacial cycles.

Methods: An ecological niche model was developed to predict the geographic distribution of the subalpine warblers under the past (the Last Interglacial and the Last Glacial Maximum) and the present bioclimatic conditions. Additionally, Bayesian Skyline Plot analysis was used to assess effective population size changes over the history of the subalpine warbler complex.

Results: During the Last Glacial Maximum, the subalpine warblers almost reached their current distribution in the Mediterranean region; yet, unlike the widespread temperate bird species, they survived the Last Interglacial in allopatric refugia in the Mediterranean region.

Conclusion: A unique biogeographic pattern was revealed, indicating the importance of the Last Interglacial on current distributional patterns and demographic histories of common bird species in the Mediterranean region. This study suggests that Mediterranean biogeography is far more complex than previously assumed, and so deserves further study and more attention.  相似文献   

9.
Fog oases in western South America (locally named lomas) are distributed in a kind of fragmented or patchy way into the coastal desert. Their origin, as well as their current ecological connections in terms of species' dispersal capability, remains an open question. We analyzed the latitudinal pattern in plant species and phylogenetic similarities of 13 lomas, which cover the latitudinal extent of these habitats, from 7°58′ to 26°15′ S. A data-set of 1004 species from available checklists was considered. Plant species composition and phylogenetic relationships among lomas were analyzed by non-metric multidimensional scaling. Our results show three main groups of lomas (northern Peruvian, southern Peruvian, and North-Central Chilean lomas) that are aligned along a complex, nonlinear north–south gradient in ordination space. The weak species overlap between Peruvian and Chilean lomas, together with the higher content in endemic species of the Chilean communities, supports the hypothesis that, at least recently, species composition of the three main groups of lomas has been shaped by desert barriers limiting plant dispersal.  相似文献   

10.
Although the impact of Pleistocene glacial cycles on the diversification of the tropical biota was once dismissed, increasing evidence suggests that Pleistocene climatic fluctuations greatly affected the distribution and population divergence of tropical organisms. Landscape genomic analyses coupled with paleoclimatic distribution models provide a powerful way to understand the consequences of past climate changes on the present‐day tropical biota. Using genome‐wide SNP data and mitochondrial DNA, combined with projections of the species distribution across the late Quaternary until the present, we evaluate the effect of paleoclimatic shifts on the genetic structure and population differentiation of Hypsiboas lundii, a treefrog endemic to the South American Cerrado savanna. Our results show a recent and strong genetic divergence in H. lundii across the Cerrado landscape, yielding four genetic clusters that do not seem congruent with any current physical barrier to gene flow. Isolation by distance (IBD) explains some of the population differentiation, but we also find strong support for past climate changes promoting range shifts and structuring populations even in the presence of IBD. Post‐Pleistocene population persistence in four main areas of historical stable climate in the Cerrado seems to have played a major role establishing the present genetic structure of this treefrog. This pattern is consistent with a model of reduced gene flow in areas with high climatic instability promoting isolation of populations, defined here as “isolation by instability,” highlighting the effects of Pleistocene climatic fluctuations structuring populations in tropical savannas.  相似文献   

11.
Aim To test predictions of the vicariance model, to define basic biogeographical units for Cerrado squamates, and to discuss previous biogeographical hypotheses. Location Cerrado; South American savannas south of the Amazon, extending across central Brazil, with marginal areas in Bolivia and Paraguay and isolated relictual enclaves in adjacent regions. Methods We compiled species occurrence records via field sampling and revision of museum specimens and taxonomic literature. All species were mapped according to georeferenced locality records, and classified as (1) endemic or non‐endemic, (2) typical of plateaus or depressions, and (3) typical of open or forested habitats. We tested predictions of the vicariance model using biotic element analysis, searching for non‐random clusters of species ranges. Spatial congruence of biotic elements was compared with putative areas of endemism revealed by sympatric restricted‐range species. Effects of topographical and vegetational mosaics on distribution patterns were studied according to species composition in biotic elements and areas of endemism. Results We recorded 267 Cerrado squamates, of which 103 (39%) are endemics, including 20 amphisbaenians (61% endemism), 32 lizards (42%) and 51 snakes (32%). Distribution patterns corroborated predictions of the vicariance model, revealing groups of species with significantly clustered ranges. An analysis of endemic species recovered seven biotic elements, corroborating results including non‐endemics. Sympatric restricted‐range taxa delimited 10 putative areas of endemism, largely coincident with core areas of biotic elements detected with endemic taxa. Distribution patterns were associated with major topographical and vegetational divisions of the Cerrado. Endemism prevailed in open, elevated plateaus, whereas faunal interchange, mostly associated with forest habitats, was more common in peripheral depressions. Main conclusions Our results indicate that vicariant speciation has strongly shaped Cerrado squamate diversity, in contrast to earlier studies emphasizing faunal interchange and low endemism in the Cerrado vertebrate fauna. Levels of squamate endemism are higher than in any other Cerrado vertebrate group. The high number of recovered endemics revealed previously undetected areas of evolutionary relevance, indicating that biogeographical patterns in the Cerrado were poorly represented in previous analyses. Although still largely undocumented, effects of vicariant speciation may be prevalent in a large fraction of Cerrado and Neotropical biodiversity.  相似文献   

12.
David Lack 《Bird Study》2013,60(1):14-17
Capsule This study is the first ever documented evidence of an interglacial refugium during the Last Interglacial for birds in Anatolia and suggests the need of a re-examination of the effects of the Last Interglacial on the geographic distribution and genetic structure of species.

Aims We tested whether, in accordance with the ‘refugia within refugia’ model, multiple refugia existed for Kruper's Nuthatch Sitta krueperi during the Last Glacial Maximum or the species survived along the coastal belt of Anatolia through the Late Quaternary glacial–interglacial cycles.

Methods An ecological niche model was developed to predict the geographic distribution of Kruper's Nuthatch under reconstructed past (the Last Interglacial and the Last Glacial Maximum), present, and projected future bioclimatic conditions. Also, robust coalescent-based analyses were used to assess demographic events over the history of Kruper's Nuthatch.

Results Kruper's Nuthatch survived the Last Glacial Maximum almost along the coastal belt of Anatolia, but not in multiple refugia, and surprisingly, contrary to expectations, it survived the Last Interglacial in southern Anatolia, but not along the coastal belt of Anatolia.

Conclusion A kind of the ‘refugia within refugia’ model (i.e. the ‘refugium within refugium’ model) was supported because range shifts took place within Anatolia (itself also a refugium) for Kruper's Nuthatch.  相似文献   

13.
Human land-use effects on species populations are minimized in protected areas and population changes can thus be more directly linked with changes in climate. In this study, bird population changes in 96 protected areas in Finland were compared using quantitative bird census data, between two time slices, 1981-1999 and 2000-2009, with the mean time span being 14 years. Bird species were categorized by distribution pattern and migratory strategy. Our results showed that northern bird species had declined by 21 per cent and southern species increased by 29 per cent in boreal protected areas during the study period, alongside a clear rise (0.7-0.8 °C) in mean temperatures. Distribution pattern was the main factor, with migratory strategy interacting in explaining population changes in boreal birds. Migration strategy interacted with distribution pattern so that, among northern birds, densities of both migratory and resident species declined, whereas among southern birds they both increased. The observed decline of northern species and increase in southern species are in line with the predictions of range shifts of these species groups under a warming climate, and suggest that the population dynamics of birds are already changing in natural boreal habitats in association with changing climate.  相似文献   

14.
The functional composition of plant communities is commonly thought to be determined by contemporary climate. However, if rates of climate‐driven immigration and/or exclusion of species are slow, then contemporary functional composition may be explained by paleoclimate as well as by contemporary climate. We tested this idea by coupling contemporary maps of plant functional trait composition across North and South America to paleoclimate means and temporal variation in temperature and precipitation from the Last Interglacial (120 ka) to the present. Paleoclimate predictors strongly improved prediction of contemporary functional composition compared to contemporary climate predictors, with a stronger influence of temperature in North America (especially during periods of ice melting) and of precipitation in South America (across all times). Thus, climate from tens of thousands of years ago influences contemporary functional composition via slow assemblage dynamics.  相似文献   

15.
We conducted a phylogeographical and niche modelling study of the tree Ficus bonijesulapensis, endemic to Brazilian seasonally dry tropical forests (SDTFs), in order to evaluate the effects of Quaternary climatic fluctuations on population dynamics. The trnQ–5′rps16 region of plastid DNA was sequenced from 15 populations. Three phylogeographical groups were identified by the median‐joining algorithm network and spatial analysis of molecular variance (SAMOVA) (FCT = 0.591): a central‐west, a central‐east and a scattered group. The central groups had higher total haplotype and nucleotide diversities than the scattered group. Ecological niche modelling suggested that, since the Last Interglacial (130 kyr bp ), the central and north regions have been relatively stable, whereas the southern region of the species distribution has been less stable. The phylogeographical groups showed concordance with the floristic units described for SDTFs. The low genetic diversity, unimodal mismatch distribution and unfavourable climatic conditions in the southern region suggest a recent southward expansion of the range of the species during the Holocene, supporting the hypothesis of the southward expansion of SDTFs during this period. The central and northern regions of the current distribution of F. bonijesulapensis, which are consistent with arboreal caatinga and rock outcrop floristic units, were potential refugia during Quaternary climatic fluctuations. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 189–201.  相似文献   

16.
Aim To use parsimony analysis of endemicity and cladistic analysis of distributions and endemism to evaluate two hypotheses addressing biogeographical relationships among Amazonia, the Caatinga forest enclaves, Pernambuco Centre and the southern Atlantic Forest. Location North‐eastern Brazil, South America. Methods To find the most parsimonious areagram we analysed a matrix composed of the presence (1) or absence (0) of 745 taxa (i.e. 293 genera and 452 species of woody plants) within 16 localities belonging to the four large regions addressed in this study. Results One most parsimonious areagram was found and it shows a basal separation between the southern Atlantic Forest and all other regions. This break is followed by a separation between all Caatinga forest enclaves (except Baturité) from a cluster composed of Baturité, the Pernambuco Centre and Amazonia. In this cluster, the most basal separation isolates Baturité from the cluster formed by localities from Amazonia and the Pernambuco Centre. The biogeographical relationships among sites could not be explained by either a random distribution of species among sites or by the geographical distance between sites. Main conclusions We found strong cladistic signal within the raw distribution and phylogenetic data used in our analysis, indicating structured species assemblages in the surveyed localities. They have resulted from the fragmentation of an ancestral biota that was once widely distributed in the region. Our results also support the hypothesis that Atlantic Forest is not a biogeographically natural area, because the Pernambuco Centre is more closely related to Amazonia than to the southern Atlantic Forest. Finally, our data do not support the notion that Caatinga forest enclaves comprise a single biogeographical region, because one Caatinga forest enclave (Baturité) is much more closely related to the cluster formed by Amazonia and the Pernambuco Centre than to other sites. These relationships suggest the occurrence of forest connections between Amazonia and the Atlantic Forests across Caatinga during several periods of the Tertiary and Quaternary. However, palaeoecological data currently available for the Caatinga region are still scarce and do not have either the spatial or temporal resolution required to reconstruct the history of connections among the forests in north‐eastern Brazil.  相似文献   

17.
Traditionally focused on Amazonian and Atlantic rainforests, studies on the origins of high Neotropical biodiversity have recently shifted to also investigate biodiversity processes in the South American dry diagonal, encompassing Chaco, Cerrado savannas, and Caatinga seasonally dry tropical forests. The plateau/depression hypothesis states that riparian forests in the Brazilian Shield in central Brazil are inhabited by Pleistocene lineages, with shallow divergences and signatures of population expansion. Moreover, riparian forests may have acted as a vegetation network in the Pleistocene, allowing gene/species flow across the South American dry diagonal. We tested these hypotheses using Colobosaura modesta, a small gymnophthalmid lizard from forested habitats in the Cerrado savannas and montane/submontane forests in the Caatinga. We conducted phylogeographic analyses using a multi-locus dataset, tested alternative demographic scenarios with Approximate Bayesian Computation, and also employed species delimitation tests. We recovered a history of recent colonization and expansion along riparian forests, associated with Pleistocene climate shifts, and the existence of a new species of Colobosaura restricted to the Serra do Cachimbo region. We also present evidence that riparian forests have provided an interconnected network for forest organisms within the South American dry diagonal and that Pleistocene events played an important role in their evolutionary history.  相似文献   

18.
Many endemic species present disjunct geographical distribution; therefore, they are suitable models to test hypotheses about the ecological and evolutionary mechanisms involved in the origin of disjunct distributions in these habitats. We studied the genetic structure and phylogeography of Tibouchina papyrus (Melastomataceae), endemic to rocky savannas in Central Brazil, to test hypothesis of vicariance and dispersal in the origin of the disjunct geographical distribution. We sampled 474 individuals from the three localities where the species is reported: Serra dos Pirineus, Serra Dourada, and Serra de Natividade. Analyses were based on the polymorphisms at cpDNA and on nuclear microsatellite loci. To test for vicariance and dispersal we constructed a median-joining network and performed an analysis of molecular variance (AMOVA). We also tested population bottleneck and estimated demographic parameters and time to most recent common ancestor (TMRCA) using coalescent analyses. A remarkable differentiation among populations was found. No significant effect of population expansion was detected and coalescent analyses showed a negligible gene flow among populations and an ancient coalescence time for chloroplast genome. Our results support that the disjunct distribution of T. papyrus may represent a climatic relict. With an estimated TMRCA dated from ~836.491 ± 107.515 kyr BP (before present), we hypothesized that the disjunct distribution may be the outcome of bidirectional expansion of the geographical distribution favored by the drier and colder conditions that prevailed in much of Brazil during the Pre-Illinoian glaciation, followed by the retraction as the climate became warmer and moister.  相似文献   

19.
Documenting the Neotropical amphibian diversity has become a major challenge facing the threat of global climate change and the pace of environmental alteration. Recent molecular phylogenetic studies have revealed that the actual number of species in South American tropical forests is largely underestimated, but also that many lineages are millions of years old. The genera Phyzelaphryne (1 sp.) and Adelophryne (6 spp.), which compose the subfamily Phyzelaphryninae, include poorly documented, secretive, and minute frogs with an unusual distribution pattern that encompasses the biotic disjunction between Amazonia and the Atlantic forest. We generated >5.8kb sequence data from six markers for all seven nominal species of the subfamily as well as for newly discovered populations in order to (1) test the monophyly of Phyzelaphryninae, Adelophryne and Phyzelaphryne, (2) estimate species diversity within the subfamily, and (3) investigate their historical biogeography and diversification. Phylogenetic reconstruction confirmed the monophyly of each group and revealed deep subdivisions within Adelophryne and Phyzelaphryne, with three major clades in Adelophryne located in northern Amazonia, northern Atlantic forest and southern Atlantic forest. Our results suggest that the actual number of species in Phyzelaphryninae is, at least, twice the currently recognized species diversity, with almost every geographically isolated population representing an anciently divergent candidate species. Such results highlight the challenges for conservation, especially in the northern Atlantic forest where it is still degraded at a fast pace. Molecular dating revealed that Phyzelaphryninae originated in Amazonia and dispersed during early Miocene to the Atlantic forest. The two Atlantic forest clades of Adelophryne started to diversify some 7Ma minimum, while the northern Amazonian Adelophryne diversified much earlier, some 13Ma minimum. This striking biogeographic pattern coincides with major events that have shaped the face of the South American continent, as we know it today.  相似文献   

20.
Species assemblages are shaped by local and continental-scale processes that are seldom investigated together, due to the lack of surveys along independent gradients of latitude and habitat types. Our study investigated changes in the effects of forest composition and structure on bat and bird diversity across Europe. We compared the taxonomic and functional diversity of bat and bird assemblages in 209 mature forest plots spread along gradients of forest composition and vertical structure, replicated in 6 regions spanning from the Mediterranean to the boreal biomes. Species richness and functional evenness of both bat and bird communities were affected by the interactions between latitude and forest composition and structure. Bat and bird species richness increased with broadleaved tree cover in temperate and especially in boreal regions but not in the Mediterranean where they increased with conifer abundance. Bat species richness was lower in forests with smaller trees and denser understorey only in northern regions. Bird species richness was not affected by forest structure. Bird functional evenness increased in younger and denser forests. Bat functional evenness was also influenced by interactions between latitude and understorey structure, increasing in temperate forests but decreasing in the Mediterranean. Covariation between bat and bird abundances also shifted across Europe, from negative in southern forests to positive in northern forests. Our results suggest that community assembly processes in bats and birds of European forests are predominantly driven by abundance and accessibility of feeding resources, i.e., insect prey, and their changes across both forest types and latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号