首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Counting the number of individuals emerging from burrows is the most practical method for estimating the apparent abundance of Australian Uca species living in mangrove habitats. Experiments were conducted to investigate the effect on counts of quadrat design, distance of observer, quadrat size, recovery time and observational technique. Significant differences in the apparent abundance of one species were found when the subjects were within 2 m of the observer, and when a conspicuous quadrat was used. The largest quadrat tested provided the least variability in counts but an intermediate size (0.56 m2) was more practical. Most Uca active within a 30-min period emerged during the first 10 min regardless of site, species, sex or season. There was a linear correlation between scanning and continuous observation indicating that the former method could be useful when sampling time was limited. Temporal changes in the apparent abundance of Uca suggest that long-term sampling and more detailed studies will be worthwhile.  相似文献   

2.
To avoid unnecessary waste of limited resources and to help prioritize areas for conservation efforts, this study aimed to provide information on habitat use by elephants between the wet and dry seasons in the Mole National Park (MNP) of Ghana. We compiled coordinates of 516 locations of elephants’ encounters, 256 for dry season and 260 for wet season. Using nine predictor variables, we modeled the probability of elephant's distribution in MNP. We threshold the models to “suitable” and “nonsuitable” regions of habitat use using the equal training sensitivity and specificity values of 0.177 and 0.181 for the dry and wet seasons, respectively. Accuracy assessment of our models revealed a sensitivity score of 0.909 and 0.974, and a specificity of 0.579 and 0.753 for the dry and wet seasons, respectively. A TSS of 0.488 was also recorded for the dry season and 0.727 for the wet season indicating a good model agreement. Our model predicts habitat use to be confined to the southern portion of MNP due to elevation difference and a relatively steep slope that separates the northern regions of the park from the south. Regions of habitat use for the wet season were 856 km2 and reduced significantly to 547.68 km2 in the dry season. We observed significant overlap (327.24 km2) in habitat use regions between the wet and dry seasons (Schoener's D = 0.922 and Hellinger's‐based I = 0.991). DEM, proximity to waterholes, and saltlicks were identified as the key variables that contributed to the prediction. We recommend construction of temporal camps in regions of habitat use that are far from the headquarters area for effective management of elephants. Also, an increase in water point's density around the headquarters areas and selected dry areas of the park will further decrease elephant's range and hence a relatively less resource use in monitoring and patrols.  相似文献   

3.
4.
Understanding factors that influence habitat selection in heterogeneous landscapes is fundamental for establishing realistic models on animal distribution to inform rangeland management. In this study, we tested whether seasonal variation in habitat selection within the home range of a large herbivore was influenced by constraints such as, distances from water and central place using semi‐free range cattle (Bos taurus) as a case study. We also tested whether shifts in space use over time were dependent on spatial scale and on the overall abundance of resources. We predicted that distance from water significantly influenced dry season habitat selection while the influence of the central place on habitat selection was season‐independent. We also predicted that shifts in space use over time were spatial scale‐dependent, and that large herbivores would include more diverse habitats in their home ranges during the dry season, when water and food resources are less abundant. Multinomial logit models were used to construct habitat selection models with distances from water and central place as habitat‐specific constraints. Results showed significant variations in habitat selection between the dry and wet season. As predicted, the effect of distance from central place was season‐independent, while the effect of water was not included in the top dry season models contrary to expectation. A diverse range of habitats were also selected during the dry season including agricultural fields. Results also indicated that shifts in space use were spatial scale dependent, with core areas being more sensitive to changes than the home range. In addition, shifts in space use responded to temporal changes in habitat composition. Overall, our results suggest that semi‐free range herbivores adopt different foraging strategies in response to spatial‐temporal changes in habitat availability.  相似文献   

5.
Synopsis The snake eel Pisoodonophis boro burrows, causing leaks in the embankments and damaging the paddy fields and salt pans near estuaries. Field observations and laboratory experiments were made to study this behavior. P. boro was burrowing to eat the fiddler crab Uca annulipes in the mud flats. The eel showed a patchy distribution within the Uca zone. Salinity and the physical nature of the deposits controlled the distribution of the eel. Eel population density was low when the estuary was completely filled with neritic waters during the summer and fresh water during the monsoon period. The region of greatest abundance contained a good mixture of sand, silt and clay. Eels were not found where medium and fine sand formed the bulk of the substratum. The laboratory experiments showed that P. boro preferred loam soil although it could invariably burrow into hard substratum like sand for protection. The eel adapted itself to the experimental substrates ranging from sand to fine clay. However, their natural distribution was determined by Uca distribution. As U. annulipes is not found either in salt pans or in paddy fields P. boro rarely occurs in these habitats.  相似文献   

6.
Nine species of Uca were collected across the northern Caribbean from 50 locations ranging in habitat osmolality from 18 to 2760?mmol?kg?1 (mosmol). The osmoregulating ability of each species was assessed in solutions ranging from 30 to 3550?mosmol. Survivorship, lower and upper median lethal concentration and haemolymph isosmotic concentration ([ISO]) were estimated for each. A lower lethal concentration could not be calculated for some due to survival in low osmolality. By subgenus, average [ISO] for four species from the subgenus Minuca ranged from 587 to 768?mosmol and three species from the subgenus Leptuca from 805 to 881?mosmol. For species from the subgenus Boboruca and the subgenus Uca the [ISO] was 805 and 930?mosmol, respectively. These values reflect the habitat preference of each species in a subgenus. This study broadens our understanding of ecological physiology in Caribbean Uca and demonstrates intra- and inter-specific differences among tropical fiddler crabs.  相似文献   

7.
Abstract This study reports on preliminary findings of habitat‐contingent temporal variability in ant assemblages in Purnululu National Park in northern Australia's semiarid tropics, by sampling at the end of the dry season (October 2004) and the end of the wet season (April 2005). Six grids of 15 pitfall traps were established in each of the spinifex, sandplain and gorge habitats. Community composition was dominated by behaviourally dominant ants (Iridomyrmex spp.) and climate specialists (Melophorus and Meranoplus spp.). Ant activity was higher in the wet season sampling period, with greater species richness and abundance. Interestingly, temporal variation in ant assemblage richness, abundance and composition varied markedly with habitat type. While there were large differences between sampling periods for the spinifex and sandplain habitat, this was not the case in the gorges. These temporal changes in ant assemblages are postulated to be linked with major environmental differences between the two sampling periods, driven by seasonal climatic conditions. It is likely that these changes influenced the ant assemblages through species differences in physiological tolerance levels, ecological requirements and competitive ability. This study demonstrates the need, in highly seasonal environments, to consider the temporal context of studies in relation to habitat type, particularly when undertaking biodiversity surveys and monitoring.  相似文献   

8.
The effects of anthropogenic activities combined with the lack of technical solutions for sewage treatment have lead to serious contamination problems in the coastal ecosystems of East Africa. However, not all contaminants can be considered pollutants. Determining when contamination results in pollution requires not only chemical but also biological measurements. Because benthos integrates conditions over time, macrobenthic organisms are considered good bioindicators to assess local environmental quality. Crabs constitute one of the most important macrofauna taxa in terms of abundance, species richness and biomass in mangrove ecosystems. In the present study, the reproductive potential and quality of Uca annulipes population inhabiting a peri-urban mangrove, subjected to domestic sewage discharges, was compared to populations inhabiting pristine mangroves. Fecundity, egg quality (fatty acids composition) and potential fertility were evaluated and compared by sampling a representative fraction of ovigerous females captured in each of the mangrove habitats at two seasons (February to March, 2006 — wet season; and August to September, 2006 — dry season). Most of the measured reproductive parameters of U. annulipes were different at Maputo peri-urban mangrove when compared to nearby pristine locations. Although we cannot prove that sewage discharge done at Costa do Sol mangrove was the main factor influencing the reproductive dynamics of U. annulipes populations, at this peri-urban mangrove this fiddler crab species extended its reproductive season, increased fecundity, as well as improved embryo quality, mainly regarding the concentration of SFA and MUFA, in relation to the pristine mangrove populations.  相似文献   

9.
Sediment characteristics, especially grain size, are usually considered the most important variables affecting Uca distribution, mainly due to its close relationship with mouth appendage morphology. The aim of this study was to verify, from an assemblage perspective, if sediment is the most important variable affecting Uca species distribution, and if mouth appendage morphology (setae type and curvature) would be related to habitat occupancy. Niche metrics and null model approaches were used to assess and test the hypothesis. The relevance of spoon-tipped setae curvature to Uca distribution was verified for the first time. A fragmented mangrove area was divided into seven subareas, and sampling of crabs and environmental variables took place in June and November 2010. Of 10 species recorded for Brazil, seven were found in the study area: U. burgersi, U. cumulanta, U. leptodactyla, U. maracoani, U. rapax, U. thayeri and U. uruguayensis. Multivariate analysis showed that sediment grain size and the presence of vegetation were the most important variables explaining distribution, reinforcing results commonly obtained by univariate approaches. The overlap of habitat occupancy was generally low and no relationship between mouth appendages was found with breadth and overlap measures. Contrary to predictions, most non-random overlap values were lower than expected by chance, suggesting that interspecific competition might influence species distribution. Also, variables such as the presence of vegetation are important and influence crab distribution, limiting the potential distribution that would be predicted by mouth adaptations alone. Thus, the use of these adaptations as surrogates of fiddler crab distribution is not recommended.  相似文献   

10.
Variability in salinity is an environmental stressor that crab megalopae encounter as they are carried by tides and currents throughout Chincoteague Bay. We exposed blue crab (Callinectes sapidus) and fiddler crab (Uca spp.) megalopae to abrupt salinity changes from 10 to 31 ppt and measured their oxygen usage. It was hypothesized that the megalopae would cope with the changes in a manner reflective of the documented abilities and tolerances of adult crabs. It was also hypothesized that lower salinities would have a particularly detrimental effect on the megalopae reflected by both increased oxygen usage and mortality. The megalopae of both species did exhibit an increase in oxygen use at lower salinities, although the effect was more pronounced during the initial transition and decreased during acclimation. The megalopae mirrored the adult responses, with blue crab larvae consuming more oxygen per mg of wet weight at lower salinities, whereas fiddler crab larval oxygen consumption was relatively uniform at all salinities. Mortality of some blue crab postlarvae was observed at 10 ppt while all larval fiddler crabs survived. Coupled with the introduction of additional fresh water into the global water system, these results indicate that further investigation into this subject is necessary.  相似文献   

11.
Studying the drivers of host specificity can contribute to our understanding of the origin and evolution of obligate pollination mutualisms. The preference–performance hypothesis predicts that host plant choice of female insects is related mainly to the performance of their offspring. Soil moisture is thought to be particularly important for the survival of larvae and pupae that inhabit soil. In the high Himalayas, Rheum nobile and R. alexandrae differ in their distribution in terms of soil moisture; that is, R. nobile typically occurs in scree with well‐drained soils, R. alexandrae in wetlands. The two plant species are pollinated by their respective mutualistic seed‐consuming flies, Bradysia sp1. and Bradysia sp2. We investigated whether soil moisture is important for regulating host specificity by comparing pupation and adult emergence of the two fly species using field and laboratory experiments. Laboratory experiments revealed soil moisture did have significant effects on larval and pupal performances in both fly species, but the two fly species had similar optimal soil moisture requirements for pupation and adult emergence. Moreover, a field reciprocal transfer experiment showed that there was no significant difference in adult emergence for both fly species between their native and non‐native habitats. Nevertheless, Bradysia sp1., associated with R. nobile, was more tolerant to drought stress, while Bradysia sp2., associated with R. alexandrae, was more tolerant to flooding stress. These results indicate that soil moisture is unlikely to play a determining role in regulating host specificity of the two fly species. However, their pupation and adult emergence in response to extremely wet or dry soils are habitat‐specific.  相似文献   

12.
Lemur catta's ability to consume a wide variety of plant foods is a key to this species' survival in a time of ecological crisis across its geographic range. We examined seasonal diet variability of L. catta groups inhabiting two rocky outcrop fragments in south‐central Madagascar: Anja Reserve and Tsaranoro Valley forest. Leaves and fruit of Melia azedarach were a keystone resource for Anja lemurs in wet and dry seasons. At Tsaranoro, L. catta relied on M. azedarach and Ficus spp. in dry season, but during the wet season, neither was a dominant food resource. Top food species at both sites differed markedly from those consumed by L. catta in other habitats. At Tsaranoro, a greater proportion of lemurs engaged in feeding during the dry season compared with wet season. We attribute this to resource scarcity during dry season, when greater feeding effort is needed to maintain energy requirements. Because M. azedarach is ubiquitous throughout Anja Reserve, producing fruit and leaves year‐round, Anja lemurs can meet energy requirements with little seasonal adjustment in feeding activity. L. catta's IUCN status has been upgraded to Endangered, thus, greater insight into its diet flexibility and ability to survive on introduced plant species, can inform conservation plans in remaining wild habitats and ex situ programs.  相似文献   

13.
Dominant Grasses Suppress Local Diversity in Restored Tallgrass Prairie   总被引:1,自引:0,他引:1  
Warm‐season (C4) grasses commonly dominate tallgrass prairie restorations, often at the expense of subordinate grasses and forbs that contribute most to diversity in this ecosystem. To assess whether the cover and abundance of dominant grass species constrain plant diversity, we removed 0, 50, or 100% of tillers of two dominant species (Andropogon gerardii or Panicum virgatum) in a 7‐year‐old prairie restoration. Removing 100% of the most abundant species, A. gerardii, significantly increased light availability, forb productivity, forb cover, species richness, species evenness, and species diversity. Removal of a less abundant but very common species, P. virgatum, did not significantly affect resource availability or the local plant community. We observed no effect of removal treatments on critical belowground resources, including inorganic soil N or soil moisture. Species richness was inversely correlated with total grass productivity and percent grass cover and positively correlated with light availability at the soil surface. These relationships suggest that differential species richness among removal treatments resulted from treatment induced differences in aboveground resources rather than the belowground resources. Selective removal of the dominant species A. gerardii provided an opportunity for seeded forb species to become established leading to an increase in species richness and diversity. Therefore, management practices that target reductions in cover or biomass of the dominant species may enhance diversity in established and grass‐dominated mesic grassland restorations.  相似文献   

14.
Resource selection function (RSF) models are commonly used to quantify species/habitat associations and predict species occurrence on the landscape. However, these models are sensitive to changes in resource availability and can result in a functional response to resource abundance, where preferences change as a function of availability. For generalist species, which utilize a wide range of habitats and resources, quantifying habitat selection is particularly challenging. Spatial and temporal changes in resource abundance can result in changes in selection preference affecting the robustness of habitat selection models. We examined selection preference across a wide range of ecological conditions for a generalist mega‐herbivore, the African savanna elephant Loxodonta africana, to quantify general patterns in selection and to illustrate the importance of functional responses in elephant habitat selection. We found a functional response in habitat selection across both space and time for tree cover, with tree cover being unimportant to habitat selection in the mesic, eastern populations during the wet season. A temporal functional response for water was also evident, with greater variability in selection during the wet season. Selection for low slopes, high tree cover, and far distance from people was consistent across populations; however, variability in selection coefficients changed as a function of the abundance of a given resource within the home range. This variability of selection coefficients could be used to improve confidence estimations for inferences drawn from habitat selection models. Quantifying functional responses in habitat selection is one way to better predict how wildlife will respond to an ever‐changing environment, and they provide promising insights into the habitat selection of generalist species.  相似文献   

15.
Pattern analysis was used to investigate the habitat preferences of five small mammal species in tropical open-forest of the Northern Territory. Fifty-one sites were classified by faunal abundance and the groups examined for significant differences in vegetation structural attributes and plant species in both dry and wet seasons. The omnivore Isoodon macrourus showed strong association with floristic and vegetation structural attributes only in the dry season, when areas with a dense understorey of small trees and shrubs and a high percentage of leaf litter cover were favoured. Of the two primarily carnivorous species, Antechinus bellus was related strongly with floristic and structural attributes in both seasons and showed a consistent preference for areas with relatively dense low-level foliage (< 2m). By contrast, Dasyurus hallucatus was associated more with the structurally simple open-forest types. Of the two mainly herbivorous species Mesembdomys gouldii showed associations only withfioristics in both seasons, while the habitat relationships of Trichosurus arnhemensis were very weak due to its low abundance in the study area. The number and strength of animal/habitat relationships were greatest in the dry season. Forest types with dense mid-level foliage and abundant hollow logs and leaf litter had the greatest mammal richness and abundance; these areas may be critical to the survival of local mammal populations. A comparison of site-groups, defined independently on the basis of fauna, floristics or structure, showed that animal groups overlapped one to six of the habitat groups. The animal's perception of s‘habitat’ may thus differ from that of humans, or that defined by measurement of habitat attributes.  相似文献   

16.
The habitat use and seasonal migratory pattern of birds in Ethiopia is less explored as compared to diversity studies. To this end, this study aimed at investigating the patterns of distribution related to seasonality and the effect of habitat characteristics (elevation, slope, and average vegetation height) on habitat use of birds of Wondo Genet Forest Patch. A stratified random sampling design was used to assess the avian fauna across the four dominant habitat types found in the study area: natural forest, wooded grassland, grassland, and agroforestry land. A point transect count was employed to investigate avian species richness and abundance per habitat type per season. Ancillary data, such as elevation above sea level, latitude and longitude, average vegetation height, and percent slope inclination, were recorded with a GPS and clinometers per plot. A total of 33 migratory bird species were recorded from the area, of which 20 species were northern (Palearctic) migrants while 13 were inter‐African migrants. There was a significant difference in the mean abundance of migratory bird species between dry and wet seasons (t = 2.13, p = .038, df = 44). The variation in mean abundance per plot between the dry and wet seasons in the grassland habitat was significant (t = 2.35, p = .051, df = 7). In most habitat types during both dry and wet seasons, omnivore birds were the most abundant. While slope was a good predictor for bird species abundance in the dry season, altitude and average vegetation height accounted more in the wet season. The patch of forest and its surrounding is an important bird area for migratory, endemic, and global threatened species. Hence, it is conservation priority area, and the study suggests that conservation coupled with ecotourism development is needed for its sustainability.  相似文献   

17.
The invasion of Solidago is one of the main threats to the biodiversity of natural meadows, leading to changes in animal and plant communities, as well as soil features. We compared effects of soil microclimatic conditions (temperature and moisture) and the availability of potential protein sources (dry mass of epigean invertebrates) on ants between meadows invaded by Solidago altissima and S. canadensis and those uninvaded. Our results showed that the ant communities were different between the uninvaded and invaded meadows, with reduction of ant abundance and species richness in the latter. Myrmica spp. were abundant in the uninvaded meadows, whereas Lasius niger was the dominant species in the invaded ones. We found that the lower moisture negatively influenced the abundance of Myrmica species in the Solidago‐invaded meadows. Moreover, the epigean invertebrate dry mass, as an estimation of the availability of protein sources, varied between the two types of meadows, with a higher abundance in the uninvaded ones. The abundance of Myrmica ants with narrower ecological requirements showed a positive correlation with the invertebrate biomass in the invaded meadows. In contrast, the abundance of L. niger with broad ecological requirements was negatively correlated with the invertebrate biomass in the invaded meadows, possibly as a strategy to reduce interspecific competition. Our study showed that the invasion of Solidago plants caused changes in the abundance and species composition of ant communities through modification in microhabitat conditions, that is, decreasing soil moisture, reducing biomass and changing distribution of prey invertebrates.  相似文献   

18.
Defining boundaries of species' habitat across broad spatial scales is often necessary for management decisions, and yet challenging for species that demonstrate differential variation in seasonal habitat use. Spatially explicit indices that incorporate temporal shifts in selection can help overcome such challenges, especially for species of high conservation concern. Greater sage‐grouse Centrocercus urophasianus (hereafter, sage‐grouse), a sagebrush obligate species inhabiting the American West, represents an important case study because sage‐grouse exhibit seasonal habitat patterns, populations are declining in most portions of their range and are central to contemporary national land use policies. Here, we modeled spatiotemporal selection patterns for telemetered sage‐grouse across multiple study sites (1,084 sage‐grouse; 30,690 locations) in the Great Basin. We developed broad‐scale spatially explicit habitat indices that elucidated space use patterns (spring, summer/fall, and winter) and accounted for regional climatic variation using previously published hydrographic boundaries. We then evaluated differences in selection/avoidance of each habitat characteristic between seasons and hydrographic regions. Most notably, sage‐grouse consistently selected areas dominated by sagebrush with few or no conifers but varied in type of sagebrush selected by season and region. Spatiotemporal variation was most apparent based on availability of water resources and herbaceous cover, where sage‐grouse strongly selected upland natural springs in xeric regions but selected larger wet meadows in mesic regions. Additionally, during the breeding period in spring, herbaceous cover was selected strongly in the mesic regions. Lastly, we expanded upon an existing joint–index framework by combining seasonal habitat indices with a probabilistic index of sage‐grouse abundance and space use to produce habitat maps useful for sage‐grouse management. These products can serve as conservation planning tools that help predict expected benefits of restoration activities, while highlighting areas most critical to sustaining sage‐grouse populations. Our joint–index framework can be applied to other species that exhibit seasonal shifts in habitat requirements to help better guide conservation actions.  相似文献   

19.
Summary Abundance and distribution of vascular plants and vesicular-arbuscular mycorrhizal (VAM) fungi across a soil moisture-nutrient gradient were studied at a single site. Vegetation on the site varied from a dry mesic paririe dominated by little bluestem (Schizachyrium scoparium) to emergent aquatic vegetation dominated by cattail (Typha latifolia) and water smartweed (Polygonum hydropiperoides). Plant cover, VAM spore abundance, plant species richness, and number of VAM fungi represented as spores, had significant positive correlations with each other and with percent organic matter. The plant and VAM spore variables had significant negative correlations with soil pH and available Ca, Mg, P and gravimetric soil moisture. Using stepwise multiple regression, Ca was found to be the best predictor of spore abundance. Test for association between plant species and VAM fungal spores indicated that the spores of Glomus caledonium are associated with plants from dry, nutrient poor sites and spores of gigaspora gigantea are positively associated with plants occurring on the wet, relatively nutrient rich sites. Glomus fasciculatum was the most abundant and widely distributed VAM fungus and it had more positive associations with endophyte hosts than the other VAM fungi. We found no relationship between beta niche breadth of plant species and the presence or absence of mycorrhizal infection. However, our data suggest that some plant species may vary with respect to their infection status depending upon soil moisture conditions that may fluctuate seasonally or annually to favor or hinder VAM associations.  相似文献   

20.
Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface‐incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open‐top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by the evaporative drying associated with warmer air temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号