首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing temperatures are predicted to have profound effects on montane ecosystems. In tropical forests, biotic attrition may reduce lowland diversity if losses of species due to upslope range shifts are not matched by influxes of warmer‐adapted species, either because there are none or their dispersal is impeded. Australian rainforests consist of a north–south chain of patches, broken by dry corridors that are barriers to the dispersal of rainforest species. These rainforests have repeatedly contracted and expanded during Quaternary glacial cycles. Many lowland rainforests are expansions since the Last Glacial Maximum and may, therefore, show a signal of historical biotic attrition. We surveyed ants from replicated sites along three rainforest elevational transects in eastern Australia spanning 200 to 1200 m a.s.l. and nearly 14° of latitude. We examined elevational patterns of ant diversity and if there was possible evidence of lowland biotic attrition. Each transect was in a different biogeographic region; the Australian Wet Tropics (16.3°S), the central Queensland coast (21.1°S) and subtropical south‐eastern Queensland (28.1°S). We calculated ant species density (mean species per site) and species richness (estimated number of species by incorporating site‐to‐site species turnover) within elevational bands. Ant species density showed no signal of lowland attrition and was high at low and mid‐elevations and declined only at high elevations at all transects. Similarly, estimated species richness showed no evidence of lowland attrition in the Wet Tropics and subtropical south‐east Queensland; species richness peaked at low elevations and declined monotonically with increasing elevation. Persistence of lowland rainforest refugia in the Wet Tropics during the Last Glacial Maximum and latitudinal range shifts of ants in subtropical rainforests during the Holocene climatic optimum may have counteracted lowland biotic attrition. In central Queensland, however, estimated richness was similar in the lowlands and mid‐elevations, and few ant species were indicative of lower elevations. This may reflect historical biotic attrition due perhaps to a lack of lowland glacial refugia and the isolation of this region by a dry forest barrier to the north.  相似文献   

2.
Aim We describe the changes in species richness, rarity and composition with altitude, and explore whether the differences in Scarabaeinae dung beetle composition along five altitudinal transects of the same mountain range are related to altitude or if there are interregional differences in these altitudinal gradients. Location Field work was carried out on the eastern slope of the eastern Cordillera, Colombian Andes, between Tamá Peak to the north, in the Tamá National Park (07°23′ N, 72°23′ W) and the San Miguel River (00°28′ N, 77°17′ W) to the south. Methods Sampling was carried out between February 1997 and November 1999 in five regions spanning elevation gradients. In each gradient, six sites were chosen at 250 m intervals between 1000 and 2250 m a.s.l. Results We found a curvilinear relationship between altitude and mean species richness, with a peak in richness at middle elevations. However, the diversity of dung beetle assemblages does not seem to be related to the interregional differences in environmental conditions. The number of geographically restricted species is negatively and significantly related to altitude, with geographically restricted species more frequent at low altitude sites. Ordination delimited the two main groups according to altitude: one with all the highest sites (1750–2250 m a.s.l.) and a second group with the remaining sites (< 1750 m a.s.l.). Analysis of species co‐occurrence shows that these dung beetle assemblages seem to be spatially structured when all sites have the same probability of being chosen. In contrast, the spatial structure of species assemblages seems to be random when the probability of choosing any site is proportional to its altitude. Main conclusions The altitude of sites is the main factor that influences the diversity of these dung beetle assemblages. The peak in species richness at middle elevations, the higher number of geographically restricted species at lower altitudinal levels, and the compositional differences along these mountain gradients seem to result from the mixing at these altitudes of dung beetle assemblages that have different environmental adaptations and, probably, different origins. The relevance of altitude in these assemblages is related to the limited role of these Neotropical high altitude environments as centres of refuge and vicariance for a monophyletic group of warm‐adapted species, for which the vertical colonization of these high mountain environments by lineages distributed at lower altitudes would have been very difficult.  相似文献   

3.
Australian rainforests have been fragmented due to past climatic changes and more recently landscape change as a result of clearing for agriculture and urban spread. The subtropical rainforests of South Eastern Queensland are significantly more fragmented than the tropical World Heritage listed northern rainforests and are subject to much greater human population pressures. The Australian rainforest flora is relatively taxonomically rich at the family level, but less so at the species level. Current methods to assess biodiversity based on species numbers fail to adequately capture this richness at higher taxonomic levels. We developed a DNA barcode library for the SE Queensland rainforest flora to support a methodology for biodiversity assessment that incorporates both taxonomic diversity and phylogenetic relationships. We placed our SE Queensland phylogeny based on a three marker DNA barcode within a larger international rainforest barcode library and used this to calculate phylogenetic diversity (PD). We compared phylo- diversity measures, species composition and richness and ecosystem diversity of the SE Queensland rainforest estate to identify which bio subregions contain the greatest rainforest biodiversity, subregion relationships and their level of protection. We identified areas of highest conservation priority. Diversity was not correlated with rainforest area in SE Queensland subregions but PD was correlated with both the percent of the subregion occupied by rainforest and the diversity of regional ecosystems (RE) present. The patterns of species diversity and phylogenetic diversity suggest a strong influence of historical biogeography. Some subregions contain significantly more PD than expected by chance, consistent with the concept of refugia, while others were significantly phylogenetically clustered, consistent with recent range expansions.  相似文献   

4.
Wild ungulates like the guanaco are exposed to important changes in climate and plant diversity along altitudinal gradients in the Andes Mountains, such as in the Southern Andean Precordillera where three phytogeographic provinces are present in altitudinal belts. The guanaco’s diet and food availability were seasonally analyzed using microhistological analysis and point-quadrat transects at six sampling sites, representative of the phytogeographic belts along the altitudinal gradient. Plant cover and diversity decreased with growing altitude. Richness of plant species was poorer at the summit than in the lower altitudes, whereas the proportion of species eaten by guanacos increased with altitude. The diet included 77 species. Grasses were preferred and shrubs were avoided all year round. The grass Poa spp. occupied more than 50 % of the diet at all altitudes. Grasses were the main dietary item even at low altitudes, where shrubs constituted the main food available. Decreasing generalism with descending phytogeographic belts agrees with the prediction for altitudinal gradients. The increase of diversity in the diet during the winter decline of plant cover at high and middle altitudes follows that expected from the optimal foraging theory. The winter decline of vegetation and the dietary shift from grazing to browsing proved to be stronger as altitude increases and the climate become more rigorous. Plant species richness, food scarcity, and climate severity are relevant variables to explain altitudinal and seasonal changes in the diet of adaptive ungulates in mountain environments, such as the guanaco in the Southern Andean Precordillera.  相似文献   

5.
Aim This study assessed changes in diversity and assemblage composition in bryophytes and their associated invertebrates along altitudinal gradients in Australia and New Zealand. The importance of altitude in shaping these communities and for the diversity of both invertebrates and bryophytes was examined at different spatial scales, including local, altitudinal, regional and biogeographical. Location Samples were taken from four Australasian mountain ranges between 42° and 43°S: Mt Field and Mt Rufus, Tasmania, Australia, and Otira Valley and Seaward Kaikoura Mountains, South Island, New Zealand. Methods On both Tasmanian mountains, five altitudes were assessed (250, 500, 750, 1000 and 1250 m). At each location (mountain/altitude combination) two sites were chosen and six samples were taken. Six altitudes were assessed on New Zealand mountains (Otira: 250, 500, 750, 1000, 1250 and 1500 m; Kaikoura: 1130, 1225, 1325, 1425, 1525 and 2000 m). Bryophyte substrate was collected, and all samples were stored in 70% ethanol. Invertebrates were extracted from bryophytes using kerosene‐phase separation and all invertebrates were identified to family. At each location in Tasmania, all bryophyte species within six 25‐cm2 grids per site were collected and identified to species. Bryophytes from New Zealand were identified to species from the invertebrate sample substrate because of sampling constraints. Results Altitude did have a significant effect on diversity, however, no general trend was found along the altitudinal gradient on the four mountains. There were distinct differences in diversity between biogeographical regions, mountains, altitudes and sites. In Tasmania, Mt Field had the highest diversity in invertebrates and bryophytes at 750 m. In contrast, Mt Rufus had consistent low invertebrate and bryophyte diversity along the entire altitudinal gradient. There were also distinctive differences between locations in the composition of invertebrate and bryophyte communities in Tasmania. Along the two altitudinal gradients in New Zealand, Otira had highest diversity for both invertebrates and bryophytes at low altitudes, whereas Kaikoura had highest invertebrate and lowest bryophyte diversity at the highest altitude. Main conclusions There was an effect of altitude, however, there were no consistent changes in diversity or composition on the four different mountains. There was considerable local and regional variation, and, despite a strong sampling design, no underlying altitudinal trends were detectable. This study demonstrates the importance of examining a range of spatial scales if patterns in community structure along altitudinal gradients are to be studied. The implications of this study are discussed with reference to survey design, taxonomic resolution, climate change and conservation of habitat.  相似文献   

6.
西双版纳勐宋山区热带山地雨林的群落学研究   总被引:11,自引:0,他引:11  
王洪  朱华  李保贵 《广西植物》2001,21(4):303-314
首次报道了云南西双版纳勐宋的热带山地雨林群落 ,该群落植物区系组成特殊 ,森林上层乔木组成中以古老的单室茱萸科 (Mastixiaceae)和紫树科 (Nyssaceae)植物为优势 ,亦富有木兰科 (Magnoliaceae)的长蕊木兰、云南拟单性木兰 ,红花木莲等系统发育上较原始的植物以及一些典型东南亚热带山地雨林群落的代表植物。通过对该热带山地雨林群落组成与结构的调查研究 ,认为该热带山地雨林可区分为沟谷和山坡 2个类型。沟谷群落类型以八蕊单室茱萸和大萼楠为乔木层优势种 ,可定义为八蕊单室茱萸—大萼楠林。山坡群落类型以云南拟单性木兰和云南裸花为优势 ,可定义为云南拟单性木兰—云南裸花林。  相似文献   

7.

Background and Aims

The persistence of plants inhabiting restricted alpine areas under climate change will depend upon many factors including levels of genetic variation in adaptive traits, population structure, and breeding system.

Methods

Using microsatellite markers, the genetic structure of populations of a relatively common alpine grass, Poa hiemata, is examined across three altitudinal gradients within the restricted Australian alpine zone where this species has previously been shown to exhibit local adaptation across a narrow altitudinal gradient.

Key Results

Genetic variation across six microsatellite markers revealed genetic structuring along altitudinal transects, and a reduction in genetic variation at high and low altitude extremes relative to sites central within transects. There was less genetic variation among transect sites compared with altitudinal gradients within transects, even though distances among transects were relatively larger. Central sites within transects were less differentiated than those at extremes.

Conclusions

These patterns suggest higher rates of gene flow among sites at similar altitudes than along transects, a process that could assist altitudinal adaptation. Patterns of spatial autocorrelation and isolation by distance changed with altitude and may reflect altered patterns of dispersal via pollen and/or seed. There was evidence for selfing and clonality in neighbouring plants. Levels of gene flow along transects were insufficient to prevent adaptive changes in morphological traits, given previously measured levels of selection.Key words: Poa hiemata, genetic structure, altitudinal gradient, microsatellite, gene flow, climate change  相似文献   

8.
Abstract We examined broad scale patterns of diversity and distribution of lotic Chironomidae (Diptera) within the Wet Tropics bioregion of northern Queensland, Australia. Field surveys across broad latitudinal and altitudinal gradients within the Wet Tropics revealed a fauna of 87 species‐level taxa in 49 genera comprising three main elements: a small genuinely tropical fraction, and larger cosmopolitan and Gondwanan components. The latter group originated when Australia, as part of the ancient Gondwana supercontinent, was situated over Antarctic latitudes with a cooler, wetter climate than today. In the Wet Tropics, cool Gondwanan taxa occurred predominantly in upland and shaded lowland sites, but no species appeared narrowly temperature restricted, and there was no faunal zonation with altitude. Most chironomid species occurred at all latitudes within the Wet Tropics, with no evidence for an enduring effect of the historical rainforest contractions on current‐day distribution patterns. These findings contrast with those for aquatic faunas elsewhere in the world and for the terrestrial Wet Tropics fauna. We relate this to the generally broad environmental tolerances of Australian chironomids, and comment on why the latitudinal diversity gradient does not apply to the Australian chironomid fauna.  相似文献   

9.
《Journal of Asia》2014,17(2):161-167
Two diversity patterns (hump-shaped and monotonic decrease) frequently occur along altitude or latitude gradients. We examined whether patterns of ant species richness along altitudes in South Korea can be described by these patterns and whether ranges of ant species follow Rapoport's altitudinal rule. Ants on 12 high mountains (> 1100 m) throughout South Korea (from 33° N to 38° N) were surveyed using pitfall traps at intervals of 200–300 m altitude. The temperatures at the sampling sites were determined from digital climate maps. Ant species richness decreased monotonically along the altitudinal gradient and increased along the temperature gradient. However, species richness of cold-adapted species (highland species) showed a hump-shaped pattern along altitude and temperature gradients. The altitude and temperature ranges of ant species followed Rapoport's rule. Sampling site temperature ranges were significantly correlated with coldness. Therefore, Rapoport's rule can be explained by high cold-tolerance of species inhabiting high altitudes or latitudes.  相似文献   

10.
In the first comprehensive floristic classification of Australian rainforests and monsoon forests, fresh insights made possible by the use of floristic as distinct from structural data are outlined. A set of 561 individual communities, on sites ranging from North Queensland westwards to the Kimberley region and southwards to Tasmania, is defined by the presence or absence of 1316 tree species, or 406 genera. The data have been subjected to numerical classification, first with respect to species, then to genera. The species classification first divides into three ‘ecofloristic regions’: A, temperate (microtherm) and subtropical (mesotherm) humid evergreen rainforests; B, tropical (megatherm) humid evergreen grading into highly seasonal raingreen (monsoon) forests; and C, subtropical (mesotherm) moderately seasonal humid/subhumid raingreen forests. The sites are further divided into eight ‘ecofloristic provinces’, for each of which a core area is identified and the ten most common diagnostic tree species listed for selected floristic elements, whose ecological relationships are briefly described. Gradients of quantitative thermal-moisture indices are added to standard climatic typology to provide a more flexible identification of local climates that characterize community-types of each province across a wide latitudinal/altitudinal range. Community disjuncts and outliers of a particular province are interpreted as the results of past environmental sifting (in which ecological factors are not entirely determinate), of previously more continuous rainforest vegetation. The genera classification first divides into humid eastern coastal and subhumid western and subcoastal sites, then four thermal types, and finally nine groups of floristic ‘paleo-provinces’. Where the species and genera classifications are not in substantial agreement, a wide-ranging generic element across the provinces in northern and northeastern Australia is interpreted in paleogeographic terms. The relict distribution of existing community types, as the result of climatic sifting of ancient floral stocks, is discussed in support of emerging ideas about the autochthony of Australian rainforests, especially those tropical types that are not intrusive. It is argued that the unique ecological relationships of Australian rainforests justify the most conservative uses of the relatively small remaining areas.  相似文献   

11.
Predictions derived from the optimal foraging theory are interesting to test on wild herbivores living in mountain environments, considering the expected vegetation changes across altitudinal gradients. A lower food richness and a more generalist diet are expected as altitude increases, with higher diet diversity and a shift to browsing as food availability decreases seasonally. With broad diets and ecological adaptability, Lepus europaeus is a non-native herbivore inhabiting Andean altitudinal gradients. Diet and vegetation were analyzed using microhistological analysis and point-quadrat transects at six sampling sites, representative of altitudinal phytogeographic belts. The diet included 67 of the 109 species present in the vegetation. Lepus europaeus proved to be an intermediate feeder with a generalist and selective diet. Following the prediction for altitudinal gradients, dietary generalism increased as plant cover and diversity decreased with altitude. Differences in plant phenology and toxins justified changes in food preferences, from shrubs at the summit to grasses at lower altitudes. Seasonal changes in diet diversity were consistent with different hypotheses depending on altitude. The tundra climate at the summit determined a strong phenological decline and food scarcity during winter, when the less diverse diet was more focused on a preferred shrub, following the selective quality hypothesis. With a milder climate at lower altitudes, the winter increase in diet diversity, with inclusion of avoided shrubs, agrees with the food abundance hypothesis. Climate severity, food shortage, plant phenology, and secondary compounds are relevant for explaining the feeding strategy of European hares in these mountain environments.  相似文献   

12.
The BOU Indonesia Expedition, with BirdLife International, carried out surveys on the Moluccan Islands of Buru and Halmahera in 1994-96 as part of a process of protected area identification. Data on resident forest birds were collected during ten-minute sampling periods at points along altitudinal gradients, in primary and modified forests and in rainforests on different geology. While all species ever reported from Halmahera have been recorded down to near sea level, many of the forest birds of Buru, including a number of restricted-range and endemic species, are largely confined to montane forest, and only common above 800–900 m altitude. The existence of a distinct montane bird community on Buru, but not on Halmahera, is attributed to the relatively large, continuous area of forest at high altitude on this island. Forest on Halmahera at such altitudes is limited and fragmented. While most species survive in modified forests, some were significantly rarer in this habitat and may depend on adjacent areas of primary forest. Mangroves supported impoverished forest bird communities, typically of more adaptable species. On Halmahera, rainforest on ultrabasic rock appears to be impoverished when compared with rainforest on other rock formations, in particular supporting very low numbers of two species of threatened parrot. Implications for conservation concern lowland forests on Halmahera. Despite the surveys, a number of species of conservation concern that occur on Halmahera and Buru still remain largely unknown.  相似文献   

13.
三江并流地区干旱河谷植物物种多样性海拔梯度格局比较   总被引:1,自引:0,他引:1  
在滇西北三江并流地区典型干旱河谷段, 在怒江、澜沧江和金沙江的东、西坡共设置了6条海拔梯度样带, 通过标准样地的植物群落调查, 分析各条样带植物的物种丰富度、物种更替率的海拔梯度格局, 并比较了地理和植被变量对分布格局的解释。干旱河谷植被带位于海拔3,000 m以下, 以灌丛和灌草丛为主, 其在各河谷的分布上限自西向东依次升高。植物物种丰富度的分布主要与海拔、流域、经纬度和植被带有关, 沿纬度和海拔梯度升高而显著增加的格局主要表现在草本层和灌木层, 灌木物种丰富度还呈现自西向东显著增加的趋势。怒江的灌木和草本种物种丰富度显著高于金沙江和澜沧江, 三条江的乔木种丰富度差异则不显著。森林带的样方草本物种丰富度显著低于灌草丛带样方, 并且还拥有后者没有的乔木种。不同样带的植物物种更替速率呈现了不一致的海拔梯度格局, 但均在样带海拔下部的灌草丛群落与海拔上部森林群落之间的交错带出现峰值。森林-灌草丛植被交错带在怒江样带处于海拔1,900-2,100 m处, 在澜沧江河谷位于海拔2,300-2,400 m, 在金沙江河谷位于海拔2,700-2,900 m。所有海拔样带的森林段或灌草丛段相对于同一样带不同植被段之间的物种更替程度为最小, 不仅小于同一流域不同样带相同植被段之间物种更替率的均值, 更小于所有样带相同植被段之间的更替率均值。在三条河流6条海拔样带的12个植被带段之间的物种更替变化中, 空间隔离因素可以解释34.2%, 而植被类型差异仅能解释不到0.5%。本研究结果显示了环境差异对不同植被类型物种丰富度的首要影响, 和各河流之间的空间隔离对植物群落构建和物种构成的主要作用。  相似文献   

14.
A new scheme of altitudinal and latitudinal vegetation zonation is proposed for eastern Asia. The latitudinal patterns of mountain vegetation zonation show a clear boundary at ca. 20°–30° N. For the tropical mountains south of 20° N, the altitudinal series includes tropical lowland, tropical lower montane, and tropical upper montane zones. For the temperate mountains north of 30° N, the series includes temperate lowland, temperate lower montane, and temperate upper montane zones. The mountains located between 20° and 30° N show a transitional zonation pattern; the lower two zones are comparable to the lower two of the tropical zonation (tropical lowland and tropical lower montane), and the upper two zones are comparable to those of the temperate zonation (temperate lower montane and temperate upper montane). The tropical upper montane zone is not found north of 20°–30° N, while the tropical lower montane zone reaches down to sea level and constitutes the temperate lowland zone. Thus the zonation between 20° and 30° N includes tropical lowland, tropical lower montane/temperate lowland, temperate lower montane, and temperate upper montane zones. The latitudinal series of lowland rain forests follows the scheme of climatic division into tropical, subtropical/warm-temperate, cool-temperate and cold-temperate, with a shift of the respective life forms, evergreen, evergreen notophyllous, deciduous, and evergreen needle-leaved. The tropical lower montane forest can be correlated to the horizontal subtropical/ warm-temperate zone. The temperate altitudinal and latitudinal zonations above 30° N are correlated and show an inclined parallel pattern from high altitudes in the south to low altitudes down to sea level in the north.  相似文献   

15.
Global climate change is a threat to ecosystems that are rich in biodiversity and endemism, such as the World Heritage‐listed subtropical rainforests of central eastern Australia. Possible effects of climate change on the biota of tropical rainforests have been studied, but subtropical rainforests have received less attention. We analysed published data for an assemblage of 38 subtropical rainforest vertebrate species in four taxonomic groups to evaluate their relative vulnerability to climate change. Focusing on endemic and/or threatened species, we considered two aspects of vulnerability: (i) resistance, defined by indicators of rarity (geographical range, habitat specificity and local abundance); and (ii) resilience, defined by indicators of a species potential to recover (reproductive output, dispersal potential and climatic niche). Our analysis indicated that frogs are most vulnerable to climate change, followed by reptiles, birds, then mammals. Many species in our assemblage are regionally endemic montane rainforest specialists with high vulnerability. Monitoring of taxa in regenerating rainforest showed that many species with high resilience traits also persisted in disturbed habitat, suggesting that they have capacity to recolonize habitats after disturbance, that is climate change‐induced events. These results will allow us to prioritize adaptation strategies for species most at risk. We conclude that to safeguard the most vulnerable amphibian, reptile and bird species against climate change, climatically stable habitats (cool refugia) that are currently without protection status need to be identified, restored and incorporated in the current reserve system. Our study provides evidence that montane subtropical rainforest deserves highest protection status as habitat for vulnerable taxa.  相似文献   

16.
Elevational gradients are powerful natural experiments for the investigation of ecological responses to changing climates. Automated modified Pennsylvania light traps were used to sample macro‐moth assemblages for three consecutive nights at each of 24 sites ranging from 200 m asl to 1200 m asl within continuous tropical rainforest at Eungella, Queensland, Australia (21°S, 148°E). A total of 13 861 individual moths representing approximately 713 morphospecies and 10 045 individuals belonging to approximately 607 morphospecies where sampled during November 2013 and March 2014 respectively. Moth assemblages exhibited a strong elevational signal during both sampling seasons; we grouped these into lowland and upland assemblages. The dispersal pattern of moth assemblages across the landscape reflected the stratification of vegetation communities across elevation and correlated with shifts in eco‐physical variables, most notably temperature and substrate organic matter. Regional historical biogeographical events likely contributed to the observed patterns. The analysis presented here identifies a set of statistically defined elevationally restricted moths which may be of use as part of a multi‐taxon predictor set for monitoring future ecosystem level changes associated with elevation and, by implication, with climate.  相似文献   

17.
Microclimatic conditions have a strong influence on the distribution of vascular epiphytes, among which orchids often occur in sunnier and more drought‐prone situations than ferns. However, very few studies have looked at the distribution of ferns and orchids in Australian tropical rainforests. By using transmitted light measurements at the locations of individual epiphytes and vapour pressure deficit from the canopy and base of host trees, we were able to determine the patterns of light and humidity in the rainforest environment, and the responses of ferns and orchids to variation in the physical environments. We surveyed five sites, ranging from 800 to 1180 m in elevation in the lower montane rainforests of north‐east Australia. Data loggers recorded the vapour pressure deficit (VPD) at the forest floor and canopy of each site. Light was correlated with height within the host tree and VPD differed significantly over position in the host tree and elevation. There was a strong partitioning of taxonomic groups over the light and VPD gradients. Orchids occurred in environments that had higher mean light levels and mean daily maximum VPD (27% and 0.43 kPa, respectively) than ferns (21% and 0.28 kPa). There was also strong microclimatic partitioning of species within taxonomic groups, suggesting that microclimatic factors play an important role in the realized niche spaces of epiphytes within the tropical Australian rainforest. Thus, the tested ecological generalizations made on tropical rainforest epiphytes apply in Australia.  相似文献   

18.
The hybrid zone on Mount Etna (Sicily) between Senecio aethnensis and Senecio chrysanthemifolius (two morphologically and physiologically distinct species) is a classic example of an altitudinal cline. Hybridization at intermediate altitudes and gradients in phenotypic and life‐history traits occur along altitudinal transects of the volcano. The cline is considered to be a good example of ecological selection with species differences arising by divergent selection opposing gene flow. However, the possibility that the cline formed from recent secondary contact following an allopatric phase is difficult to exclude. We demonstrate a recent split between S. aethnensis and S. chrysanthemifolius (as recent as ~32,000 years ago) and sufficient gene flow (2Nm > 1) to have prevented divergence (implicating a role for diversifying selection in the maintenance of the cline). Differentially expressed genes between S. aethnensis and S. chrysanthemifolius exhibit significantly higher genetic divergence relative to “expression invariant” controls, suggesting that species differences may in part be mediated by divergent selection on differentially expressed genes involved with altitude‐related adaptation. The recent split time and the absence of fixed differences between these two ecologically distinct species suggest the rapid evolution to an altitudinal cline involving selection on both sequence and expression variation.  相似文献   

19.
Petr Sklenář 《Plant Ecology》2006,184(2):337-350
Altitudinal variation of the zonal superpáramo vegetation was studied between 4300 and 4630 m to test a possible occurrence of a fine altitudinal zonation within the superpáramo belt. A rectangular grid of 1 m2 sample plots was established; 25 replicate plots separated by a 3 m space were located along a 100 m long transect parallel to the contours, and there were 17 such transects separated by 20 m of altitude. Species were scored using a 7-grade cover scale and basic environmental data were gathered for each sample. Major changes occur over a short altitudinal range, at around 4400 m, which corresponds to a transition between the lower and upper superpáramo. Species richness sharply declines but species turnover (per altitude) increases along the altitudinal gradient. The correlation between richness and bare ground or rock cover is negative, but the correlation to rocks becomes positive above 4500 m. Species from lower altitudes tend to have narrower altitudinal range, although a large number of species appear to be indifferent to altitude. Direct ordination analyses indicate that high-altitude species show stronger correlation to environmental variables, especially rock, than species from lower altitudes. TWINSPAN cluster analysis delimited 15 groups of samples. There is a change in the clustering pattern along the altitudinal gradient from a horizontal (i.e., within altitude) to vertical (i.e., across altitude) arrangement of the cluster groups, although this pattern is partly obscured at the highest altitudes due to a large number of empty samples. MANOVA tests for samples from adjacent altitudinal levels indicate two distinct altitudinal breaks at lower altitudes, corresponding to the Loricaria-belt in lower superpáramo and the transition between lower and upper superpáramo, while no indication of a zonation was found in upper superpáramo.  相似文献   

20.
Questions: Do growth forms and vascular plant richness follow similar patterns along an altitudinal gradient? What are the driving mechanisms that structure richness patterns at the landscape scale? Location: Southwest Ethiopian highlands. Methods: Floristic and environmental data were collected from 74 plots, each covering 400 m2. The plots were distributed along altitudinal gradients. Boosted regression trees were used to derive the patterns of richness distribution along altitudinal gradients. Results: Total vascular plant richness did not show any strong response to altitude. Contrasting patterns of richness were observed for several growth forms. Woody, graminoid and climber species richness showed a unimodal structure. However, each of these morphological groups had a peak of richness at different altitudes: graminoid species attained maximum importance at a lower elevations, followed by climbers and finally woody species at higher elevations. Fern species richness increased monotonically towards higher altitudes, but herbaceous richness had a dented structure at mid‐altitudes. Soil sand fraction, silt, slope and organic matter were found to contribute a considerable amount of the predicted variance of richness for total vascular plants and growth forms. Main Conclusions: Hump‐shaped species richness patterns were observed for several growth forms. A mid‐altitudinal richness peak was the result of a combination of climate‐related water–energy dynamics, species–area relationships and local environmental factors, which have direct effects on plant physiological performance. However, altitude represents the composite gradient of several environmental variables that were interrelated. Thus, considering multiple gradients would provide a better picture of richness and the potential mechanisms responsible for the distribution of biodiversity in high‐mountain regions of the tropics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号