首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 178 毫秒
1.
Aim We investigated patterns of species richness and composition of the aquatic food web found in the liquid‐filled leaves of the North American purple pitcher plant, Sarracenia purpurea (Sarraceniaceae), from local to continental scales. Location We sampled 20 pitcher‐plant communities at each of 39 sites spanning the geographic range of S. purpurea– from northern Florida to Newfoundland and westward to eastern British Columbia. Methods Environmental predictors of variation in species composition and species richness were measured at two different spatial scales: among pitchers within sites and among sites. Hierarchical Bayesian models were used to examine correlates and similarities of species richness and abundance within and among sites. Results Ninety‐two taxa of arthropods, protozoa and bacteria were identified in the 780 pitcher samples. The variation in the species composition of this multi‐trophic level community across the broad geographic range of the host plant was lower than the variation among pitchers within host‐plant populations. Variation among food webs in richness and composition was related to climate, pore‐water chemistry, pitcher‐plant morphology and leaf age. Variation in the abundance of the five most common invertebrates was also strongly related to pitcher morphology and site‐specific climatic and other environmental variables. Main conclusions The surprising result that these communities are more variable within their host‐plant populations than across North America suggests that the food web in S. purpurea leaves consists of two groups of species: (1) a core group of mostly obligate pitcher‐plant residents that have evolved strong requirements for the host plant and that co‐occur consistently across North America, and (2) a larger set of relatively uncommon, generalist taxa that co‐occur patchily.  相似文献   

2.
James E. Cresswell 《Oecologia》1998,113(3):383-390
I studied the trap morphology, necromass accumulation rates and pitcher infauna of an eastern tropical pitcher plant, Nepenthes ampullaria, that grew in `kerangas' heath forest in the Sungei Ingei Conservation Area, Brunei. I surveyed 164 pitchers distributed among 35 plants and extracted the necromass and larval infauna from the pitchers and then resampled the pitcher contents after 14 days. Plants varied significantly in the morphology of their pitchers, in their rate of necromass accumulation per pitcher and in the abundance and composition of the pitcher infaunas. On average, pitchers accumulated 11.5 mg dry weight over 14 days, but larger pitchers accumulated more necromass than smaller ones. Pitcher morphology explained 45% of the variation in necromass accumulation among plants. On average, pitchers initially contained 26.3 individual larval inquilines. Collectively, the larval infauna was composed of nine taxa of dipteran larvae and infrequent anuran tadpoles. These ten taxa were never found together in a single pitcher and the mean species richness per pitcher was 4.0. Of the six taxa that could be assessed, all except Toxorhynchites spp. had a contagious distribution among the pitchers. Pitcher morphology and necromass accumulation explained only 15% of the variation in inquiline abundance among plants. I found little evidence for the existence of density-dependent interactions between inquiline species: a partial correlation analysis detected only one statistically significant pairwise relationship between the abundances of inquiline taxa, which was a positive association. Fourteen days after being emptied, pitchers contained an average of 9.6 inquilines. There was no evidence that the species composition of the infauna recolonising each pitcher was related to that of its pre-removal infauna. Received: 2 June 1997 / Accepted: 9 September 1997  相似文献   

3.
Studies on the effect of plant-species diversity on various ecological processes has led to the study of the effects of plant-genetic diversity in the context of community genetics. Arthropod diversity can increase with plant-species or plant-genetic diversity (Wimp et al. in Ecol Lett 7:776–780, 2004). Plant diversity effects can be difficult to separate from other ecological processes, for example, complementarity. We asked three basic questions: (1) Are arthropod communities unique on different host-plant genotypes? (2) Is arthropod diversity greater when associated with greater plant-genetic diversity? (3) Are arthropod communities more closely associated with host-plant genetics than the plant neighborhood? We studied canopy arthropods on Populus fremontii trees randomly planted in a common garden. All trees were planted in a homogeneous matrix, which helped to reduce P. fremontii neighborhood effects. One sample was comprised of few P. fremontii genotypes with many clones. A second sample was comprised of many P. fremontii genotypes with few clones. A second data set was used to examine the relationships between the arthropod community with P. fremontii genetic composition and the neighborhood composition of the focal host plant. Unique arthropod communities were associated with different P. fremontii genotypes, and arthropod community diversity was greater in the sample with greater P. fremontii genotypic diversity. Arthropod community similarity was negatively correlated with P. fremontii genetic distance, but arthropod community similarity was not related to the neighborhood of the P. fremontii host plant.  相似文献   

4.
Carnivorous pitcher plants host diverse microbial communities. This plant–microbe association provides a unique opportunity to investigate the evolutionary processes that influence the spatial diversity of microbial communities. Using next-generation sequencing of environmental samples, we surveyed microbial communities from 29 pitcher plants (Sarracenia alata) and compare community composition with plant genetic diversity in order to explore the influence of historical processes on the population structure of each lineage. Analyses reveal that there is a core S. alata microbiome, and that it is similar in composition to animal gut microfaunas. The spatial structure of community composition in S. alata (phyllogeography) is congruent at the deepest level with the dominant features of the landscape, including the Mississippi river and the discrete habitat boundaries that the plants occupy. Intriguingly, the microbial community structure reflects the phylogeographic structure of the host plant, suggesting that the phylogenetic structure of bacterial communities and population genetic structure of their host plant are influenced by similar historical processes.  相似文献   

5.
Resource variation along abiotic gradients influences subsequent trophic interactions and these effects can be transmitted through entire food webs. Interactions along abiotic gradients can provide clues as to how organisms will face changing environmental conditions, such as future range shifts. However, it is challenging to find replicated systems to study these effects. Phytotelmata, such as those found in carnivorous plants, are isolated aquatic communities and thus form a good model for the study of replicated food webs. Due to the degraded nature of the prey, molecular techniques provide a useful tool to study these communities. We studied the pitcher plant Sarracenia purpurea L. in allochthonous populations along an elevational gradient in the Alps and Jura. We predicted that invertebrate richness in the contents of the pitcher plants would decrease with increasing elevation, reflecting harsher environmental conditions. Using metabarcoding of the COI gene, we sequenced the invertebrate contents of these pitcher plants. We assigned Molecular Operational Taxonomic Units at ordinal level as well as recovering species‐level data. We found small but significant changes in community composition with elevation. These recovered sequences could belong to invertebrate prey, rotifer inquilines, pollinators and other animals possibly living inside the pitchers. However, we found no directional trend or site‐based differences in MOTU richness with elevational gradient. Use of molecular techniques for dietary or contents analysis is a powerful way to examine numerous degraded samples, although factors such as DNA persistence and the relationship with species presence still have to be completely determined.  相似文献   

6.
Genotypic diversity within host‐plant populations has been linked to the diversity of associated arthropod communities, but the temporal dynamics of this relationship, along with the underlying mechanisms, are not well understood. In this study, we employed a common garden experiment that manipulated the number of genotypes within patches of Solidago altissima, tall goldenrod, to contain 1, 3, 6 or 12 genotypes m?2 and measured both host‐plant and arthropod responses to genotypic diversity throughout an entire growing season. Despite substantial phenological changes in host plants and in the composition of the arthropod community, we detected consistent positive responses of arthropod diversity to host‐plant genotypic diversity throughout all but the end of the growing season. Arthropod richness and abundance increased with genotypic diversity by up to~65%. Furthermore, arthropod responses were non‐additive for most of the growing season, with up to 52% more species occurring in mixtures than the number predicted by summing the number of arthropods associated with component genotypes in monoculture. Non‐additive arthropod responses were likely driven by concurrent non‐additive increases in host‐plant aboveground biomass. Qualitative differences among host‐plant genotypes were also important early in the season, when specialist herbivores dominated the arthropod community. Neither arthropod diversity nor flower number was associated with genotypic diversity at the end of the growing season, when generalist floral‐associated herbivores dominated. Taken together, these results show that focusing on the temporal dynamics in the quantity and quality of co‐occurring host‐plant genotypes and associated community composition can help uncover the mechanisms that link intraspecific host‐plant diversity to the structure of arthropod communities. Furthermore, consistent non‐additive effects in genotypically diverse plots may limit the predictability of the arthropod community based solely on the genetic make‐up of a host‐plant patch.  相似文献   

7.
T. Sota  M. Mogi  K. Kato 《Biotropica》1998,30(1):82-91
Tropical Nepenthes pitcher plants provide small, isolated aquatic habitats. We examined inter-pitcher variation in the community structure of the inhabitants of Nepenthes alata Blanco in West Sumatra, focusing on the conditions of the pitchers, bacterial density in the pitcher fluid, density and biomass of metazoan inhabitants, and the frequencies of interspecific encounters. Older pitchers contained more insect carcasses. The bacterial density increased with the age of the pitchers, but decreased in withered pitchers that contained finely decomposed detritus. In live pitchers, the bacterial density, the density, mass and species richness of metazoa, and the number of trophic levels per pitcher were positively correlated with detrital mass, which was correlated with volume of pitcher fluid. The metazoan fauna from N. alata consisted of 4 predators and 12 saprophages, among the richest known for Nepenthes species. However, each individual pitcher harbored a limited numbers of species, owing to (1) the low incidence of many species, and (2) the aggregated distribution and different temporal colonization pattern of major species. Six dipteran taxa (one predator and five saprophages) accounted for the bulk of metazoan inhabitant biomass. Of 48 combinations of predator-prey encountered, only four occurred frequently (in > 30% of pitchers), which included two predators and three saprophages. Thus, individual pitchers harbored relatively simple communities despite the regional species richness, and only limited kinds of predator-prey encounters seemed to occur frequently in the regional food web. The local-scale properties of the subdivided communities presented here provide the basic information for understanding the maintenance of regional species richness and food web complexity.  相似文献   

8.
E. Harvey  T. E. Miller 《Oecologia》1996,108(3):562-566
A survey of the abundances of species that inhabit the water-bearing leaves of the pitcher plant Sarracenia purpurea was conducted at several different spatial scales in northern Florida. Individual leaves are hosts to communities of inquiline species, including mosquitoes, midges, mites, copepods, cladocerans, and a diverse bacterial assemblage. Inquiline communities were quantified from four pitchers per plant, three plants per subpopulation, two subpopulations per population, and three populations. Species varied in abundance at different spatial scales. Variation in the abundances of mosquitoes and copepods was not significantly associated with any spatial scale. Midges varied in abundance at the level of populations; one population contained significantly more midges than the other two. Cladocerans varied at the level of the subpopulation, whereas mites varied at the level of the individual plants. Bacterial communities were described by means of Biolog plates, which quantify the types of carbon media used by the bacteria in each pitcher. Bacterial communities were found to vary significantly in composition among individual plants but not among populations or subpopulations. These results suggest that independent factors determining the abundances of individual species are important in determining community patterns in pitcher-plant inquilines.  相似文献   

9.
Increased understanding of the species–area relationship (SAR) can improve its usefulness as a tool for prediction of species loss for biodiversity conservation targets. This study was conducted: (i) to determine the best plant attribute for the SAR in the community of arthropods living within the grass Muhlenbergia robusta; (ii) to determine the contribution of phenophases of plant foliage (dry and fresh), shade and conspecific distance to the variation in arthropod richness within the plant; (iii) to determine the best functional model of changes in the abundance, diversity and biomass in communities of arthropods in response to increases in plant size; (iv) to determine the best host‐plant attribute for prediction of these community attributes; and (v) to determine the effect of the plant phenophase, shade and M. robusta isolation on the abundance, diversity and biomass of the arthropod community. The above‐ground dry weight of grass was found to be the best host‐plant attribute for the SAR, while the light environment explained the arthropod richness within the grass, with higher richness observed in shaded environments. This study also showed that the best functional mathematical models for estimation of changes in the abundance, dry weight and diversity of arthropods in response to increases in grass size (dry weight) are the power model, exponential model and logarithmic model, respectively. Furthermore, the host‐plant foliage phenophase, shade and the isolation of M. robusta with other conspecifics had no effect on the abundance, biomass or diversity per basal area of the grass.  相似文献   

10.
Fungal endophyte community amplicon sequencing can lose a significant number of informative reads due to host-plant co-amplification. Blocking of plant-specific sequences with peptide nucleic acid (PNA) clamps has been shown to improve metrics of detected microbial diversity in studies targeting 16S and 18S regions of rRNA genes. However, PNA clamping has not been applied to the plant ITS region of rRNA gene – a widely accepted fungal marker. By applying PNA clamping technique to ITS amplicon sequencing of the endophytic fungal community of elderberry this study shows that PNA clamping significantly reduces host-plant co-amplification with the universal ITS1/ITS4 primer set. However, PNA clamping in combination with the discriminatory ITS1F/ITS2 primer set did not improve the metrics of fungal endophyte community ITS amplicon Illumina sequencing. This study shows that PNA clamping does not add practical benefit to taxonomic profiling of plant-associated fungal communities if the primers are already specific enough to exclude amplification of host DNA.  相似文献   

11.
DNA analysis of predator faeces using high‐throughput amplicon sequencing (HTS) enhances our understanding of predator–prey interactions. However, conclusions drawn from this technique are constrained by biases that occur in multiple steps of the HTS workflow. To better characterize insectivorous animal diets, we used DNA from a diverse set of arthropods to assess PCR biases of commonly used and novel primer pairs for the mitochondrial gene, cytochrome oxidase C subunit 1 (COI). We compared diversity recovered from HTS of bat guano samples using a commonly used primer pair “ZBJ” to results using the novel primer pair “ANML.” To parameterize our bioinformatics pipeline, we created an arthropod mock community consisting of single‐copy (cloned) COI sequences. To examine biases associated with both PCR and HTS, mock community members were combined in equimolar amounts both pre‐ and post‐PCR. We validated our system using guano from bats fed known diets and using composite samples of morphologically identified insects collected in pitfall traps. In PCR tests, the ANML primer pair amplified 58 of 59 arthropod taxa (98%), whereas ZBJ amplified 24–40 of 59 taxa (41%–68%). Furthermore, in an HTS comparison of field‐collected samples, the ANML primers detected nearly fourfold more arthropod taxa than the ZBJ primers. The additional arthropods detected include medically and economically relevant insect groups such as mosquitoes. Results revealed biases at both the PCR and sequencing levels, demonstrating the pitfalls associated with using HTS read numbers as proxies for abundance. The use of an arthropod mock community allowed for improved bioinformatics pipeline parameterization.  相似文献   

12.
Pitcher plants have been widely used in ecological studies of food webs; however, their bacterial communities are poorly characterized. Pitchers of Sarracenia purpurea contain several distinct sub-habitats, namely the bottom sediment, the liquid, and the internal pitcher wall. We hypothesized that those three sub-habitats within pitcher plants are inhabited by distinct bacterial populations. We used denaturing gradient gel electrophoresis and 16S rRNA gene sequencing to characterize bacterial populations in pitchers from three bogs. DGGE and sequencing revealed that in any given pitcher, the three sub-habitats contain significantly different bacterial populations. However, there was significant variability between bacterial populations inhabiting the same type of habitat in different pitchers, even at the same site. Therefore, no consistent set of bacterial populations was enriched in any of the three sub-habitats. All sub-habitats appeared to be dominated by alpha- and betaproteobacteria in differing proportions. In addition, sequences from the Bacteroidetes and Firmicutes were obtained from all three sub-habitats. We conclude that container aquatic habitats such as the pitchers of S.?purpurea possess a very high bacterial diversity, with many unique bacterial populations enriched in individual pitchers. Within an individual pitcher, populations of certain bacterial families may be enriched in one of the three studied sub-habitats.  相似文献   

13.
Next‐generation sequencing (NGS) technology has extraordinarily enhanced the scope of research in the life sciences. To broaden the application of NGS to systems that were previously difficult to study, we present protocols for processing faecal and swab samples into amplicon libraries amenable to Illumina sequencing. We developed and tested a novel metagenomic DNA extraction approach using solid phase reversible immobilization (SPRI) beads on Western Bluebird (Sialia mexicana) samples stored in RNAlater. Compared with the MO BIO PowerSoil Kit, the current standard for the Human and Earth Microbiome Projects, the SPRI‐based method produced comparable 16S rRNA gene PCR amplification from faecal extractions but significantly greater DNA quality, quantity and PCR success for both cloacal and oral swab samples. We furthermore modified published protocols for preparing highly multiplexed Illumina libraries with minimal sample loss and without post‐adapter ligation amplification. Our library preparation protocol was successfully validated on three sets of heterogeneous amplicons (16S rRNA gene amplicons from SPRI and PowerSoil extractions as well as control arthropod COI gene amplicons) that were sequenced across three independent, 250‐bp, paired‐end runs on Illumina's MiSeq platform. Sequence analyses revealed largely equivalent results from the SPRI and PowerSoil extractions. Our comprehensive strategies focus on maximizing efficiency and minimizing costs. In addition to increasing the feasibility of using minimally invasive sampling and NGS capabilities in avian research, our methods are notably not avian‐specific and thus applicable to many research programmes that involve DNA extraction and amplicon sequencing.  相似文献   

14.
Intraspecific diversity can influence the structure of associated communities, though whether litter-based and foliage-based arthropod communities respond to intraspecific diversity in similar ways remains unclear. In this study, we compared the effects of host-plant genotype and genotypic diversity of the perennial plant, Solidago altissima, on the arthropod community associated with living plant tissue (foliage-based community) and microarthropods associated with leaf litter (litter-based community). We found that variation among host-plant genotypes had strong effects on the diversity and composition of foliage-based arthropods, but only weak effects on litter-based microarthropods. Furthermore, host-plant genotypic diversity was positively related to the abundance and diversity of foliage-based arthropods, and within the herbivore and predator trophic levels. In contrast, there were minimal effects of plant genotypic diversity on litter-based microarthropods in any trophic level. Our study illustrates that incorporating communities associated with living foliage and senesced litter into studies of community genetics can lead to very different conclusions about the importance of intraspecific diversity than when only foliage-based community responses are considered in isolation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Microbial communities in plant roots provide critical links between above‐ and belowground processes in terrestrial ecosystems. Variation in root communities has been attributed to plant host effects and microbial host preferences, as well as to factors pertaining to soil conditions, microbial biogeography and the presence of viable microbial propagules. To address hypotheses regarding the influence of plant host and soil biogeography on root fungal and bacterial communities, we designed a trap‐plant bioassay experiment. Replicate Populus, Quercus and Pinus plants were grown in three soils originating from alternate field sites. Fungal and bacterial community profiles in the root of each replicate were assessed through multiplex 454 amplicon sequencing of four loci (i.e., 16S, SSU, ITS, LSU rDNA). Soil origin had a larger effect on fungal community composition than did host species, but the opposite was true for bacterial communities. Populus hosted the highest diversity of rhizospheric fungi and bacteria. Root communities on Quercus and Pinus were more similar to each other than to Populus. Overall, fungal root symbionts appear to be more constrained by dispersal and biogeography than by host availability.  相似文献   

16.
Nepenthes pitcher plants produce modified jug-shaped leaves to attract, trap and digest insect prey. We used 16S rDNA cloning and sequencing to compare bacterial communities in pitcher fluids of each of three species, namely Nepenthes ampullaria, Nepenthes gracilis and Nepenthes mirabilis, growing in the wild. In contrast to previous greenhouse-based studies, we found that both opened and unopened pitchers harbored bacterial DNA. Pitchers of N. mirabilis had higher bacterial diversity as compared to other Nepenthes species. The composition of the bacterial communities could be different between pitcher types for N. mirabilis (ANOSIM: R = 0.340, p < 0.05). Other Nepenthes species had similar bacterial composition between pitcher types. SIMPER showed that more than 50 % of the bacterial taxa identified from the open pitchers of N. mirabilis were not found in other groups. Our study suggests that bacteria in N. mirabilis are divided into native and nonnative groups.  相似文献   

17.
1. Nepenthes pitcher plants produce fluid‐containing animal traps that are colonised by a variety of specialised arthropods, especially dipterans. However, container‐breeding vector mosquitoes, such as Aedes albopictus Skuse have rarely been recorded from pitchers. Increasing overlap in the geographical ranges of Nepenthes and Ae. albopictus in urban parts of Southeast Asia owing to urbanisation highlights a growing need to investigate the potential role of pitchers as larval habitats for vector mosquitoes. 2. The ability of Ae. albopictus larvae to survive in three common lowland Nepenthes in Peninsular Malaysia that are most likely to co‐occur with Ae. albopictus [viz., Nepenthes ampullaria Jack, Nepenthes gracilis Korth., and Nepenthes mirabilis (Lour.) Druce] was investigated. 3. The larval survival rates of Ae. albopictus in pitcher fluids of the three Nepenthes species were determined, then the effects of low pH, larvicidal agents (such as microbes, predators, and chemical compounds) through manipulative experiments were investigated. 4. It was found that pitchers represent a hostile environment to Ae. albopictus, but that the principal cause of larval mortality varies among Nepenthes species (i.e. low fluid pH in N. gracilis, predation by Toxorhynchites acaudatus Leicester larvae in N. ampullaria, and microbial activity in N. mirabilis). It was concluded that Nepenthes pitchers are generally not suitable larval habitats for Ae. albopictus. However, the pitcher environment of N. ampullaria is worthy of further study, as pitchers that lack predators are nevertheless rarely colonised by Ae. albopictus, indicating that other aspects of the host pitcher environment inhibit oviposition or larval survivorship.  相似文献   

18.
Many studies have found positive relationships between plant diversity and arthropod communities, but the interactive effects of plant genetic diversity and environmental stress on arthropods are not well documented. In this study, we investigated the consequences of plant genotypic diversity, watering treatment, and its interaction for the ground-dwelling arthropod community in an experimental common garden of quaking aspen (Populus tremuloides Michx.). We found that varying plant genotypic diversity and watering treatment altered multivariate arthropod community composition and structure. Arthropod biodiversity and richness showed a distinct response to the plant diversity × watering treatment interaction, declining sharply in water-limited genotypic mixtures. Abundance of arthropod functional groups did not show any response to diversity or the plant diversity × watering treatment interaction, but varied in their response to watering treatment, with predator and detritivore abundance increasing and parasitoid abundance decreasing in well-watered blocks. Our results conflict with most previous studies, and suggest that environmental stress can substantially change the nature of the plant-arthropod diversity relationship. Additionally, we suggest that the plant-arthropod diversity relationship is dependent on the type of plant and arthropod species sampled, and that the association between tree diversity and ground-dwelling arthropods may be much different than more commonly studied grassland species and herbivorous arthropods.  相似文献   

19.
Understanding how communities respond to extreme climatic events is important for predicting the impact of climate change on biodiversity. The plant vigor and stress hypotheses provide a theoretical framework for understanding how arthropods respond to stress, but are rarely tested at the community level. Following a record drought, we compared the communities of arthropods on pinyon pine (Pinus edulis) that exhibited a gradient in physical traits related to environmental stress (e.g., growth rate, branch dieback, and needle retention). Six patterns emerged that show how one of the predicted outcomes of climate change in the southwestern USA (i.e., increased drought severity) alters the communities of a foundation tree species. In accordance with the plant vigor hypothesis, increasing tree stress was correlated with an eight to tenfold decline in arthropod species richness and abundance. Trees that were more similar in their level of stress had more similar arthropod communities. Both foliage quantity and quality contributed to arthropod community structure. Individual species and feeding groups differed in their responses to plant stress, but most were negatively affected. Arthropod richness (r 2 = 0.48) and abundance (r 2 = 0.48) on individual trees were positively correlated with the tree’s radial growth during drought. This relationship suggests that tree ring analysis may be used as a predictor of arthropod diversity, which is similar to findings with ectomycorrhizal fungi. A contrast of our findings on arthropod abundance with published data on colonization by mutualistic fungi on the same trees demonstrates that at low stress these two communities respond differently, but at high stress both are negatively affected. These results suggest that the effect of extreme climatic events such as drought on foundation tree species are likely to decrease multi-trophic diversity and shift arthropod community composition, which in turn could cascade to affect other associated taxa.  相似文献   

20.
为探明不同邻作对云南普洱地区玉米田节肢动物多样性的影响.采用目测法和粘虫板等多种诱集法对邻作咖啡、水稻、李树及单作的玉米田节肢动物群落进行系统调查,分析不同邻作作物对玉米田节肢动物群落的影响.结果表明:不同邻作玉米田天敌亚群落主要为双翅目和膜翅目,其中玉米单作田赤池信息量准则(AIC)值最低为-16.858,最优模型为...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号