首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Galaxias ‘nebula’, a small fish which has adaptations for air‐breathing but is not known to be amphibious, voluntarily emerged from water and, in an unfamiliar environment, moved preferentially towards an alternative water source. Nebula may thus be considered one of the few truly amphibious fishes, and their ability to detect water provides a selective advantage which aids their survival in unpredictable natural environments.  相似文献   

2.
1. The ability to achieve optimal camouflage varies between microhabitats in heterogeneous environments, potentially restricting individuals to a single habitat or imposing a compromise on crypsis to match several habitats. However, animals may exhibit morphological and behavioural attributes that enhance crypsis in different habitats. 2. We used an undescribed fish species, Galaxias‘nebula’, to investigate two objectives. First, we examined two potential methods of enhancing crypsis: change in colour pattern and selection of a suitable background. Second, we characterised the colour pattern of this unstudied fish and assessed its capacity for crypsis. 3. No background selection was apparent but the area of dark pigment expressed varied between backgrounds, which may negate the requirement to be choosy about habitats. The capacity to change colour and selection of a background that maximises crypsis are most likely separate, non‐mutually exclusive strategies. 4. Galaxias‘nebula’ exhibits polymorphic, non‐interchangeable colour patterns that have elements of both background pattern matching and disruptive colouration. This, coupled with habitat characteristics, suggests a combination of generalist and specialist strategies of habitat use. The fish’s camouflage strategy and air‐breathing ability may be key to survival under increasing pressure from habitat degradation and invasive predators.  相似文献   

3.
Pinnipeds are amphibious mammals with flippers, which function for both aquatic and terrestrial locomotion. Evolution of the flippers has placed constraints on the terrestrial locomotion of phocid seals. The detailed kinematics of terrestrial locomotion of gray (Halichoerus grypus) and harbor (Phoca vitulina) seals was studied in captivity and in the wild using video analysis. The seals exhibited dorsoventral undulations with the chest and pelvis serving as the main contact points. An anteriorly directed wave produced by spinal flexion aided in lifting the chest off the ground as the fore flippers were retracted to pull the body forward. The highest length‐specific speeds recorded were 1.02 BL/s for a gray seal in captivity and 1.38 BL/s for a harbor seal in the wild. The frequency and amplitude of spinal movement increased directly with speed, but the duty factor remained constant. Substrate did not influence the kinematics except for differences due to moving up or down slopes. The highly aquatic nature of phocids seals has restricted them to locomote on land primarily using spinal flexion, which can limit performance in speed and duration.  相似文献   

4.
Abstract.
  • 1 A method of separating the effects of two important determinants of body size in natural populations, temperature of larval development and level of larval nutrition, by making measurements of thorax length and wing length of adult flies is investigated.
  • 2 I show that at any given time variation in body size of Drosophila buzzatii from two sites in eastern Australia is determined primarily by variation in the quality of nutrition available to larvae.
  • 3 Throughout the year adult flies are consistently at least 25% smaller in volume than predicted for optimal nutrition at their predicted temperature of larval development.
  • 4 Nutritional stress is therefore a year-round problem for these flies.
  • 5 Measurements of adult flies emerging from individual breeding substrates (rotting cactus cladodes) show that there is substantial variation among these substrates in the nutrition available to larvae.
  • 6 This method will allow study of spatial and temporal variation in the temperature of larval substrates and in the nutritional resources available to flies in natural populations.
  相似文献   

5.
Abstract.  1. Data were compiled from the literature and our own studies on 24 ant species to characterise the effects of body size and temperature on forager running speed.
2. Running speed increases with temperature in a manner consistent with the effects of temperature on metabolic rate and the kinetic properties of muscles.
3. The exponent of the body mass-running speed allometry ranged from 0.14 to 0.34 with a central tendency of approximately 0.25. This body mass scaling is consistent with both the model of elastic similarity, and a model combining dynamic similarity with available metabolic power.
4. Even after controlling for body size or temperature, a substantial amount of inter-specific variation in running speed remains. Species with certain lifestyles [e.g. nomadic group predators, species which forage at extreme (>60 °C) temperatures] may have been selected for faster running speeds.
5. Although ants have a similar scaling exponent to mammals for the running speed allometry, they run slower than predicted compared with a hypothetical mammal of similar size. This may in part reflect physiological differences between invertebrates and vertebrates.  相似文献   

6.
The species pool hypothesis is applied here to the interpretation of ‘hump-shaped’ (unimodal) species richness patterns along gradients of both habitat fertility and disturbance level (the habitat templet). A ‘left-wall’ effect analogous to that proposed for the evolution of organismal complexity predicts a right-skewed unimodal distribution of historical habitat commonness on both gradients. According to the species pool hypothesis, therefore, the distribution of opportunity for net species accumulation (speciation minus extinction) should also have a corresponding unimodal central tendency on both habitat gradients. Two assumptions of this hypothesis are illustrated with particular reference to highly fertile, relatively undisturbed habitats: (i) such habitats have been relatively uncommon in space and time, thus providing relatively little historical opportunity for the origination of species with the traits necessary for effective competitive ability under these habitat conditions; and (ii) species that have evolved adaptation to these habitats are relatively large, thus imposing fundamental ‘packing’ limitations on the number of species that can ‘fit’ within such habitats. Based on these assumptions, the species pool hypothesis defines two associated predictions that are both supported by available data: (a) resident species richness will be relatively low in highly fertile, relatively undisturbed contemporary habitats; and (b) species sizes within regional floras should display as a right-skewed unimodal (log-normal) distribution. The latter is supported here by an analysis of data for 2,715 species in the vascular flora of northeastern North America.  相似文献   

7.
Body size is important to most aspects of biology and is also one of the most labile traits. Despite its importance we know remarkably little about the proximate (developmental) factors that determine body size under different circumstances. Here, I review what is known about how cell size and number contribute to phenetic and genetic variation in body size in Drosophila melanogaster, several fish, and fruits and leaves of some angiosperms. Variation in resources influences size primarily through changes in cell number while temperature acts through cell size. The difference in cellular mechanism may also explain the differences in growth trajectories resulting from food and temperature manipulations. There is, however, a poorly recognized interaction between food and temperature effects that needs further study. In addition, flies show a sexual dimorphism in temperature effects with the larger sex responding by changes in cell size and the smaller sex showing changes in both cell size and number. Leaf size is more variable than other organs, but there appears to be a consistent difference between how shade-tolerant and shade-intolerant species respond to light level. The former have larger leaves via cell size under shade, the latter via cell number in light conditions. Genetic differences, primarily from comparisons of D. melanogaster, show similar variation. Direct selection on body size alters cell number only, while temperature selection results in increased cell size and decreased cell number. Population comparisons along latitudinal clines show that larger flies have both larger cells and more cells. Use of these proximate patterns can give clues as to how selection acts in the wild. For example, the latitudinal pattern in D. melanogaster is usually assumed to be due to temperature, but the cellular pattern does not match that seen in laboratory selection at different temperatures.  相似文献   

8.
A challenge facing ecologists trying to predict responses to climate change is the few recent analogous conditions to use for comparison. For example, negative relationships between ectotherm body size and temperature are common both across natural thermal gradients and in small‐scale experiments. However, it is unknown if short‐term body size responses are representative of long‐term responses. Moreover, to understand population responses to warming, we must recognize that individual responses to temperature may vary over ontogeny. To enable predictions of how climate warming may affect natural populations, we therefore ask how body size and growth may shift in response to increased temperature over life history, and whether short‐ and long‐term growth responses differ. We addressed these questions using a unique setup with multidecadal artificial heating of an enclosed coastal bay in the Baltic Sea and an adjacent reference area (both with unexploited populations), using before‐after control‐impact paired time‐series analyses. We assembled individual growth trajectories of ~13,000 unique individuals of Eurasian perch and found that body growth increased substantially after warming, but the extent depended on body size: Only among small‐bodied perch did growth increase with temperature. Moreover, the strength of this response gradually increased over the 24 year warming period. Our study offers a unique example of how warming can affect fish populations over multiple generations, resulting in gradual changes in body growth, varying as organisms develop. Although increased juvenile growth rates are in line with predictions of the temperature–size rule, the fact that a larger body size at age was maintained over life history contrasts to that same rule. Because the artificially heated area is a contemporary system mimicking a warmer sea, our findings can aid predictions of fish responses to further warming, taking into account that growth responses may vary both over an individual's life history and over time.  相似文献   

9.
Many field measurements of viability and sexual selection on body size indicate that large size is favoured. However, life-history theory predicts that body size may be optimized and that patterns of selection may often be stabilizing rather than directional. One reason for this discrepancy may be that field estimates of selection tend to focus on limited components of fitness and may not fully measure life-history trade-offs. We use an 8-year, demographic field study to examine both sexual selection and lifetime selection on body size of a coral reef fish (the bicolour damselfish, Stegastes partitus). Selection via reproductive success of adults was very strong (standardized selection differential=1.04). However, this effect was balanced by trade-offs between large adult size and reduced cumulative survival during the juvenile phase. When we measured lifetime fitness (net reproductive rate), selection was strongly stabilizing and only weakly directional, consistent with predictions from life-history theory.  相似文献   

10.
Body mass (BM) and resting metabolic rates (RMR) are two inexorably linked traits strongly related to mammalian life histories. Yet, there have been no studies attempting to estimate heritable variation and covariation of BM and RMR in natural populations. We used a marker‐based approach to construct a pedigree and then the ‘animal model’ to estimate narrow sense heritability (h2) of these traits in a free‐living population of weasels Mustela nivalis—a small carnivore characterised by a wide range of BM and extremely high RMR. The most important factors affecting BM of weasels were sex and habitat type, whereas RMR was significantly affected only by seasonal variation of this trait. All environmental factors had only small effect on estimates of additive genetic variance of both BM and RMR. The amount of additive genetic variance associated with BM and estimates of heritability were high and significant in males (h2 = 0.61), but low and not significant in females (h2 = 0.32), probably due to small sample size for the latter sex. The results from the two‐trait model revealed significant phenotypic (rP = 0.62) and genetic correlation (rA = 0.89) between BM and whole body RMR. The estimate of heritability of whole body RMR (0.54) and BM corrected RMR (0.45) were lower than estimates of heritability for BM. Both phenotypic and genetic correlations between BM corrected RMR and BM had negative signals (rP = ?0.42 and rA = ?0.58). Our results indicate that total energy expenditures of individuals can quickly evolve through concerted changes in BM and RMR.  相似文献   

11.
In this study, the complete foxl2 complementary (c)DNA sequence was isolated by simple modular‐architecture research tool (SMART)er rapid amplification of cDNA ends (RACE). Two year‐old female spotted scat, Scatophagus argus, were reared at different temperatures (23, 26 and 29° C) for 6 weeks, or fed with different concentrations of dietary fish oil (0, 2 or 6%) for 8 weeks. Ovarian development, serum oestradiol‐17β (E2) levels, as well as ovarian foxl2 expression were measured. At the end of experiment, ovarian foxl2 messenger (m)RNA expression in fish reared at 23 and 26° C was significantly higher than that in fish reared at 29° C, and that in 2 and 6% fish oil groups was also significantly higher than that in control group (P < 0·05). Serum E2 levels exhibited the same trend with foxl2 mRNA expression in temperature treatment groups and fish oil fed groups. There was a significant positive correlation between stage of oocytes and foxl2 expressions. Results showed that from 23 to 29° C, the optimal temperature for ovarian development in S. argus was 23–26° C, and 6% fish oil supplementation could effectively promote ovarian development. Optimal temperature and fish oil supplement might increase ovarian foxl2 mRNA expressions to promote ovarian development in S. argus.  相似文献   

12.
13.
Environmental DNA (eDNA) analysis has successfully detected organisms in various aquatic environments. However, there is little basic information on eDNA, including the eDNA shedding and degradation processes. This study focused on water temperature and fish biomass and showed that eDNA shedding, degradation, and size distribution varied depending on water temperature and fish biomass. The tank experiments consisted of four temperature levels and three fish biomass levels. The total eDNA and size‐fractioned eDNA from Japanese Jack Mackerels (Trachurus japonicus) were quantified before and after removing the fish. The results showed that the eDNA shedding rate increased at higher water temperature and larger fish biomass, and the eDNA decay rate also increased at higher temperature and fish biomass. In addition, the small‐sized eDNA fractions were proportionally larger at higher temperatures, and these proportions varied among fish biomass. After removing the fish from the tanks, the percentage of eDNA temporally decreased when the eDNA size fraction was >10 µm, while the smaller size fractions increased. These results have the potential to make the use of eDNA analysis more widespread in the future.  相似文献   

14.
Aim We explore geographic variation in body size within the wingless grasshopper, Phaulacridium vittatum, along a latitudinal gradient, and ask whether melanism can help explain the existence of clinal variation. We test the hypotheses that both male and female grasshoppers will be larger and lighter in colour at lower latitudes, and that reflectance and size will be positively correlated, as predicted by biophysical theory. We then test the hypothesis that variability in size and reflectance is thermally driven, by assessing correlations with temperature and other climatic variables. Location Sixty‐one populations were sampled along the east coast of Australia between latitudes 27.63° S and 43.10° S, at elevations ranging from 10 to 2000 m a.s.l. Methods Average reflectance was used as a measure of melanism and femur length as an index of body size for 198 adult grasshoppers. Climate variables were generated by BIOCLIM for each collection locality. Hierarchical partitioning was used to identify those variables with the most independent influence on grasshopper size and reflectance. Results Overall, there was no simple relationship between size and latitude in P. vittatum. Female body size decreased significantly with latitude, while male body size was largest at intermediate latitudes. Rainfall was the most important climatic variable associated with body size of both males and females. Female body size was also associated with radiation seasonality and male body size with reflectance. The reflectance of females was not correlated with latitude or body size, while male reflectance was significantly higher at intermediate latitudes and positively correlated with body size. Analyses of climate variables showed no significant association with male reflectance, while female reflectance was significantly related to the mean temperature of the driest quarter. Main conclusions Geographic variation in the body size of the wingless grasshopper is best explained in terms of rainfall and radiation seasonality, rather than temperature. However, melanism is also a significant influence on body size in male grasshoppers, suggesting that thermal fitness does play a role in determining adaptive responses to local conditions in this sex.  相似文献   

15.
Trade‐offs between life‐history traits – such as fecundity and survival – have been demonstrated in several studies. In eusocial insects, the number of organisms and their body sizes can affect the fitness of the colony. Large‐than‐average body sizes as well as more individuals can improve a colony's thermoregulation, foraging efficiency, and fecundity. However, in bumblebees, large colonies and large body sizes depend largely on high temperatures and a large amount of food resources. Bumblebee taxa can be found in temperate and tropical regions of the world and differ markedly in their colony sizes and body sizes. Variation in colony size and body size may be explained by the costs and benefits associated with the evolutionary history of each species in a particular environment. In this study, we explored the effect of temperature and precipitation (the latter was used as an indirect indicator of food availability) on the colony and body size of twenty‐one bumblebee taxa. A comparative analysis controlling for phylogenetic effects as well as for the body size of queens, workers, and males in bumblebee taxa from temperate and tropical regions indicated that both temperature and precipitation affect colony and body size. We found a negative association between colony size and the rainiest trimester, and a positive association between the colony size and the warmest month of the year. In addition, male bumblebees tend to evolve larger body sizes in places where the rain occurs mostly in the summer and the overall temperature is warmer. Moreover, we found a negative relationship between colony size and body sizes of queens, workers, and males, suggesting potential trade‐offs in the evolution of bumblebee colony and body size.  相似文献   

16.
Aim The patterns and causes of ecogeographical body size variation in ectotherms remain controversial. In amphibians, recent genetic studies are leading to the discovery of many cryptic species. We analysed the relationships between body size and climate for a salamander (Salamandrina) that was recently separated into two sibling species, to evaluate how ignoring interspecific and intraspecific genetic structure may affect the conclusions of ecogeographical studies. We also considered the potential effects of factors acting at a local scale. Location Thirty‐four populations covering the whole range of Salamandrina, which is endemic to peninsular Italy. Methods We pooled original data and data from the literature to obtain information on the snout–vent length (SVL) of 3850 Salamandrina females; we obtained high‐resolution climatic data from the sampled localities. We used an information‐theoretic approach to evaluate the roles of climate, genetic features (mitochondrial haplogroup identity) and characteristics of aquatic oviposition sites. We repeated our analyses three times: in the first analysis we ignored genetic data on intraspecific and interspecific variation; in the second one we considered the recently discovered differences between the two sibling species; in the third one we included information on intraspecific genetic structure within Salamandrina perspicillata (for Salamandrina terdigitata the sample size was too small to perform intraspecific analyses). Results If genetic information was ignored, our analysis suggested the existence of a relationship between SVL and climatic variables, with populations of large body size in areas with high precipitation and high thermal range. If species identity was included in the analysis, the role of climatic features was much weaker. When intraspecific genetic differences were also considered, no climatic feature had an effect. In all analyses, local factors were important and explained a large proportion of the variation; populations spawning in still water had a larger body size. Main conclusions An imperfect knowledge of species boundaries, or overlooking the intraspecific genetic variation can strongly affect the results of analyses of body size variation. Furthermore, local factors can be more important than the large‐scale parameters traditionally considered, particularly in species with a small range.  相似文献   

17.
The prophage/phage region in the genome of ‘Candidatus Liberibacter asiaticus’, an alpha‐proteobacterium associated with citrus Huanglongbing, included many valuable loci for genetic diversity studies. Previously, a mosaic genomic region (CLIBASIA_05640 to CLIBASIA_05650) was characterized, and this revealed inter‐ and intracontinental variations of ‘Ca. L. asiaticus’. In this study, 267 ‘Ca. L. asiaticus’ isolates collected from eight provinces in China were analysed with a primer set flanking the same mosaic region plus downstream sequence. While most amplicon sizes ranged from 1400 to 2000 bp, an amplicon of 550 bp (S550) was found in 14 samples collected from south‐western China. Sequence analyses showed that S550 was the result of a 1033 bp deletion which included the previously known mosaic region. The genetic nature of the deletion event remains unknown. The regional restriction of S550 suggests that the ‘Ca. L. asiaticus’ population from south‐western China is different from those in eastern China. The small and easy‐to‐detect S550 amplicon could serve as a molecular marker for ‘Ca. L. asiaticus’ epidemiology.  相似文献   

18.
Ecological modeling shows that even small, gradual changes in body size in a fish population can have large effects on natural mortality, biomass, and catch. However, efforts to model the impact of climate change on fish growth have been hampered by a lack of long‐term (multidecadal) data needed to understand the effects of temperature on growth rates in natural environments. We used a combination of dendrochronology techniques and additive mixed‐effects modeling to examine the sensitivity of growth in a long‐lived (up to 70 years), endemic marine fish, the western blue groper (Achoerodus gouldii), to changes in water temperature. A multi‐decadal biochronology (1952–2003) of growth was constructed from the otoliths of 56 fish collected off the southwestern coast of Western Australia, and we tested for correlations between the mean index chronology and a range of potential environmental drivers. The chronology was significantly correlated with sea surface temperature in the region, but common variance among individuals was low. This suggests that this species has been relatively insensitive to past variations in climate. Growth increment and age data were also used in an additive mixed model to predict otolith growth and body size later this century. Although growth was relatively insensitive to changes in temperature, the model results suggested that a fish aged 20 in 2099 would have an otolith about 10% larger and a body size about 5% larger than a fish aged 20 in 1977. Our study shows that species or populations regarded as relatively insensitive to climate change could still undergo significant changes in growth rate and body size that are likely to have important effects on the productivity and yield of fisheries.  相似文献   

19.
20.
Eusocial insects offer a unique opportunity to analyze the evolution of body size differences between sexes in relation to social environment. The workers, being sterile females, are not subject to selection for reproductive function providing a natural control for parsing the effects of selection on reproductive function (i.e., sexual and fecundity selection) from other kinds of natural selection. Patterns of sexual size dimorphism (SSD) and testing of Rensch's rule controlling for phylogenetic effects were analyzed in the Meliponini or stingless bees. Theory predicts that queens may exhibit higher selection for fecundity in eusocial taxa, but contrary to this, we found mixed patterns of SSD in Meliponini. Non‐Melipona species generally have a female‐biased SSD, while all analyzed species of Melipona showed a male‐biased SSD, indicating that the direction and magnitude of the selective pressures do not operate in the same way for all members of this taxon. The phylogenetic regressions revealed that the rate of divergence has not differed between the two castes of females and the males, that is, stingless bees do not seem to follow Rensch's rule (a slope >1), adding this highly eusocial taxon to the various solitary insect taxa not conforming with it. Noteworthy, when Melipona was removed from the analysis, the phylogenetic regressions for the thorax width of males on queens had a slope significantly smaller than 1, suggesting that the evolutionary divergence has been larger in queens than males, and could be explained by stronger selection on female fecundity only in non‐Melipona species. Our results in the stingless bees question the classical explanation of female‐biased SSD via fecundity and provide a first evidence of a more complex determination of SSD in highly eusocial species. We suggest that in highly eusocial taxa, additional selection mechanisms, possibly related to individual and colonial interests, could influence the evolution of environmentally determined traits such as body size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号