共查询到12条相似文献,搜索用时 15 毫秒
1.
Plant-plant interactions are key processes shaping plant communities, but methods are lacking to accurately capture the spatial dimension of these processes. Isoscapes, i.e. spatially continuous observations of variations in stable isotope ratios, provide innovative methods to trace the spatial dimension of ecological processes at continental to global scales. Herein, we test the usefulness of nitrogen isoscapes (δ(15) N) for quantifying alterations in community functioning following exotic plant invasion. Nitrogen introduced by an exotic N(2) -fixing acacia could be accurately traced through the ecosystem and into the surrounding native vegetation by combining native species foliar δ(15) N with spatial information regarding plant location using geostatistical methods. The area impacted by N-addition was at least 3.5-fold greater than the physical area covered by the invader. Thus, downscaling isoscapes to the community level opens new frontiers in quantifying the spatial dimension of functional changes associated with invasion and in resolving the spatial component of within-community interactions. 相似文献
2.
Nicolas N. Duprey Tony X. Wang Taihun Kim Jonathan D. Cybulski Hubert B. Vonhof Paul J. Crutzen Gerald H. Haug Daniel M. Sigman Alfredo Martínez‐García David M. Baker 《Global Change Biology》2020,26(3):1338-1353
Historical coral skeleton (CS) δ18O and δ15N records were produced from samples recovered from sedimentary deposits, held in natural history museum collections, and cored into modern coral heads. These records were used to assess the influence of global warming and regional eutrophication, respectively, on the decline of coastal coral communities following the development of the Pearl River Delta (PRD) megacity, China. We find that, until 2007, ocean warming was not a major threat to coral communities in the Pearl River estuary; instead, nitrogen (N) inputs dominated impacts. The high but stable CS‐δ15N values (9‰–12‰ vs. air) observed from the mid‐Holocene until 1980 indicate that soil and stream denitrification reduced and modulated the hydrologic inputs of N, blunting the rise in coastal N sources during the early phase of the Pearl River estuary urbanization. However, an unprecedented CS‐δ15N peak was observed from 1987 to 1993 (>13‰ vs. air), concomitant to an increase of NH4+ concentration, consistent with the rapid Pearl River estuary urbanization as the main cause for this eutrophication event. We suggest that widespread discharge of domestic sewage entered directly into the estuary, preventing removal by natural denitrification hotspots. We argue that this event caused the dramatic decline of the Pearl River estuary coral communities reported from 1980 to 2000. Subsequently, the coral record shows that the implementation of improved wastewater management policies succeeded in bringing down both CS‐δ15N and NH4+ concentrations in the early 2000s. This study points to the potential importance of eutrophication over ocean warming in coral decline along urbanized coastlines and in particular in the vicinity of megacities. 相似文献
3.
Effects of N : P loading ratios on phytoplankton community composition, primary production and N fixation in a eutrophic lake 总被引:3,自引:0,他引:3
TOBIAS VREDE ASHLEY BALLANTYNE CECILIA MILLE-LINDBLOM GRETE ALGESTEN CRISTIAN GUDASZ SANDRA LINDAHL ANNA KRISTINA BRUNBERG 《Freshwater Biology》2009,54(2):331-344
- 相似文献
4.
Kirsten S. Hofmockel Anne Gallet‐Budynek Heather R. McCarthy William S. Currie Robert B. Jackson Adrien Finzi 《Global Change Biology》2011,17(11):3338-3350
Nitrogen availability in terrestrial ecosystems strongly influences plant productivity and nutrient cycling in response to increasing atmospheric carbon dioxide (CO2). Elevated CO2 has consistently stimulated forest productivity at the Duke Forest free‐air CO2 enrichment experiment throughout the decade‐long experiment. It remains unclear how the N cycle has changed with elevated CO2 to support this increased productivity. Using natural‐abundance measures of N isotopes together with an ecosystem‐scale 15N tracer experiment, we quantified the cycling of 15N in plant and soil pools under ambient and elevated CO2 over three growing seasons to determine how elevated CO2 changed N cycling between plants, soil, and microorganisms. After measuring natural‐abundance 15N differences in ambient and CO2‐fumigated plots, we applied inorganic 15N tracers and quantified the redistribution of 15N for three subsequent growing seasons. The natural abundance of leaf litter was enriched under elevated compared to ambient CO2, consistent with deeper rooting and enhanced N mineralization. After tracer application, 15N was initially retained in the organic and mineral soil horizons. Recovery of 15N in plant biomass was 3.5 ± 0.5% in the canopy, 1.7 ± 0.2% in roots and 1.7 ± 0.2% in branches. After two growing seasons, 15N recoveries in biomass and soil pools were not significantly different between CO2 treatments, despite greater total N uptake under elevated CO2. After the third growing season, 15N recovery in trees was significantly higher in elevated compared to ambient CO2. Natural‐abundance 15N and tracer results, taken together, suggest that trees growing under elevated CO2 acquired additional soil N resources to support increased plant growth. Our study provides an integrated understanding of elevated CO2 effects on N cycling in the Duke Forest and provides a basis for inferring how C and N cycling in this forest may respond to elevated CO2 beyond the decadal time scale. 相似文献
5.
The unseen invaders: introduced earthworms as drivers of change in plant communities in North American forests (a meta‐analysis) 下载免费PDF全文
Dylan Craven Madhav P. Thakur Erin K. Cameron Lee E. Frelich Robin Beauséjour Robert B. Blair Bernd Blossey James Burtis Amy Choi Andrea Dávalos Timothy J. Fahey Nicholas A. Fisichelli Kevin Gibson I. Tanya Handa Kristine Hopfensperger Scott R. Loss Victoria Nuzzo John C. Maerz Tara Sackett Bryant C. Scharenbroch Sandy M. Smith Mark Vellend Lauren G. Umek Nico Eisenhauer 《Global Change Biology》2017,23(3):1065-1074
Globally, biological invasions can have strong impacts on biodiversity as well as ecosystem functioning. While less conspicuous than introduced aboveground organisms, introduced belowground organisms may have similarly strong effects. Here, we synthesize for the first time the impacts of introduced earthworms on plant diversity and community composition in North American forests. We conducted a meta‐analysis using a total of 645 observations to quantify mean effect sizes of associations between introduced earthworm communities and plant diversity, cover of plant functional groups, and cover of native and non‐native plants. We found that plant diversity significantly declined with increasing richness of introduced earthworm ecological groups. While plant species richness or evenness did not change with earthworm invasion, our results indicate clear changes in plant community composition: cover of graminoids and non‐native plant species significantly increased, and cover of native plant species (of all functional groups) tended to decrease, with increasing earthworm biomass. Overall, these findings support the hypothesis that introduced earthworms facilitate particular plant species adapted to the abiotic conditions of earthworm‐invaded forests. Further, our study provides evidence that introduced earthworms are associated with declines in plant diversity in North American forests. Changing plant functional composition in these forests may have long‐lasting effects on ecosystem functioning. 相似文献
6.
BackgroundPlant–pollinator community diversity has been found to decrease under conditions of drought stress; however, research into the temporal dimensions of this phenomenon remains limited. In this study, we investigated the effect of seasonal drought on the temporal niche dynamics of entomophilous flowering plants in a water‐limited ecosystem. We hypothesized that closely related native and exotic plants would tend to share similar life history and that peak flowering events would therefore coincide with phylogenetic clustering in plant communities based on expected phenological responses of plant functional types to limitations in soil moisture availability.LocationGaliano Island, British Columbia, Canada.MethodsCombining methods from pollinator research and phylogenetic community ecology, we tested the influence of environmental filtering over plant community phenology across gradients of landscape disturbance and soil moisture. Floral resource availability and community structure were quantified by counts of flowering shoots. We constructed a robust phylogeny to analyze spatial and temporal variation in phylogenetic patterns across the landscape, testing the significance of the observed patterns against a randomly generated community phylogeny. Phylogenetic metrics were then regressed against factors of disturbance and soil moisture availability.ResultsCritical seasonal fluctuations in floral resources coincided with significant phylogenetic clustering in plant communities, with decreasing plant diversity observed under conditions of increasing drought stress. Exotic plant species in the Asteraceae became increasingly pervasive across the landscape, occupying a late season temporal niche in drought‐stressed environments.Main conclusionResults suggest that environmental filtering is the dominant assembly process structuring the temporal niche of plant communities in this water‐limited ecosystem. Based on these results, and trends seen elsewhere, the overall diversity of plant–pollinator communities may be expected to decline with the increasing drought stress predicted under future climate scenarios. 相似文献
7.
A. L. Liberoff C. M. Riva Rossi M. L. Fogel J. E. Ciancio M. A. Pascual 《Journal of fish biology》2013,82(4):1423-1432
The δ15N isotopic change of recently emerged rainbow trout Oncorhynchus mykiss due to diet shift from yolk sac to exogenous feeding was evaluated in a field study. The fit of a general model including both fish length and age in days as co‐variables indicates that the specific δ15N of individual fish at any given time along the ontogeny is determined by its growth trajectory. The results suggest that estimations based on fish size alone could bias data interpretation and maternal origin determinations in partially migratory salmonids. 相似文献
8.
9.
R. GUERRIERI M. MENCUCCINI L. J. SHEPPARD M. SAURER M.P. PERKS P. LEVY M. A. SUTTON M. BORGHETTI J. GRACE 《Global Change Biology》2011,17(5):1946-1962
This study aimed to evaluate the effects of long‐term repeated aerial nitrogen (N) and sulphur (S) misting over tree canopies of a Sitka spruce plantation in Scotland. We combined δ13C and δ18O in tree rings to evaluate the changes in CO2 assimilation (A) and stomatal conductance (gs) and to assess their contribution to variations in the intrinsic water‐use efficiency (WUEi, i.e., the A/gs ratio). Measurements of δ15N enabled shifts in the ecosystem N cycling following misting to be assessed. We found that: (i) N applications, with or without S, increased the ratio between A and gs in favour of A, thus supporting a fertilizer effect of added N. (ii) After the treatments ceased, the trees quickly adjusted to the reductions of N deposition, but not to the reduction in S deposition, which had a negative effect on WUEi by reducing A. This indicates that the beneficial role of N deposition may be negated in forests that previously received a high load of acid rain. (iii) δ15N in tree rings reflected the N dynamics caused by canopy retention, with the fingerprint also present in the litter, after the experiment stopped. (iv) Both our results (obtained using canopy applications) and a collection of published data (obtained using soil applications) showed that generally WUEi increased in response to an increase of N applications, with the magnitude of the changes related to soil conditions and the availability of other nutrients. The shifts observed in δ15N in tree rings also suggest that both the quantity of the applied N and its quality, mediated by processes occurring during canopy N retention, are important determinants of the interactions between N and C cycles. Stable isotopes are useful probes to understand these processes and to put the results of short‐term experiments into context. 相似文献
10.
Intra‐trophic isotopic discrimination of 15N/14N for amino acids in autotrophs: Implications for nitrogen dynamics in ecological studies 下载免费PDF全文
Yuko Takizawa Prarthana S. Dharampal Shawn A. Steffan Yoshinori Takano Naohiko Ohkouchi Yoshito Chikaraishi 《Ecology and evolution》2017,7(9):2916-2924
The differential discrimination of nitrogen isotopes (15N/14N) within amino acids in consumers and their diets has been routinely used to estimate organismal tropic position (TP). Analogous isotopic discrimination can occur within plants, particularly in organs lacking chloroplasts. Such discrimination likely arises from the catabolic deamination of amino acids, resulting in a numerical elevation of estimated TP, within newly synthesized biomass. To investigate this phenomenon, we examined the 15N/14N of amino acids (δ15NAA) in spring leaves and flowers from eight deciduous and two annual plants. These plants were classified on the basis of their time of bloom, plants that bloomed when their leaves were absent (Type I) versus plants that bloomed while leaves were already present (Type II). Based on the δ15NAA values from leaves, both plant types occupied comparable and ecologically realistic mean TPs (=1.0 ± 0.1, mean ± 1σ). However, the estimated TPs of flowers varied significantly (Type I: 2.2 ± 0.2; Type II: 1.0 ± 0.1). We hypothesize that these results can be interpreted by the following sequence of events: (1) Type I floral biomass is synthesized in absence of active photosynthesis; (2) the catabolic deamination of amino acids in particular, leaves behind 15N in the residual pool of amino acids; and (3) the incorporation of these 15N‐enriched amino acids within the biomass of Type I flowers results in the numerical elevation of the TPs. In contrast, the actively photosynthesizing Type II leaves energetically sustain the synthesis of Type II flower biomass, precluding any reliance on catabolic deamination of amino acids. Amino acids within Type II flowers are therefore isotopically comparable to the Type II leaves. These findings demonstrate the idiosyncratic nature of the δ15NAA values within autotrophic organs and have implications for interpreting trophic hierarchies using primary producers and their consumers. 相似文献
11.
The cosmopolitan herb Rumex acetosella forms persistent soil seed banks and increases in cover after fire. We investigated how the interaction between seed age and fire affects seedling growth by exposing different‐aged seeds to heat, smoke, charcoal, and ash treatments. We measured growth of germinated seedlings that were transplanted and allowed to grow for 65 days in a greenhouse. Seedlings from seeds >8 years old did not reach an appropriate radicle length for transplantation. Seedling growth decreased with increasing temperature of the heat treatment. As seed age increased, growth decreased with smoke and charcoal, and increased with ash treatment. Height was negatively correlated with seed age. Our results suggest that fire and seed age could affect demographic responses of R. acetosella seedling populations. Post‐fire recruitment could be partially favored by the positive effect of nutrient input from ash on seedling growth. High fire intensities, however, would be detrimental to seedling vigor. 相似文献
12.
Variation in stable nitrogen isotope ratios (15N) was assessed for plants comprising two wetland communities, a bog-fen system and a flood plain, in central Japan. 15N of 12 species from the bog-fen system and six species from the flood plain were remarkably variable, ranging from –5.9 to +1.1 and from +3.1 to +8.7, respectively. Phragmites australis exhibited the highest 15N value at both sites. Rooting depth also differed greatly with plant species, ranging from 5cm to over 200cm in the bog-fen system. There was a tendency for plants having deeper root systems to exhibit higher 15N values; plant 15N was positively associated with rooting depth. Moreover, an increasing gradient of peat 15N was found along with depth. This evidence, together with the fact that inorganic nitrogen was depleted under a deep-rooted Phragmites australis stand, strongly suggests that deep-rooted plants actually absorb nitrogen from the deep peat layer. Thus, we successfully demonstrated the diverse traits of nitrogen nutrition among mire plants using stable isotope analysis. The ecological significance of deep rooting in mire plants is that it enables those plants to monopolize nutrients in deep substratum layers. This advantage should compensate for any consequential structural and/or physiological costs. Good evidence of the benefits of deep rooting is provided by the fact that Phragmites australis dominates as a tall mire grass. 相似文献