首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fire severity is thought to be an important determinant of landscape patterns of post‐fire regeneration, yet there have been few studies of the effects of variation in fire severity at landscape scales on floristic diversity and composition, and none within alpine vegetation. Understanding how fire severity affects alpine vegetation is important because fire is relatively infrequent in alpine environments. Globally, alpine ecosystems are at risk from climate change, which, in addition to warming, is likely to increase the severity and frequency of fire in south‐eastern Australia. Here we examine the effects of variation in fire severity on plant diversity and vegetation composition, 5 years after the widespread fires of 2003. We used floristic data from two wide‐spread vegetation types on the Bogong High Plains: open heathland and closed heathland. Three alternative models were tested relating variation in plant community attributes (e.g. diversity, ground cover of dominant species, amount of bare ground) to variation in fire severity. The models were (i) ‘linear’, attributes vary linearly with fire severity; (ii) ‘intermediate disturbance’, attributes are highest at intermediate fire severity and lowest at both low‐ and high‐severity; and (iii) ‘null’, attributes are unaffected by fire severity. In both heathlands, there were few differences in floristic diversity, cover of dominant species and community composition, across the strong fire severity gradient. The null model was most supported in the vast majority of cases, with only limited support for either the linear and intermediate disturbance models. Our data indicate that in both heathlands, vegetation attributes in burnt vegetation were converging towards that of the unburnt state. We conclude that fire severity had little impact on post‐fire regeneration, and that both closed and open alpine heathlands are resilient to variation in fire severity during landscape scale fires.  相似文献   

2.
The primary goal of restoration is to create self‐sustaining ecological communities that are resilient to periodic disturbance. Currently, little is known about how restored communities respond to disturbance events such as fire and how this response compares to remnant vegetation. Following the 2003 fires in south‐eastern Australia we examined the post‐fire response of revegetation plantings and compared this to remnant vegetation. Ten burnt and 10 unburnt (control) sites were assessed for each of three types of vegetation (direct seeding revegetation, revegetation using nursery seedlings (tubestock) and remnant woodland). Sixty sampling sites were surveyed 6 months after fire to quantify the initial survival of mid‐ and overstorey plant species in each type of vegetation. Three and 5 years after fire all sites were resurveyed to assess vegetation structure, species diversity and vigour, as well as indicators of soil function. Overall, revegetation showed high (>60%) post‐fire survival, but this varied among species depending on regeneration strategy (obligate seeder or resprouter). The native ground cover, mid‐ and overstorey in both types of plantings showed rapid recovery of vegetation structure and cover within 3 years of fire. This recovery was similar to the burnt remnant woodlands. Non‐native (exotic) ground cover initially increased after fire, but was no different in burnt and unburnt sites 5 years after fire. Fire had no effect on species richness, but burnt direct seeding sites had reduced species diversity (Simpson's Diversity Index) while diversity was higher in burnt remnant woodlands. Indices of soil function in all types of vegetation had recovered to levels found in unburnt sites 5 years after fire. These results indicate that even young revegetation (stands <10 years old) showed substantial recovery from disturbance by fire. This suggests that revegetation can provide an important basis for restoring woodland communities in the fire‐prone Australian environment.  相似文献   

3.
With rapid global change, the frequency and severity of extreme disturbance events are increasing worldwide. The ability of animal populations to survive these stochastic events depends on how individual animals respond to their altered environments, yet our understanding of the immediate and short‐term behavioral responses of animals to acute disturbances remains poor. We focused on animal behavioral responses to the environmental disturbance created by megafire. Specifically, we explored the effects of the 2018 Mendocino Complex Fire in northern California, USA, on the behavior and body condition of black‐tailed deer (Odocoileus hemionus columbianus). We predicted that deer would be displaced by the disturbance or experience high mortality post‐fire if they stayed in the burn area. We used data from GPS collars on 18 individual deer to quantify patterns of home range use, movement, and habitat selection before and after the fire. We assessed changes in body condition using images from a camera trap grid. The fire burned through half of the study area, facilitating a comparison between deer in burned and unburned areas. Despite a dramatic reduction in vegetation in burned areas, deer showed high site fidelity to pre‐fire home ranges, returning within hours of the fire. However, mean home range size doubled after the fire and corresponded to increased daily activity in a severely resource‐depleted environment. Within their home ranges, deer also selected strongly for patches of surviving vegetation and woodland habitat, as these areas provided forage and cover in an otherwise desolate landscape. Deer body condition significantly decreased after the fire, likely as a result of a reduction in forage within their home ranges, but all collared deer survived for the duration of the study. Understanding the ways in which large mammals respond to disturbances such as wildfire is increasingly important as the extent and severity of such events increases across the world. While many animals are adapted to disturbance regimes, species that exhibit high site fidelity or otherwise fixed behavioral strategies may struggle to cope with increased climate instability and associated extreme disturbance events.  相似文献   

4.
Scale‐dependency of pattern and process is well‐understood for many ecological communities; however, the influence of spatial scale (sampling grain) in detecting temporal change in communities is less well‐understood. The temperate lowland heathlands of south‐east Australia are one of the most fire‐prone ecosystems on earth. Despite the extensive literature documenting the effect of time since fire on heathlands, we know little about how sampling grain influences trends in vegetation variables over time, and whether these trends are scale‐dependent. Using 3500 ha of heathland in the Gippsland Lakes Coastal Park, south‐east Australia, we investigated how above‐ground species composition and diversity, and trends in these variables with increasing time since fire, were influenced by sampling grain (1 m2, 10 m2, 100 m2, 900 m2, 1 ha, 4 ha). Sampling grain influenced patterns detected in vegetation variables and in some instances, significantly affected their relationship with time since fire. Richness decreased with time since fire, with mean richness decreasing at three of the four grains, while total richness decreased at half of the sampled grains. Evenness (J) decreased with increasing time since fire for all grains except 1 m2. The decline in diversity (H) with time since fire appeared to be independent of scale, as all grains decreased significantly with increasing time since fire. Community heterogeneity demonstrated a weak response to time since fire across most grains. Changes in composition among young (0–6 years since fire), intermediate (9–19 years) and old (23–27 years) sites were dependent on sampling grain, with all grains exhibiting significant differences in composition, apart from the 1 m2 grain and the 100 m2 grain (presence/absence data). Overall, species composition, richness, evenness, diversity and community heterogeneity were dependent on the scale at which the vegetation was sampled. In addition, trends in many of these vegetation variables with increasing time since fire were scale‐dependent. This work provides strong evidence that sampling at multiple grains contributes substantially to understanding pattern and process in heathlands.  相似文献   

5.
Abstract The savannas of South America support a relatively diverse ant fauna, but little is known about the factors that influence the structure and dynamics of these assemblages. In 1998 and 2002, we surveyed the ground‐dwelling ant fauna and the fauna associated with the woody vegetation (using baits and direct sampling) from an Amazonian savanna. The aim was to evaluate the influence of vegetation structure, disturbance by fire and dominant ants on patterns of ant species richness and composition. Variations in the incidence of fires among our 39 survey plots had no or only limited influence on these patterns. In contrast, spatial variations in tree cover and cover by tall grasses (mostly Trachypogon plumosus), significantly affected ant species composition. Part of the variation in species richness among the study plots correlated with variations in the incidence of a dominant species (Solenopsis substituta) at baits. Ant species richness and composition also varied through time, possibly as an indirect effect of changes in vegetation cover. In many plots, and independently of disturbance by fire, there was a major increase in cover by tall grasses, which occupied areas formerly devoid of vegetation. Temporal changes in vegetation did not directly explain the observed increase in the number of ant species per plot. However, the incidence of S. substituta at baits declined sharply in 2002, especially in plots where changes in vegetation cover were more dramatic, and that decline was correlated with an increase in the number of ground‐dwelling species, a greater turnover of bait‐recruiting species and the appearance of the little fire ant Wasmannia auropunctata. The extent to which these changes in fact resulted from the relaxation of dominance by S. substituta is not clear. However, our results strongly suggest that the ant fauna of Amazonian savannas is affected directly and indirectly by the structure of the vegetation.  相似文献   

6.
Aim We aimed to describe the large‐scale patterns in population density of roe deer Caprelous capreolus in Europe and to determine the factors shaping variation in their abundance. Location Europe. Methods We collated data on roe deer population density from 72 localities spanning 25° latitude and 48° longitude and analysed them in relation to a range of environmental factors: vegetation productivity (approximated by the fraction of photosynthetically active radiation) and forest cover as proxies for food supply, winter severity, summer drought and presence or absence of large predators (wolf, Canis lupus, and Eurasian lynx, Lynx lynx), hunter harvest and a competitor (red deer, Cervus elaphus). Results Roe deer abundance increased with the overall productivity of vegetation cover and with lower forest cover (sparser forest cover means that a higher proportion of overall plant productivity is allocated to ground vegetation and thus is available to roe deer). The effect of large predators was relatively weak in highly productive environments and in regions with mild climate, but increased markedly in regions with low vegetation productivity and harsh winters. Other potentially limiting factors (hunting, summer drought and competition with red deer) had no significant impact on roe deer abundance. Main conclusions The analyses revealed the combined effect of bottom‐up and top‐down control on roe deer: on a biogeographical scale, population abundance of roe deer has been shaped by food‐related factors and large predators, with additive effects of the two species of predators. The results have implications for management of roe deer populations in Europe. First, an increase in roe deer abundance can be expected as environmental productivity increases due to climate change. Secondly, recovery plans for large carnivores should take environmental productivity and winter severity into account when predicting their impact on prey.  相似文献   

7.
Using an exclosure experiment in managed woodland in eastern England, we examined species and guild responses to vegetation growth and its modification by deer herbivory, contrasting winter and the breeding season over 4 years. Species and guild responses, in terms of seasonal presence recorded by multiple point counts, were examined using generalized linear mixed models. Several guilds or migrant species responded positively to deer exclusion and none responded negatively. The shrub‐layer foraging guild was recorded less frequently in older and browsed vegetation, in both winter and spring. Exclusion of deer also increased the occurrence of ground‐foraging species in both seasons, although these species showed no strong response to vegetation age. The canopy‐foraging guild was unaffected by deer exclusion or vegetation age in either season. There was seasonal variation in the responses of some individual resident species, including a significantly lower occurrence of Eurasian Wren Troglodytes troglodytes and European Robin Erithacus rubecula in browsed vegetation in winter, but no effect of browsing on those species in spring. Ordinations of bird assemblage compositions also revealed seasonal differences in response to gradients of vegetation structure generated by canopy‐closure and exclusion of deer. Positive impacts of deer exclusion in winter are probably linked to reduced thermal cover and predator protection afforded by browsed vegetation, whereas species that responded positively in spring were also dependent on a dense understorey for nesting. The effects on birds of vegetation development and its modification by herbivores extend beyond breeding assemblages, with different mechanisms implicated and different species affected in winter.  相似文献   

8.
Abstract We have begun a long-term ecological research project to address questions about the impact of multiple disturbances on the species richness of communities and whether multiple disturbances are additive or interactive. A protected water catchment area was chosen, which is subjected to fires, sand mining and clearing, and for which detailed records are available. The study area, at Tomago (32°52′S, 151°45′E), has forest, woodland, shrubland and swamp on a sand substrate, with the vegetated dunes forming part of a coastal embayment. Forty-four sites were located in forested areas that had undergone disturbance by either fire, sand mining or clearing. Sites of each disturbance type were grouped into four age classes: less than 1 year since disturbance, nominally 1991; 5 years, nominally 1986; 11 years, nominally 1980; and 17 years, nominally 1974. A set of burned sites, with the time of the last fire matched to the times of the other disturbances, was used as the control response. In this paper we describe the study area and sites, then examine the effects of each single disturbance on vegetation structure. Canopy cover increased with time and type of disturbance, with 17 year old cleared or mined sites similar to the cover of 11 year old burned sites. In the first two years after disturbance, burned sites had significantly more understorey vegetation than cleared or mined sites, but by 5 years all three were similar. The data presented here show that regeneration of mined sites at Tomago is substantially slower than regeneration following disturbance by fire, with the regeneration of cleared sites intermediate but closer to mining than fire. After 17 years regeneration, cleared and sand mined sites had not returned to the vegetation structure of the pre-disturbance state. Understorey height and the amount of vegetation on cleared or mined sites have not achieved the levels in the original forest, although canopy cover did seem to have reached pre-disturbance levels. Current rehabilitation techniques are more sophisticated than those used 17 years ago and continued monitoring of sites currently being rehabilitated may show a faster return to pre-disturbance states. Having established the hierarchy and nature of the response to each single disturbance here, we are now in a position to investigate the impact of multiple disturbances.  相似文献   

9.
The Mountain Renosterveld vegetation of the Roggeveld is an escarpment type renosterveld showing strong karroid affinities. Fire plays an important role as a landscape scale disturbance that shapes plant communities in this vegetation type, however, post-fire succession has never before been documented for renosterveld vegetation. A study was therefore conducted in the northern Roggeveld to improve our understanding of the recovery of the vegetation following fire. The natural vegetation recovery was analysed using line transect data accumulated at five different sites over a ten year period. This paper reports on the post-fire vegetation trends with respect to changes in species composition, species richness, life form composition and life form richness. Vegetation cover began to re-establish within the first nine months following the fire, and remained at a high level from years 3 to 10. At the first survey the species richness varied from 13 to 17 species, with the highest species richness (14 to 31 species) generally encountered at each transect after three years. The highest Shannon index values were generally found within the first three years and the lowest Shannon index values were found in years 9 and 10. In all cases the Principal Co-ordinate Analysis ordinations of the species composition data indicated a clear separation in the species composition between the first two years (years 1 and 2) following the fire and the remaining years (year 3 to 10). This study also supports the ‘initial floristic composition’ model of Egler (1954) in that all or the majority of species encountered during the succession were already present at the beginning of the recovery phase and there was a rapid re-establishment of the initial plant community.  相似文献   

10.
Australia has a range of native and introduced large herbivores that could affect the abundance of small mammals through direct and indirect effects. Here we study the relationship between occurrence of the introduced rusa deer (Rusa timorensis) and the native swamp wallaby (Wallabia bicolor), and the abundance of four species of native small mammals in coastal heath vegetation with varying fire history. The abundance of two species, the brown antechinus (Antechinus stuartii) and bush rat (Rattus fuscipes), was related to occurrence of large herbivores and was dependent also on fire history. Abundance of swamp rats (R. lutreolus) and New Holland mice (Pseudomys novaehollandiae) was not related to the occurrence of any of the large herbivores, and did not depend on fire history. At sites burned within the last 9 years, captures of brown antechinus were negatively related to both deer and wallaby occurrence, and captures of bush rats were negatively related to deer occurrence. However, at sites that burned more than 15 years ago, captures of brown antechinus and bush rats were not related to large herbivore occurrence. Overall there was either no relationship, or a negative one, between small mammals and the large herbivores. This mensurative study has demonstrated relationships between deer and wallabies and small mammals, with fire as an additional important factor. From the results of the current study we put forward a series of hypotheses that need to be tested by future experiments.  相似文献   

11.
The influence of management and nutrient availability on the vegetation dynamics of heathlands characterised by Calluna vulgaris and Erica tetralix were studied in three mountain sites in Northern Spain. A total of 90 plots (1 m2 each) received different combinations of cutting and twice the estimated background atmospheric deposition of nitrogen (56 kg ha−1 yr−1). One of the two dominant ericaceous species was selectively cut by hand at ground level and their regeneration compared in the presence or absence of the other. The results after 2 years showed significant effects of the fertiliser on the vegetation cover, mainly by favouring perennial herbaceous species. There were less noteworthy effects on the number of flowers and on the annual growth of the ericaceous species. It is concluded that, in the short term, increased nutrients alone, at twice the estimated current atmospheric deposition for the area, will not alter significantly the composition of the mountain heathlands. However, once the stands reach the mature phase, the capacity of the community to regenerate after a severe disturbance diminishes. A drastic impact, such as cutting may not result in re-growth of the same shrub species but in replacement by herbaceous species, which will also benefit from the increased nutrients.  相似文献   

12.
Fire–vegetation feedbacks potentially maintain global savanna and forest distributions. Accordingly, vegetation in savanna and forest ecosystems should have differential responses to fire, but fire response data for herbaceous vegetation have yet to be synthesized across biomes. Here, we examined herbaceous vegetation responses to experimental fire at 30 sites spanning four continents. Across a variety of metrics, herbaceous vegetation increased in abundance where fire was applied, with larger responses to fire in wetter and in cooler and/or less seasonal systems. Compared to forests, savannas were associated with a 4.8 (±0.4) times larger difference in herbaceous vegetation abundance for burned versus unburned plots. In particular, grass cover decreased with fire exclusion in savannas, largely via decreases in C4 grass cover, whereas changes in fire frequency had a relatively weak effect on grass cover in forests. These differential responses underscore the importance of fire for maintaining the vegetation structure of savannas and forests.  相似文献   

13.
《新西兰生态学杂志》2011,30(2):191-207
Introduced mammalian herbivores are changing the structure and composition of New Zealand’s forest ecosystems and may modify forest succession after natural disturbances. We studied how introduced ungulates (red deer and feral pigs) and rodents (rats and house mice) affected the rate of recovery (i.e. the engineering resilience) of the forest understorey following artificial disturbance. We imposed disturbances by clearing understorey vegetation dominated by Blechnum ferns in forests on relatively fertile alluvium and elevated infertile marine terraces, and recorded recovery of vegetation (seedling establishment, species composition, cover and volume) in herbivore exclosures and controls. Seedlings quickly established on cleared plots: after 2 years, numbers of woody seedlings and ground cover of vascular plants relative to initial values were similar on cleared and uncleared treatments. Volume of plant biomass <2 m remained low on cleared subplots. Ungulates significantly reduced the re-establishment of woody seedlings ≥ 10 cm tall: only one seedling reached this height outside exclosures, compared with 29 seedlings inside. The number of seedlings <10 cm tall, expressed relative to numbers present pre-clearing, was not significantly affected by ungulates. The species composition of regenerating vegetation was more similar (Jaccard index) to pre-clearing understorey vegetation inside ungulate exclosures than outside. No consistent effect of rodents (primarily house mice) on seedling establishment or species composition was detected after 2 years, and rodent exclosures did not significantly affect survival of seedlings (Griselinia littoralis and Aristotelia serrata) planted as an index of rodent herbivory pressure. No significant differences in vegetation recovery were apparent between forest types. Rapid seedling recruitment in the absence of understorey vegetation and the presence of herbivores provided evidence that understorey vegetation competes with seedlings for light. Ungulate effects were consistent with other experiments that showed herbivores reduced the rate and altered the trajectory of vegetation regrowth after disturbance.  相似文献   

14.
A principal challenge to restoring tree‐invaded grasslands is the removal of woody biomass. Burning of slash piles to reduce woody residues from forest restoration practices generates intense, prolonged heating, with adverse effects on soils and vegetation. In this study, we examined vegetation responses to pile burning following tree removal from conifer‐invaded grasslands of the Oregon Cascades. We quantified the longevity and magnitude of fire effects by comparing ground conditions and the cover and richness of plant species in burn‐scar centers (higher‐intensity fire) and edges (lower‐intensity fire) with adjacent unburned vegetation 7 years after treatment. We interpreted patterns of recovery through the responses of species with differing growth forms, habitat affinities, and clonality. Cover of bare ground remained elevated at the centers, but not at the edges of scars; however, much of this effect was due to gopher disturbance. Total plant cover, consisting entirely of native species, was comparable in and adjacent to scars. However, richness remained depressed at the scar centers. Cover of grass, meadow, and non‐clonal species was comparable in and adjacent to scars, but cover of forb, sedge, residual forest, and clonal species was reduced at the centers. Although scar centers had a simpler community structure (fewer but more abundant species) than the adjacent vegetation, they remained free of exotics and recovered quickly, aided by the soil‐disturbing activities of gophers and the regenerative traits of native, disturbance‐adapted species. Pile burning can be a viable and efficient approach to fuel reduction in the absence of exotics.  相似文献   

15.
Fire is a key ecological process influencing the population dynamics of small mammals. Whilst shifting competitive advantage amongst small mammal species following a single fire event is well‐documented, there has been little investigation of the potential influence of fire frequency on small mammal interspecific interactions. In this study, we investigated the effect of fire frequency on the abundance of two small dasyurid mammals, Antechinus stuartii and A. flavipes, which occur sympatrically in some parts of their range. The two antechinus species are known to have different habitat preferences, so it is possible that fire regimes may promote their coexistence in areas of sympatry by altering vegetation structure. To investigate this possibility, we estimated the abundance of both species using replicate sites which differed in the number of times burnt (1–4) during the last four decades, but with identical time‐since‐fire. Proportionally, we captured greater numbers of A. stuartii in less frequently burnt sites and greater numbers of A. flavipes in more‐frequently burnt sites. Hence, fire may mediate niche‐separation between these two species. To clarify further this pattern of response to fire frequency, we investigated which structural habitat variables differed between fire frequencies, and compared antechinus abundances with structural vegetation characteristics. We found a trend for lower ground cover density under higher fire frequencies. This offers one potential explanation of the patterns of abundance that we observed. Our study provided insights into the complexities of small mammal responses to fire, and strongly suggests that fire could mediate competitive interactions between species.  相似文献   

16.
Aims To assess the potential distribution of an obligate seeder and active pyrophyte, Cistus salviifolius, a vulnerable species in the Swiss Red List; to derive scenarios by changing the fire return interval; and to discuss the results from a conservation perspective. A more general aim is to assess the impact of fire as a natural factor influencing the vegetation of the southern slopes of the Alps. Location Alps, southern Switzerland. Methods Presence–absence data to fit the model were obtained from the most recent field mapping of C. salviifolius. The quantitative environmental predictors used in this study include topographic, climatic and disturbance (fire) predictors. Models were fitted by logistic regression and evaluated by jackknife and bootstrap approaches. Changes in fire regime were simulated by increasing the time‐return interval of fire (simulating longer periods without fire). Two scenarios were considered: no fire in the past 15 years; or in the past 35 years. Results Rock cover, slope, topographic position, potential evapotranspiration and time elapsed since the last fire were selected in the final model. The Nagelkerke R2 of the model for C. salviifolius was 0.57 and the Jackknife area under the curve evaluation was 0.89. The bootstrap evaluation revealed model robustness. By increasing the return interval of fire by either up to 15 years, or 35 years, the modelled C. salviifolius population declined by 30–40%, respectively. Main conclusions Although fire plays a significant role, topography and rock cover appear to be the most important predictors, suggesting that the distribution of C. salviifolius in the southern Swiss Alps is closely related to the availability of supposedly competition‐free sites, such as emerging bedrock, ridge locations or steep slopes. Fire is more likely to play a secondary role in allowing C. salviifolius to extend its occurrence temporarily, by increasing germination rates and reducing the competition from surrounding vegetation. To maintain a viable dormant seed bank for C. salviifolius, conservation managers should consider carrying out vegetation clearing and managing wild fire propagation to reduce competition and ensure sufficient recruitment for this species.  相似文献   

17.
本文对重引入后野放于上海滨江森林公园的獐进行无线电遥测跟踪研究,确定其在公园内286个斑块内的有效活动位点,分析其活动范围,并通过Vanderloeg选择系数和Scavia选择指数分析其栖息地选择。结果显示,以最小凸多边形法得到的重引入獐的活动范围面积从 24.94 hm2 至 83.24 hm2 不等,均值为 58.74 hm2;以固定核空间法得到的面积从 11.23 hm2 至 41.52 hm2 不等,均值为 26.93 hm2。野放后的獐偏好选择面积为 1-2 hm2 的较大斑块和距离水源较远的栖息地。在植被因子的选择上,野放后的獐倾向选择野草地为主、乔木和灌木密度适中、乔木高度10-15m、草本高度 30cm 以上的栖息地,避免选择乔木高度低于 5m、草本高度过低(<5cm)和无草本植物分布的栖息地。建议在今后重引入项目实施中,在郊野公园或者其它城市绿林地内为獐营造植被盖度和密度适中、隐蔽性良好、斑块面积适中的栖息地,并补种高草本,促进物种重引入成功。  相似文献   

18.
The presence of extra‐local invaders, such as the southern California mule deer (Odocoileus hemionus) on Santa Catalina Island, may contribute to more selective and insidious effects within the unique ecosystems that have evolved in their absence. Studies at the species level may detect effects not noticed in broader, community level vegetation monitoring or help tease apart differences in the level of effect among the various ecological components of an invaded system. In this initial study, we measured the impacts of herbivory by mule deer, a species native to analogous habitats on the adjacent mainland, on size and seed production success for Crocanthemum greenei (island rush‐rose), a federally listed sub‐shrub that is not present on mainland California. We found deer exclusion resulted in an overall increase in stem measurement of 18.8 cm. Exclosure populations exhibited complete seed production success, whereas control populations showed significantly reduced success and exhibited complete failure within 58% of populations. These results show that the introduced mule deer on Santa Catalina Island are negatively affecting a federally threatened plant species. This strongly implies that the current deer management strategy is insufficient, if one of its goals is biodiversity and endemic species conservation.  相似文献   

19.

Question

Do the effects of fire regimes on plant species richness and composition differ among floristically similar vegetation types?

Location

Booderee National Park, south‐eastern Australia.

Methods

We completed floristic surveys of 87 sites in Sydney Coastal dry sclerophyll vegetation, where fire history records have been maintained for over 55 years. We tested for associations between different aspects of the recent fire history and plant species richness and composition, and whether these relationships were consistent among structurally defined forest, woodland and heath vegetation types.

Results

The relationship between fire regime variables and plant species richness and composition differed among vegetation types, despite the three vegetation types having similar species pools. Fire frequency was positively related to species richness in woodland, negatively related to species richness in heath, and unrelated to species richness in forest. These different relationships were explained by differences in the associations between fire history and species traits among vegetation types. The negative relationship between fire frequency and species richness in heath vegetation was underpinned by reduced occurrence of resprouting species at high fire frequency sites (more than four fires in 55 years). However, in forest and woodland vegetation, resprouting species were not negatively associated with fire frequency.

Conclusions

We hypothesize that differing relationships among vegetation types were underpinned by differences in fire behaviour, and/or biotic and abiotic conditions, leading to differences in plant species mortality and post‐fire recovery among vegetation types. Our findings suggest that even when there is a high proportion of shared species between vegetation types, fires can have very different effects on vegetation communities, depending on the structural vegetation type. Both research and management of fire regimes may therefore benefit from considering vegetation types as separate management units.  相似文献   

20.
Large wild ungulates are a major biotic factor shaping plant communities. They influence species abundance and occurrence directly by herbivory and plant dispersal, or indirectly by modifying plant‐plant interactions and through soil disturbance. In forest ecosystems, researchers’ attention has been mainly focused on deer overabundance. Far less is known about the effects on understory plant dynamics and diversity of wild ungulates where their abundance is maintained at lower levels to mitigate impacts on tree regeneration. We used vegetation data collected over 10 years on 82 pairs of exclosure (excluding ungulates) and control plots located in a nation‐wide forest monitoring network (Renecofor). We report the effects of ungulate exclusion on (i) plant species richness and ecological characteristics, (ii) and cover percentage of herbaceous and shrub layers. We also analyzed the response of these variables along gradients of ungulate abundance, based on hunting statistics, for wild boar (Sus scrofa), red deer (Cervus elaphus) and roe deer (Capreolus capreolus). Outside the exclosures, forest ungulates maintained higher species richness in the herbaceous layer (+15%), while the shrub layer was 17% less rich, and the plant communities became more light‐demanding. Inside the exclosures, shrub cover increased, often to the benefit of bramble (Rubus fruticosus agg.). Ungulates tend to favour ruderal, hemerobic, epizoochorous and non‐forest species. Among plots, the magnitude of vegetation changes was proportional to deer abundance. We conclude that ungulates, through the control of the shrub layer, indirectly increase herbaceous plant species richness by increasing light reaching the ground. However, this increase is detrimental to the peculiarity of forest plant communities and contributes to a landscape‐level biotic homogenization. Even at population density levels considered to be harmless for overall plant species richness, ungulates remain a conservation issue for plant community composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号