首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Calcium has been demonstrated to ameliorate the inhibitory effects of high salinity on nutrient transport in plants. Time-course experiments were carried out to study the effect of high Ca2+ (6 mM) supply under saline conditions (100 mM NaCl) on the regulation of intracellular pH in excised barley (Hordeum vulgare L. cv Arivat) roots. In-vivo 31P-nuclear magnetic resonance measurements showed an alkalinization of the vacuolar pH after salt treatment. In the presence of high Ca2+ the extent of salt-induced vacuolar alkalinization was lower. High Ca2+ partially mitigated the salt-induced increase in Na+ content and decrease in K+ content of the root. The pattern of change in the vacuolar pH paralleled that of Na+ accumulation in the root. This correlation is consistent with the involvement of a tonoplast Na+/H+ antiporter in Na+ transport and the role of Ca2+ in Na+ uptake. High salt appeared to decrease the Pi content of the vacuole while high Ca2+ increased this content irrespective of the salt treatment.Abbreviation NMR nuclear magnetic resonance We are grateful to Dr. T.W.M. Fan and R.M. Highasi (University of California, Davis, USA) for their valuable help with the NMR experiments. We also thank Dr. J. Norlyn for his technical assistance. V. Martinez was supported by a Fulbright fellowship.  相似文献   

2.
Hubert Felle 《Planta》1988,176(2):248-255
In cells of Zea mays (root hairs, coleoptiles) and Riccia fluitans (rhizoids, thalli) intracellular Ca2+ and pH have been measured with double-barrelled microelectrodes. Free Ca2+ activities of 109–187 nM (Riccia rhizoids), 94–160 nM (Riccia thalli), 145–231 nM (Zea root hairs), 84–143 nM (Zea coleoptiles) were found, and therefore identified as cytoplasmic. In a few cases (Riccia rhizoids), free Ca2+ was in the lower millimolar range (2.3±0.8 mM). A change in external Ca2+ from 0.1 to 10 mM caused an initial and short transient increase in cytoplasmic free Ca2+ which finally levelled off at about 0.2 pCa unit below the control, whereas in the presence of cyanide the Ca2+ activity returned to the control level. It is suggested that this behaviour is indicative of active cellular Ca2+ regulation, and since it is energy-dependent, may involve a Ca2+-ATPase. Acidification of the cytoplasmic pH and alkalinization of the vacuolar pH lead to a simultaneous increase in cytoplasmic free Ca2+, while alkalinization of pHc decreased the Ca2+ activity. Since this is true for such remote organisms as Riccia and Zea, it may be concluded that regulation of cytoplasmic pH and free Ca2+ are interrelated. It is further concluded that double-barrelled microelectrodes are useful tools for investigations of intracellular ion activities in plant cells.Symbols and abbreviations m, m membrane potential difference, changes thereof - PVC polyvinylchloride  相似文献   

3.
During exposure to soft water, acidified to pH 4.0, the haemolymph concentrations of Na+, K+, and Cl decreased whereas the Ca2+ concentration fluctuated in Astacus astacus. The haemocyte content of K+ decreased from 9% to 2% of the total haemolymph K+ content after exposure to pH 3.7 for 3 days. Within 14 days, 250 µg Al3+ l–1, as Al2(SO4)3 at pH 5.0, reduced the haemolymph Na+ content in Astacus astacus and Pacifastacus leniusculus, however, the effects were less pronounced than earlier reported for fish. Disturbed ion regulation, mainly depending on low pH, is thought to contribute to the absence of these species in acid waters.  相似文献   

4.
The extent of phosphate uptake measured by the relative changes in cytoplasmic Pi, vacuolar Pi, ATP, glucose-6-phosphate, and UDPG was determined using in vivo31P nuclear magnetic resonance spectroscopy. Maize (Zea mays) root tips were perfused with a solution containing 0.5 or 1.0 millimolar phosphate at pH ~6.5 under different conditions. In the aerated state, phosphate uptake resulted in a significant increase (>80%) in vacuolar Pi, but cytoplasmic Pi only transiently increased by 10%. Under N2, the cytoplasmic Pi increased ~150% which could be attributed to a large extent to the breakdown of ATP, sugar phosphates and UDPG. Vacuolar Pi increased but only to the extent of ~10% of that seen under aerobic conditions. 2-deoxyglucose pretreatment was utilized to decrease the level of cytoplasmic Pi. When pretreated with the 2-deoxyglucose, the excised maize roots absorbed phosphate from the perfusate with a significant increase in the cytoplasmic Pi. The increase could only be traced to external phosphate since the concentrations of other phosphorus containing species remained constant during the uptake period. With 2-deoxyglucose pretreatment, phosphate uptake under anaerobic conditions was substantially inhibited with only the vacuolar phosphate showing a slight increase. When roots were treated with carbonyl cyanide m-chlorophenyl hydrazone, no detectable Pi uptake was found. These results were used to propose a H+-ATPase related transport mechanism for phosphate uptake and compartmentation in corn root cells.  相似文献   

5.
The effects of aluminum on the concentration-dependent kinetics of Ca2+ uptake were studied in two winter wheat (Triticum aestivum L.) cultivars, Al-tolerant Atlas 66 and Al-sensitive Scout 66. Seedlings were grown in 100 M CaCl2 solution (pH 4.5) for 3 d. Subsequently, net Ca2+ fluxes in intact roots were measured using a highly sensitive technique, employing a vibrating Ca2+-selective microelectrode. The kinetics of Ca2+ uptake into cells of the root apex, for external Ca2+ concentrations from 20 to 300 M, were found to be quite similar for both cultivars in the absence of external Al; Ca2+ transport could be described by Michaelis-Menten kinetics. When roots were exposed to solutions containing levels of Al that were toxic to Al-sensitive Scout 66 but not to Atlas 66 (5 to 20 M total Al), a strong correlation was observed between Al toxicity and Al-induced inhibition of Ca2+ absorption by root apices. For Scout 66, exposure to Al immediately and dramatically inhibited Ca2+ uptake over the entire Ca2+ concentration range used for these experiments. Kinetic analyses of the Al-Ca interactions in Scout 66 roots were consistent with competitive inhibition of Ca2+ uptake by Al. For example, exposure of Scout 66 roots to increasing Al levels (from 0 to 10 M) caused the K m for Ca2+ uptake to increase with each rise in Al concentration, from approx. 100 M in the absence of Al to approx. 300 M in the presence of 10 M Al, while having no effect on the V max. The same Al exposures had little effect on the kinetics of Ca2+ uptake into roots of Atlas 66. The results of this study indicate that Al disruption of Ca2+ transport at the root apex may play an important role in the mechanisms of Al toxicity in Al-sensitive wheat cultivars, and that differential Al tolerance may be associated with the ability of Ca2+-transport systems in cells of the root apex to resist disruption by potentially toxic levels of Al in the soil solution.We would like to thank Dr. Lionel F. Jaffe, Director of the National Vibrating Probe Facility, Marine Biological Laboratory, Woods Hole, Mass., USA, for making his calcium-selective vibrating-mi-croelectrode system available for a portion of this work. The research presented here was supported in part by USDA/NRI Competitive Grant number 91-37100-6630 to Leon Kochian. Contribution from the USDA-ARS, U.S. Plant, Soil and Nutrition Laboratory, Cornell University, Ithaca, N.Y. This research was part of the program of the Center for Root-Soil Research, Cornell University, Ithaca, N.Y. Department of Soil, Crop and Atmosphere Science, paper No. 1741.  相似文献   

6.
Fluorescence resonance energy transfer (FRET)-sensitized emission imaging of Arabidopsis thaliana roots expressing the yellow cameleon 3.60 calcium (Ca2+) reporter showed that the concentration of calcium in the cytosol ([Ca2+]cyt) increased upon aluminum ion (Al3+) treatment in root cells from the transition zone within seconds. The Al3+-induced [Ca2+]cyt transients were biphasic and were modified by Ca2+ channel blockers and by an antagonist of neuronal glutamate receptors, 2-amino-5-phosphonopentanoate (AP-5), and by the anion channel blocker, 5-nitro-2-(3′-phenylpropyl-amino) benzoate (NPPB). The [Ca2+]cyt transients were not uniquely associated with Al3+ toxicity mechanisms since lanthanum (La3+) and gadolinium (Gd3+) also elicited [Ca2+]cyt transients that were similar to those induced by Al3+. Here a testable model that describes a possible mechanism and sequence of events that lead to the Al3+-induced [Ca2+]cyt transients and inhibition of root growth is proposed. This model can be applied to study also the signal-response coupling of the trivalent ions La3+ and Gd3+.Key words: aluminum toxicity, Al3+ transport, Ca2+ signaling, fluorescence resonance energy transfer (FRET), yellow cameleonAluminum (Al) is a naturally occurring component of soil particles and is the third most abundant element in the earth''s crust.1 In acidic soils, Al dissolves in the soil solution and different ionic Al species form.2,3 The most toxic Al species in acidic soils is ionic Al, Al3+.4 Al3+ toxicity stems from its interference with a plethora of cellular processes that control plant growth and development.3,57The interactions between calcium (Ca2+) and Al3+ are well documented in the literature. One of the toxic effects of Al3+ on plant growth and development has been ascribed to the disruption of Ca2+ homeostasis by Al3+.8,9 The fact that Al3+ inhibits Ca2+ uptake by roots,10 blocks voltage-regulated Ca2+ channels,11,12 and affects the concentration of Ca2+ in the cytosol ([Ca2+]cyt)1318 support this view. Ca2+ alleviates Al3+ toxicity1922 perhaps by inhibiting Al3+ accumulation in the roots and cells.23,24Rincón-Zachary et al.18 using fluorescence resonance energy transfer (FRET)-sensitized emission to image Arabidopsis thaliana roots expressing the yellow cameleon 3.60 Ca2+ reporter demonstrated increases in the concentration of free Ca2+ in the cytosol ([Ca2+]cyt) within seconds of Al3+ application. Al3+ induced distinct [Ca2+]cyt signatures in cells from the different developmental root regions-meristem, elongation and maturation zones. The [Ca2+]cyt signature in the transition zone, which is the most Al-sensitive root region,25 was biphasic and was modified by treatments that chelate external Ca2+ (EGTA), block Ca2+ entry through the plasma membrane (verapamil), by an antagonist of neuronal glutamate receptors, 2-amino-5-phosphonopentanoate (AP-5), and by the anion channel blocker, 5-nitro-2-(3′-phenylpropyl-amino) benzoate (NPPB). All of these agents affected the first peak of the Al3+-induced [Ca2+]cyt signature by reducing its magnitude or abolishing it. These results support the notion that Al3+ interacts with different types of plasma membrane Ca2+ channels, causing them to open. Al3+-induced [Ca2+]cyt transients were also observed in the Arabidopsis Al-resistant and Al-sensitive mutants alr104 and als3, respectively. In addition, the trivalent ions lanthanum (La3+) and gadolinium (Gd3+) evoked [Ca2+]cyt signatures in the transition zone of the wild-type Arabidopsis and of the alr104 and als3 roots similar to those elicited by Al3+. Hence the authors concluded that the observed [Ca2+]cyt transients were not uniquely associated with Al3+ toxicity mechanisms. Al3+, La3+ and Gd3+ appear to elicit the same Ca2+ signaling pathway.I would like to propose a testable model that describes the possible sequence of events during Ca2+ signaling triggered by trivalent ions using Al3+ as a prototype (Fig. 1). (1) Al3+ causes Ca2+ channels in cells of the root transition zone to open allowing Ca2+ influx into the cells. (2) [Ca2+]cyt rises producing the first peak of the biphasic [Ca2+]cyt signature. (3) Increased [Ca2+]cyt activates internal Ca2+ channels located in membranes of internal Ca2+ stores such as the vacuole, ER, mitochondria or plastids producing the second peak of the [Ca2+]cyt signature. Ca2+-induced Ca2+ release from internal stores has been described in plant cells.26 (4) Al3+ may permeate plasma membrane Ca2+ and non-selective cation channels and interact with internal Ca2+ channels allowing Ca2+ to be released into the cytosol, contributing to the rise in [Ca2+]cyt. In this context, supporting data come from unpublished results (Leblanc J and Rincón-Zachary M) that show Al3+ transport across plasma membrane (PM) vesicles isolated from 5 mm wheat (Triticum aestivum) root tips by aqueous two-phase partitioning27 (Fig. 2). In this experiment isolated PM vesicles were loaded with the fluorescent histochemical aluminum indicator morin (2′, 3′, 4′, 5, 7-pentahydroxyflavone) for 30 min at room temperature and then centrifuged at 100,000 xg for 15 min at 4°C and the pellet was washed twice to remove excess morin. The PM vesicles (25 µg protein mL−1) were then incubated in a 2 mL buffer (250 mM sucrose, 50 mM K2SO4, 1 mM DTT, 5 mM MES-Tris [pH 7.0]) containing different concentrations of Al3+ for 10 min at room temperature. Al3+uptake by the PM vesicles was monitored by fluorometry (excitation at 420 nm; emission at 475 nm). The results show that PM vesicles isolated from the Al-sensitive wheat cultivar Scout 66 root tips are more permeable to Al3+ than those isolated from the Al-tolerant cultivar Atlas 66 (Fig. 2A). In this experiment, the relationship between the rate of Al3+ uptake and the Al3+ concentration in the solution was linear for both Scout 66 (Y = 0.114X + 0.741, R2 = 0.99) and Atlas 66 (Y = 0.108X + 0.193, R2 = 0.98) PM vesicles. In addition, Leblanc28 showed that compounds known to block Ca2+ channels inhibited Al3+ uptake by plasma membrane vesicles (Fig. 2B; Leblanc J and Rincón-Zachary M, unpublished data). La3+, verapamil and nifedipine were very effective in inhibiting Al3+ uptake by plasma membrane vesicles: 5 µM La3+ and 1 mM nifedipine caused 67% and 73% inhibition, respectively, and 1 mM verapamil completely abolished the Al3+ uptake by the vesicles. Thus, it is feasible that Al3+ permeates non-selective cation channels or/and Ca2+ channels. (5) Lastly, the overall [Ca2+]cyt elevation could set off mechanisms that inhibit root growth (e.g., callose synthesis and its deposition in the cell wall, disruption of the cytoskeleton organization, formation of reactive oxygen species, etc.). Testing these hypotheses is underway.Open in a separate windowFigure 1A model that describes a possible mechanism and sequence of events that lead to the [Ca2+]cyt transients and inhibition of root growth. (1) Al3+ interacts with Ca2+ channels in the plasma membrane of root cells in the root transition zone. The Ca2+channels open and external Ca2+ enters the cytosol. (2) [Ca2+]cyt rises producing the first peak of the biphasic [Ca2+]cyt signature. (3) Increased [Ca2+]cyt activates internal Ca2+ channels located in membranes of internal Ca2+ stores (e.g., tonoplast, ER, mitochondria or plastids) producing the second peak of the [Ca2+]cyt signature. (4) Al3+ permeates the PM through Ca2+- and non-selective cation channels. (5) Al3+ opens internal Ca2+ channels in the tonoplast, ER, mitochondria or plastids and as a result more Ca2+ is released into the cytosol. (6) The overall [Ca2+]cyt elevation stimulates mechanisms that inhibit root growth.Open in a separate windowFigure 2Al3+ uptake by PM vesicles isolated from 5 mm root tips of both the Al-sensitive cultivar Scout 66 and the Al-tolerant cultivar Atlas 66. (A) Rate of Al3+ uptake by PM vesicles incubated in increasing concentrations of Al3+. The PM vesicles from the Al sensitive cultivar Scout 66 were more permeable to Al3+ than those of the Al-tolerant cultivar Atlas 66. The values are means ± SD. Rates of Al3+ uptake are expressed in Fluorescence Intensity Units (FIU) mg−1 protein min−1. (B) Effect of Ca2+ channel blockers on the rate of Al3+ uptake by PM vesicles s percent of the control. All Ca2+ channel blockers tested inhibited the rate Al3+ uptake by the PM vesicles in both cultivars. The accumulation of Al3+ in the PM vesicles was monitored by measuring the fluorescence emitted by the Al-morin complex as described in the text. Both experiments were repeated three times in triplicate (n = 9). The PM vesicles were pooled from multiple independent membrane isolations in order to obtain enough membrane protein for the assays.  相似文献   

7.
Excised corn root tissue has been evaluated for its viability, integrity of compartmentation, intracellular pH gradients, total mobile phosphorus content and nucleotide concentrations under different levels of acidity, and mineral stresses using in vivo31P nuclear magnetic resonance spectroscopy at 21 to 23°C. Perfusion with Al3+ ion at low pH (4.0) for 20 hours caused the overall concentration of nucleotides in the cytoplasm to decrease significantly relative to the control. Respiratory activity as measured by O2 uptake decreased by a comparable amount over this time period. The addition of glucose to the Al-containing perfusate negated the inhibitory effects on the respiratory system. Treatment of the tissue with paramagnetic manganese ion while perfusing in the presence of O2 allowed for the observation of the sequence of events leading to the irreversible trapping of Mn2+ in the vacuole. Pretreatment of the roots with Mg2+ prevented Mn2+ migration to the vacuole over the time period of this experiment. Hypoxia prevented all but a limited uptake of Mn2+ into the cytoplasm of the root tips. No evidence of Mn2+ complexation of either cytoplasmic or vacuole Pi suggests that the energy derived from O2 consuming processes is necessary for the facilitated movement of this divalent cation.  相似文献   

8.
The magnitude and spatial localization of Ca2+, K+ and H+ fluxes in growing and non-growing Limnobium stoloniferum root hairs was determined using non-invasive, ion-selective vibrating microelectrodes. Both the spatial pattern and magnitude of the ionic flux was dependent on the particular ion in question. Both H+ and Ca2+ influx was localized almost exclusively to the tips of growing root hairs, suggesting that these fluxes may be involved in directing growth. Influx of K+ showed no distinct localization and uptake appeared uniform along the length of the root hair. Competitive inhibition of Ca2+ influx using a range of Mg+ concentrations indicated that the magnitude of the Ca2+ flux entering the root hair tip did not determine growth rate; however, the presence of Ca2+ on the external face of the membrane was implicit for root hair integrity. Aluminum proved to be a potent inhibitor of root hair growth. At an exogenous Al concentration of 20 M a complete blockage of Ca2+ influx into root hair tips was observed, suggesting that Al blockage of Ca2+ influx could be involved in Al toxicity. However, at a lower Al concentration (2 M), Ca2+ fluxes were unaffected while inhibition of growth was still observed along with a distinct swelling of the root hair tip. The swelling at the root hair tips was identical in appearance to that seen in the presence of microtubule inhibitors, suggesting that Al could influence a number of different sites at the plasma-membrane surface and within the cell. The possible role(s) of Ca2+ and H+ fluxes in directing tip growth are discussed.  相似文献   

9.
Macroscopic instantaneous and time-dependent currents have been measured in the vacuolar membrane of Beta vulgaris using a patch clamp configuration analogous to whole cell mode. At low cytosolic Ca2+ and in the absence of Mg2+, only an instantaneous current was observed. This current is carried predominantly by cations (PKPCl 71, pnapcl 41 and arginine is also conducted). The instantaneous current can be activated by ATP4– (e.g., ATP-activated mean K+ current density was –20 mA.m–2 at a membrane voltage of –20 mV) and by increasing cytosolic pH and Mg2+ (raising Mg2+ from 0 to 0.4 mm induced a mean current density increase of –7 mA.m–2 at –20 mV). Such current can be activated by simultaneous addition of putative in vivo concentrations of ATP4–/MgATP/Mg free 2+ (in the presence of bafilomycin to inhibit the vacuolar ATPase) and further modulated by cytosolic pH. With vacuolar K+ concentration greater than that of the cytosol, activation of the instantaneous current would mediate vacuolar K+ release over the range of physiological membrane voltage. It is argued that the ATP4–-activated current, in addition to acting as a K+ mobilization pathway, could provide a counter-ion (shunt) conductance, allowing the two electrogenic H+ pumps which reside in the vacuolar membrane to acidify the vacuolar lumen.A separate time-dependent current, which was not observed at low Ca2+ concentrations (less than 500 nm) could also be elicited by addition of Mg2+ at the cytoplasmic membrane face. This current was stimulated by increasing cytoplasmic pH.The authors are grateful to the BBSRC for financial support (Grant PG87/529) and to the Royal Society (University Research Fellowship to J.M.D.). We thank C. Abbott, K. Partridge and J. Robinson for plant cultivation; A. Amtmann, A. Bertl, D. Gradmann and G. Thiel for helpful discussion.  相似文献   

10.
Several mineral rhizotoxicities, including those induced by Al3+, H+, and Na+, can be relieved by elevated Ca2+ in the rooting medium. This leads to the hypothesis that the toxic cations displace Ca2+ from transport channels or surface ligands that must be occupied by Ca2+ in order for root elongation to occur. In this study with wheat (Triticum aestivum L.) seedlings, we have determined, in the case of Al3+, that (i) Ca2+, Mg2+, and Sr2+ are equally ameliorative, (ii) that root elongation does not increase as Ca2+ replaces Mg2+ or Sr2+ in the rooting media, and (iii) that rhizotoxicity is a function solely of Al3+ activity at the root-cell membrane surface as computed by a Gouy-Chapman-Stern model. The rhizotoxicity was indifferent to the computed membrane-surface Ca2+ activity. The rhizotoxicity induced by high levels of tris(ethylenediamine)cobaltic ion (TEC3+), in contrast to Al3+, was specifically relieved by Ca2+ at the membrane surface. The rhizotoxicity induced by H+ exhibited a weak specific response to Ca2+ at the membrane surface. We conclude that the Ca2+-displacement hypothesis fails in the case of Al3+ rhizotoxicity and that amelioration by cations (including monovalent cations) occurs because of decreased membrane-surface negativity and the consequent decrease in the membrane-surface activity of Al3+. However, TEC3+, but not Al3+, may be toxic because it inhibits Ca2+ uptake. The nature of the specific H+-Ca2+ interaction is uncertain.Abbreviations {Al3+ }0 chemical activity of Al3+ at the root-cell membrane surface - {Al3+ }E chemical activity of Al3+ in the external rooting medium - E0 electrical potential at the root-cell membrane surface - HXM2+ hexamethonium ion - TEC3+ tris(ethylenediamine)cobaltic ion  相似文献   

11.
Temperature dependence of intracellular pH in higher plant cells   总被引:3,自引:0,他引:3  
The recent introduction of 31P nuclear magnetic resonance spectroscopy offers a new approach to the problem of obtaining a simultaneous and direct evaluation of both the cytoplasmic and vacuolar pH in higher plant cells (J. K. M. Roberts, P.M. Ray, N. Waderlardetzky and O. Sardetzky, 1980, Nature 283, 870–872; 1981, Planta 152, 74–78). Using this method we have been able to detect a selective pH decrease of about 0.5 units at the level of the cytoplasmic compartment of maize root tips when the temperature was increased from 4 to 28°C. This effect was completely reversible with temperature. No pH variation could be detected at the level of the vacuolar compartment.  相似文献   

12.
Z. Ping  I. Yabe  S. Muto 《Protoplasma》1992,171(1-2):7-18
Summary K+, Cl, and Ca2+ channels in the vacuolar membrane of tobacco cell suspension cultures have been investigated using the patch-clamp technique. In symmetrical 100mM K+, K+ channels opened at positive vacuolar membrane potentials (cytoplasmic side as reference) had different conductances of 57 pS and 24 pS. K+ channel opened at negative vacuolar membrane potentials had a conductance of 43 pS. The K+ channels showed a significant discrimination against Na+ and Cl. The Cl channel opened at positive vacuolar membrane potentials for cytoplasmic Cl influx had a high conductance of 110pS in symmetrical 100mM Cl. When K+ and Cl channels were excluded from opening, no traces were found of Ca2+ channel activity for vacuolar Ca2+ release induced by inositol 1,4,5-trisphosphate or other events. However, we found a 19pS Ca2+ channel which allowed influx of cytoplasmic Ca2+ into the vacuole when the Ca2+ concentration on the cytoplasmic side was high. When Ca2+ was substituted by Ba2+, the conductance of the 19 pS channel became 30 pS and the channel showed a selectivity sequence of Ba2+Sr2+Ca2+Mg2+=10.60.60.21. The reversal potentials of the channel shifted with the change in Ca2+ concentration on the vacuolar side. The channel could be efficiently blocked from the cytoplasmic side by Cd2+, but was insensitive to La3+, Gd3+, Ni2+, verapamil, and nifedipine. The related ion channels in freshly isolated vacuoles from red beet root cells were also recorded. The coexistence of the K+, Cl, and Ca2+ channels in the vacuolar membrane of tobacco cells might imply a precise classification and cooperation of the channels in the physiological process of plant cells.  相似文献   

13.

Background and Aims

Aluminium is toxic in acid soils because the soluble Al3+ inhibits root growth. A mechanism of Al3+ tolerance discovered in many plant species involves the release of organic anions from root apices. The Al3+-activated release of citrate from the root apices of Al3+-tolerant genotypes of barley is controlled by a MATE gene named HvAACT1 that encodes a citrate transport protein located on the plasma membrane. The aim of this study was to investigate whether expressing HvAACT1 with a constitutive promoter in barley and wheat can increase citrate efflux and Al3+ tolerance of these important cereal species.

Methods HvAACT1

was over-expressed in wheat (Triticum aestivum) and barley (Hordeum vulgare) using the maize ubiquitin promoter. Root apices of transgenic and control lines were analysed for HvAACT1 expression and organic acid efflux. The Al3+ tolerance of transgenic and control lines was assessed in both hydroponic solution and acid soil.

Key Results and Conclusions

Increased HvAACT1 expression in both cereal species was associated with increased citrate efflux from root apices and enhanced Al3+ tolerance, thus demonstrating that biotechnology can complement traditional breeding practices to increase the Al3+ tolerance of important crop plants.  相似文献   

14.
The effects of hydrogel on growth and ion relationships of a salt resistant woody species, Populus euphratica , were investigated under saline conditions. The hydrogel used was Stockosorb K410, a highly cross-linked polyacrylamide with about 40% of the amide group hydrolysed to carboxylic groups. Amendment of saline soil (potassium mine refuse) with 0.6% hydrogel improved seedling growth (2.7-fold higher biomass) over a period of 2 years, even though plant growth was reduced by salinity. Hydrogel-treated plants had approximately 3.5-fold higher root length and root surface area than those grown in unamended saline soil. In addition, over 6% of total roots were aggregated in gel fragments. Tissue and cellular ion analysis showed that growth improvement appeared to be the result of increased capacity for salt exclusion and enhancement of Ca2+ uptake. X-ray microanalysis of root compartments indicated that the presence of polymer restricted apoplastic Na+ in both young and old roots, and limited apoplastic and cytoplastic Cl in old roots while increasing Cl compartmentation in cortical vacuoles of both young and old roots. Collectively, radical transport of salt ions (Na+ and Cl) through the cortex into the xylem was lowered and subsequent axial transport was limited. Hydrogel treatment enhanced uptake of Ca2+ and microanalysis showed that enrichment of Ca2+ in root tissue mainly occurred in the apoplast. In conclusion, enhanced Ca2+ uptake and the increased capacity of P. euphratica to exclude salt were the result of improved Ca2+/Na+ concentration of soil solution available to the plant. Hydrogel amendment improves the quality of soil solutions by lowering salt level as a result of its salt-buffering capacity and enriching Ca2+ uptake, because of the polymers cation-exchange character. Accordingly, root aggregation allows good contact of roots with a Ca2+ source and reduces contact with Na+ and Cl, which presumably plays a major role in enhancing salt tolerance of P. euphratica.  相似文献   

15.
The accumulation of malate by maize (Zea mays L.) root tips perfused with KH13CO3 was followed by 13C nuclear magnetic resonance spectroscopy. In vivo nuclear magnetic resonance spectra contained distinct signals from two pools of malate in maize root tips, one at a pH ~5.3 (assigned to the vacuole) and one at a pH > 6.5 (assigned to the cytoplasm). The ratio of cytoplasmic to vacuolar malate was lower in 12 millimeter long root tips than in 2 millimeter root tips. The relatively broad width of the signals from C1- and C4-labeled vacuolar malate indicated heterogeneity in vacuolar pH. During the 3 hour KH13CO3 treatment, 13C-malate accumulated first primarily in the cytoplasm, increasing to a fairly constant level of ~6 millimolar by 1 hour. After a lag, vacuolar malate increased throughout the experiment.  相似文献   

16.
The patch-clamp technique was applied to vacuoles isolated from a photoautotrophic suspension cell culture of Chenopodium rubrum L. and vacuolar clamp currents, which are predominantly carried by the previously identified Ca2+-dependent slow vacuolar (SV) ion channels, were recorded. These currents, which were activated by 1-s voltage pulses of -100 mV (vacuolar interior negative) in the presence of 100 M Ca2+ (cytosolic side), could be blocked completely and reversibly by the calmodulin antagonist W-7 [N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide] and its chlorine-deficient analogue W-5; half-maximum inhibition was found at approx. 6 M for W-7 and 70 M for W-5. Inhibition was reversed by addition of 1 g · ml–1 calmodulin purified from Chenopodium cell suspensions; reversal by bovine brain calmodulin was scarcely appreciable. We conclude that cytosolic calmodulin mediates the Ca2+ dependence of the SV-channel in the Chenopodium tonoplast.Abbreviations SV-channel slowly activated, vacuolar ion channel - W-5 N-(6-aminohexyl)-1-naphthalenesulfonamide - W-7 N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide We acknowledge support by the Deutsche Forschungsgemeinschaft and the Bundesminister für Forschung und Technologie, Bonn, and by the Justus-Liebig-Universität Giessen (to W.B.)  相似文献   

17.
A series of hydroponic experiments and an agar culture experiment were carried out to investigate aluminum (Al) accumulation and translocation in two rice (Oryza sativa L.) cultivars (Kasalath and Koshihikari) that differ in Al resistance. Al-resistance mechanisms, including Pi exudation under Al stress and pH shifts in the rhizosphere, were also studied. Al content in rice shoots was 41 mg kg−1 on average and did not differ between the two cultivars, which demonstrated that the rice cultivars were not Al accumulators. The majority of Al (95–97%) accumulated in roots. Al content in roots in the resistant cultivar (Koshihikari) was lower than that in the sensitive cultivar (Kasalath), which indicated that Al-exclusion mechanisms were mainly acting in rice. However, the rate of Pi exudation from the whole root or root tips was very low in both cultivars and was not significantly influenced by Al exposure, and thus seemed not to be the main Al-resistance mechanism. On the other hand, experiments with pH-buffered solution and color changes following culture in agar medium containing bromocresol purple revealed that the Al-induced pH increase could not explain the high Al resistance of rice. In addition, the Al content in shoots of Koshihikari was lower after the formation of iron plaque on the root surface, whereas that of Kasalath was not lower. These results suggested that rice roots cell wall components or root surfaces such as iron plaque, rather than pH changes and/or root exudates including organic acids and phosphate, play important roles in Al resistance in rice.  相似文献   

18.
Effects of soil pH and calcium on mycorrhizas of Picea abies   总被引:3,自引:0,他引:3  
The effects of lime, increased soil pH and increased soil Ca concentration on the mycorrhizas of Norway spruce. [Picea abies (L.) Karst.] were studied independently of each other to elucidate the different mechanisms through which lime may influence mycorrhizas in acidic soil. In a field experiment (mature Norway spruce in podzol), lime was applied as CaCO3; increased Ca concentration without an increase in pH was achieved with CaSO4; and soil pH was increased without calcium by means of Na2CO3 and K2CO3 (Na+K treatment). Treatments were done in October, and mycorrhizas were counted from samples collected in the following June and September. All treatments increased the percentage of dead short root tips compared to controls in September, and Na+K already in June. Cenococcum geophilum Fr. increased in proportion in plots treated with Na+K.In a sand culture experiment, Norway spruce seedlings were grown from seed and inoculated with Cenococcum geophilum, or root inoculum, or left uninoculated. When mycorrhizas were beginning to form, CaCO3 and CaSO4 treatments were applied. Six weeks later, the percent of dead short root tips in both salt treatments was significantly increased from control, but formation of mycorrhizas was not inhibited by treatments.As all the treatments increased the proportion of dead short root tips, it is concluded that lime directly and adversely affected mycorrhizas of Norway spruce in sand culture and in mor humus. Both increased ionic strength and increased pH may be reasons for this rather than Ca2+ specifically.  相似文献   

19.
We examined transepithelial transport of Ca2+ across the isolated opercular epithelium of the euryhaline killifish adapted to fresh water. The opercular epithelium, mounted in vitro with saline on the serosal side and fresh water (0.1 mmol·l–1 Ca2+) bathing the mucosal side, actively transported Ca2+ in the uptake direction; net flux averaged 20–30 nmol·cm–2·h–1. The rate of Ca2+ uptake varied linearly with the density of mitochondria-rich cells in the preparations. Ca2+ uptake was saturable, apparent K 1/2 of 0.348 mmol·l–1, indicative of a multistep transcellular pathway. Ca2+ uptake was inhibited partially by apically added 0.1 mmol·l–1 La3+ and 1.0 mmol·l–1 Mg2+. Addition of dibutyryl-cyclic adenosine monophosphate (0.5 mmol·l–1)+0.1 mmol·l–1 3-isobutyl-l-methylxanthine inhibited Ca2+ uptake by 54%, but epinephrine, clonidine and isoproterenol were without effect. Agents that increase intracellular Ca2+, thapsigargin (1.0 mol·l–1, serosal side), ionomycin (1.0 mol·l–1, serosal side) and the calmodulin blocker trifluoperazine (50 mol·l–1, mucosal side) all partially inhibited Ca2+ uptake. In contrast, apically added ionomycin increased mucosal to serosal unidirectional Ca2+ flux, indicating Ca2+ entry across the apical membrane is rate limiting in the transport. Verapamil (10–100 mol·l–1, mucosal side), a Ca2+ channel blocker, had no effect. Results are consistent with a model of Ca2+ uptake by mitochondria rich cells that involves passive Ca2+ entry across the apical membrane via verapamil-insensitive Ca2+ channels, intracellular complexing of Ca2+ by calmodulin and basolateral exit via an active transport process. Increases in intracellular Ca2+ invoke a downregulation of transcellular Ca2+ transport, implicating Ca2+ as a homeostatic mediator of its own transport.Abbreviations DASPEI 2-(4-dimethylaminostyryl)-N-ethylpyridinium iodide - db-cAMP dibutyryl-cyclic adenosine monophosphate - FW fresh water - G t transepithelial conductance - I sc short-circuit current - IBMX 3-isobutyl-1-methylxanthine - SW sea water - TFP trifluoperazine - V t transepithelial potential  相似文献   

20.
Ca2+ levels in plants are controlled in part by H+/Ca2+ exchangers. Structure/function analysis of the Arabidopsis H+/cation exchanger, CAX1, revealed that a nine amino acid region (87–95) is involved in CAX1-mediated Ca2+ specificity. CAX3 is 77% identical (93% similar) to CAX1, and when expressed in yeast, localizes to the vacuole but does not suppress yeast mutants defective in vacuolar Ca2+ transport. Transgenic tobacco plants expressing CAX3 containing the 9 amino acid Ca2+ domain (Cad) from CAX1 (CAX3-9) displayed altered stress sensitivities similar to CAX1-expressing plants, whereas CAX3-9-expressing plants did not have any altered stress sensitivities. A single leucine-to-isoleucine change at position 87 (CAX3-I) within the Cad of CAX3 allows this protein to weakly transport Ca2+ in yeast (less than 10% of CAX1). Site-directed mutagenesis of the leucine in the CAX3 Cad demonstrated that no amino acid change tested could confer more activity than CAX3-I. Transport studies in yeast demonstrated that the first three amino acids of the CAX1 Cad could confer twice the Ca2+ transport capability compared to CAX3-I. The entire Cad of CAX3 (87–95) inserted into CAX1 abolishes CAX1-mediated Ca2+ transport. However, single, double, or triple amino acid replacements within the native CAX1 Cad did not block CAX1 mediated Ca2+ transport. Together these findings suggest that other domains within CAX1 and CAX3 influence Ca2+ transport. This study has implications for the ability to engineer CAX-mediated transport in plants by manipulating Cad residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号