首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Arabidopsis monovalent cation:proton antiporter-1 (CPA1) family includes eight members, AtNHX1-8. AtNHX1 and AtNHX7/SOS1 have been well characterized as tonoplast and plasma membrane Na+/H+ antiporters, respectively. The proteins AtNHX2-6 have been phylogenetically linked to AtNHX1, while AtNHX8 appears to be related to AtNHX7/SOS1. Here we report functional characterization of AtNHX8. AtNHX8 T-DNA insertion mutants are hypersensitive to lithium ions (Li+) relative to wild-type plants, but not to the other metal ions such as sodium (Na+), potassium (K+) and caesium (Cs+). AtNHX8 overexpression in a triple-deletion yeast mutant AXT3 that exhibits defective Na+/Li+ transport specifically suppresses sensitivity to Li+, but does not affect Na+ sensitivity. Likewise, AtNHX8 overexpression complemented sensitivity to Li+, but not Na+, in sos1-1 mutant seedlings, and increased Li+ tolerance of both the sos1-1 mutant and wild-type seedlings. Results of Li+ and K+ measurement of loss-of-function and gain-of-function mutants indicate that AtNHX8 may be responsible for Li+ extrusion, and may be able to maintain K+ acquisition and intracellular ion homeostasis. Subcellular localization of the AtNHX8-enhanced green fluorescent protein (EGFP) fusion protein suggested that AtNHX8 protein is targeted to the plasma membrane. Taken together, our findings suggest that AtNHX8 encodes a putative plasma membrane Li+/H+ antiporter that functions in Li detoxification and ion homeostasis in Arabidopsis.  相似文献   

3.
4.
The exocyst is a hetero-oligomeric protein complex involved in exocytosis and has been extensively studied in yeast and animal cells. Evidence is now accumulating that the exocyst is also present in plants. Bioinformatic analysis of genes encoding plant homologs of the exocyst subunit, Exo70, revealed that three Exo70 subgroups are evolutionarily conserved among angiosperms, lycophytes and mosses. Arabidopsis and rice contain 22 and approximately 39 EXO70 genes, respectively, which can be classified into nine clusters considered to be ancient in angiosperms (one has been lost in Arabidopsis). We characterized two independent T-DNA insertional mutants of the AtEXO70A1 gene (exo70A1-1 and exo70A1-2). Heterozygous EXO70A1/exo70A1 plants appear to be normal and segregate in a 1:2:1 ratio, suggesting that neither male nor female gametophytes are affected by the EXO70A1 disruption. However, both exo70A1-1 and exo70A1-2 homozygotes exhibit an array of phenotypic defects. The polar growth of root hairs and stigmatic papillae is disturbed. Organs are generally smaller, plants show a loss of apical dominance and indeterminate growth where instead of floral meristems new lateral inflorescences are initiated in a reiterative manner. Both exo70A1 mutants have dramatically reduced fertility. These results suggest that the putative exocyst subunit EXO70A1 is involved in cell and organ morphogenesis.  相似文献   

5.
Ovule primordia formation is a complex developmental process with a strong impact on the production of seeds. In Arabidopsis this process is controlled by a gene network, including components of the signalling pathways of auxin, brassinosteroids (BRs) and cytokinins. Recently, we have shown that gibberellins (GAs) also play an important role in ovule primordia initiation, inhibiting ovule formation in both Arabidopsis and tomato. Here we reveal that BRs also participate in the control of ovule initiation in tomato, by promoting an increase on ovule primordia formation. Moreover, molecular and genetic analyses of the co‐regulation by GAs and BRs of the control of ovule initiation indicate that two different mechanisms occur in tomato and Arabidopsis. In tomato, GAs act downstream of BRs. BRs regulate ovule number through the downregulation of GA biosynthesis, which provokes stabilization of DELLA proteins that will finally promote ovule primordia initiation. In contrast, in Arabidopsis both GAs and BRs regulate ovule number independently of the activity levels of the other hormone. Taken together, our data strongly suggest that different molecular mechanisms could operate in different plant species to regulate identical developmental processes even, as for ovule primordia initiation, if the same set of hormones trigger similar responses, adding a new level of complexity.  相似文献   

6.
Asymmetric cell division is one of the most elegant biological systems by which cells create daughter cells with different functions and increase cell diversity. In particular, PAR polarity in the cell membrane plays a critical role in regulating the whole process of asymmetric cell division. Numerous studies have been conducted to determine the underlying mechanism of PAR polarity formation using both experimental and theoretical approaches in the last 10 years. However, they have mostly focused on answering the fundamental question of how this exclusive polarity is established but the precise dynamics of polarity domain have been little notified. In this review, I focused on studies on the shape, length, and location of PAR polarity from a theoretical perspective that may be important for an integrated understanding of the entire process of asymmetric cell division.  相似文献   

7.
The methylesterification status of cell wall pectins, mediated through the interplay of pectin methylesterases (PMEs) and pectin methylesterase inhibitors (PMEIs), influences the biophysical properties of plant cell walls. We found that the overexpression of a PMEI gene in Arabidopsis thaliana plants caused the stems to develop twists and loops, most strongly around points on the stem where leaves or inflorescences failed to separate from the main stem. Altered elasticity of the stem, underdevelopment of the leaf cuticle, and changes in the sugar composition of the cell walls of stems were evident in the PMEI overexpression lines. We discuss the mechanisms that potentially underlie the aberrant growth phenotypes.  相似文献   

8.
Arabidopsis embryos carrying the domino1 mutation grow slowly in comparison with wild type embryos and as a consequence reach only the globular stage at desiccation. The primary defect of the mutation at the cellular level is the large size of the nucleolus that can be observed soon after fertilization in the nuclei of both the embryo and the endosperm. The ultrastructure of mutant nucleoli is drastically different from wild type and points to a fault in ribosome biogenesis. DOMINO1 encodes a protein, which belongs to a plant-specific gene family sharing a common motif of unknown function, present in the tomato DEFECTIVE CHLOROPLASTS AND LEAVES (LeDCL) protein. Using a GFP protein fusion, we show that DOMINO1 is targeted to the nucleus. We propose that inactivation of DOMINO1 has a negative effect on ribosome biogenesis and on the rate of cell division.  相似文献   

9.
10.
Dorsal and ventral specification in the early optic vesicle plays a crucial role in vertebrate ocular morphogenesis, and proper dorsal‐ventral polarity in the optic vesicle ensures that distinct structures develop in separate domains within the eye primordium. The polarity is determined progressively during development by coordinated regulation of extraocular dorsal and ventral factors. In the present study, we cultured discrete portions of embryonic chick brains by preparing anterior cephalon, anterior dorsal cephalon and anterior ventral cephalon, and clearly demonstrate that bone morphogenetic protein 4 (BMP4) and Sonic hedgehog (Shh) constitute a dorsal‐ventral signaling system together with fibroblast growth factor 8 (FGF8). BMP4 and Shh upregulate Tbx5 and Pax2, as reported previously, and at the same time Shh downregulates Tbx5, while BMP4 affects Pax2 expression to downregulate similarly. Shh induces Fgf8 expression in the ventral optic vesicle. This, in turn, determines the distinct boundary of the retinal pigmented epithelium and the neural retina by suppressing Mitf expression. The lens develops only when signals from both the dorsal and ventral regions come across together. Inverted deposition of Shh and BMP4 signals in organ‐cultured optic vesicle completely re‐organized ocular structures to be inverted. Based on these observations we propose a novel model in which the two signals govern the whole of ocular development when they encounter each other in the ocular morphogenic domain.  相似文献   

11.
12.
鄂尔多斯高原固沙禾草沙鞭种子休眠和萌发与环境的关系   总被引:11,自引:0,他引:11  
黄振英 《西北植物学报》2003,23(7):1128-1133
沙鞭是鄂尔多斯高原流动沙丘上分布的多年生禾草。新采收的种子能够在15~35℃的光照和暗中萌发。在25℃光照下,通过14d的培养,种子的萌发率能够达到80%。在25~35℃温度范围内,种子的萌发在光照下比暗中好。通过低温层积处理表明,沙鞭的种子处于非深度休眠状态。4星期的低温层积处理能够有效地加速和提高种子在20~30℃、光照和暗中萌发。对低温贮藏的需求可能是种子对其生境的适应。另外,划伤颖果的果皮和种皮,以及不同程度地部分移走胚乳也能够不同程度地加速和提高种子的萌发,但幼苗的干重以及根和苗的长度显著地受到了移走胚乳的影响。  相似文献   

13.
Ceramide synthases are highly conserved transmembrane proteins involved in the biosynthesis of sphingolipids, which are essential structural components of eukaryotic membranes and can act as second messengers regulating tissue homeostasis. However, the role of these enzymes in development is poorly understood due to the lack of animal models. We identified schlank as a new Drosophila member of the ceramide synthase family. We demonstrate that schlank is involved in the de novo synthesis of a broad range of ceramides, the key metabolites of sphingolipid biosynthesis. Unexpectedly, schlank mutants also show reduction of storage fat, which is deposited as triacylglyerols in the fat body. We found that schlank can positively regulate fatty acid synthesis by promoting the expression of sterol‐responsive element‐binding protein (SREBP) and SREBP‐target genes. It further prevents lipolysis by downregulating the expression of triacylglycerol lipase. Our results identify schlank as a new regulator of the balance between lipogenesis and lipolysis in Drosophila. Furthermore, our studies of schlank and the mammalian Lass2 family member suggest a novel role for ceramide synthases in regulating body fat metabolism.  相似文献   

14.
The pheromone signal in the yeastSaccharomyces cerevisiae is transmitted by the and subunits of the mating response G-protein. TheSTE20 gene, encoding a protein kinase required for pheromone signal transduction, has recently been identified in a genetic screen for high-gene-dosage suppressors of a partly defective G mutation. The same genetic screen identifiedBEM1, which encodes an SH3 domain protein required for polarized morphogenesis in response to pheromone, and a novel gene, designatedMDG1 (multicopy suppressor ofdefectiveG-protein). TheMDG1 gene was independently isolated in a search for multicopy suppressors of abem1 mutation. TheMDG1 gene encodes a predicted hydrophilic protein of 364 amino acids with a molecular weight of 41 kDa that has no homology with known proteins. A fusion of Mdg1p with the green fluorescent protein fromAequorea victoria localizes to the plasma membrane, suggesting that Mdg1p is an extrinsically bound membrane protein. Deletion ofMDG1 causes sterility in cells in which the wild-type G has been replaced by partly defective G derivatives but does not cause any other obvious phenotypes. The mating defect of cells deleted forSTE20 is partially suppressed by multiple copies ofBEM1 andCDC42, which encodes a small GTP-binding protein that binds to Ste20p and is necessary for the development of cell polarity. Elevated levels ofSTE20 andBEM1 are capable of suppressing a temperature-sensitive mutation inCDC42. This complex network of genetic interactions points to a role for Bem1p and Mdg1p in G-protein mediated signal transduction and indicates a functional linkage between components of the pheromone signalling pathway and regulators of cell polarity during yeast mating.  相似文献   

15.
16.
Plant growth and reproductive output of the winter annual invasive thistle, Carthamus lanatus was characterised in relation to plant size in three native populations in southern France. The effects of the rosette-crown feeding fly Botanophila turcica on these plant characteristics were assessed by comparing unattacked with naturally attacked plants at each site and by a field experiment. Indirect effects of B. turcica on plant seed production were also compared with direct seed loss caused by a guild of capitulum-feeding insects that incidentally attacked the marked plants at these sites. C. lanatus showed no size or weight requirement for flowering, but larger flowering plants produced less total receptacle surface and less seed production (female reproductive potential) in proportion to plant weight than smaller flowering plants. B. turcica did not select hosts on the basis of size or density. B. turcica reduced plant relative growth rate (RGR) in all situations, but attacked plants compensated fully at two of three sites as attack failed to halt rosette growth. Attacked plants suffered 12 % mortality, and 71 % lower seed production than unattacked plants at the site with the lowest RGR. This corresponded to 9 % lower seed production for the whole thistle population compared to 8.6–19.5 % direct seed loss to capitulum insects across all sites.  相似文献   

17.
18.
19.
20.

Background and Aims

In seeds with deep simple epicotyl morphophysiological dormancy, warm and cold stratification are required to break dormancy of the radicle and shoot, respectively. Although the shoot remains inside the seed all winter, little is known about its growth and morphological development prior to emergence in spring. The aims of the present study were to determine the temperature requirements for radicle and shoot emergence in seeds of Viburnum betulifolium and V. parvifolium and to monitor growth of the epicotyl, plumule and cotyledons in root-emerged seeds.

Methods

Fresh and pre-treated seeds of V. betulifolium and V. parvifolium were incubated under various temperature regimes and monitored for radicle and shoot emergence. Growth of the epicotyl and cotyledons at different stages was observed with dissecting and scanning electron microscopes.

Key Results

The optimum temperature for radicle emergence of seeds of both species, either kept continuously at a single regime or exposed to a sequence of regimes, was 20/10 °C. GA3 had no effect on radicle emergence. Cold stratification (5 °C) was required for shoot emergence. The shoot apical meristem in fresh seeds did not form a bulge until the embryo had grown to the critical length for radicle emergence. After radicle emergence, the epicotyl–plumule and cotyledons grew slowly at 5 and 20/10 °C, and the first pair of true leaves was initiated. However, the shoot emerged only from seeds that received cold stratification.

Conclusions

Seeds of V. betulifolium and V. parvifolium have deep simple epicotyl morphophysiological dormancy, C1bB (root)–C3 (epicotyl). Warm stratification was required to break the first part of physiological dormancy (PD), thereby allowing embryo growth and subsequently radicle emergence. Although cold stratification was not required for differentiation of the epicotyl–plumule, it was required to break the second part of PD, thereby allowing the shoot to emerge in spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号