首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Six antimony adducts with N-donor neutral ligands (1,10-phenanthroline, 4,4′-bipyridine) have been obtained following the reaction of antimony halides with phenanthroline and 4,4′-bipyridine. By changing the solvent and stoichiometry, we obtained six different complexes, Sb(phen)Cl3 (1), Sb(phen)Br3 (2), Sb2(phen)4Br8 (3) and Sb(bpy)Cl3 (4), Sb(bpy)2Cl3 (5), Sb(bpyH · bpyH2)Br6 (6) (where phen = 1,10-phenanthroline, bpy = 4,4′-bipyridine). All the complexes have been characterized via elemental analysis, FT-IR and NMR (1H, 13C) spectroscopy. The crystal structures of complexes 2, 3 and 6 have been determined by X-ray single crystal diffraction.The structural analysis show that the coordination sphere around antimony atom in complex 2 is a distorted square pyramid, coordinated by three bromine atoms and two nitrogen atoms from phen. In complex 3, the central antimony atom is six-coordinated through four bromine atoms and two nitrogen atoms forming a distorted octahedral geometry. Besides that, there are also uncoordinated 1,10-phenanthroline bonded by hydrogen bonds and π-π stacking interactions, which is rarely observed in previous reports. The crystal structure of complex 6 consists of bpyH · bpyH2 trications and hexabromoantimonate trianions. The antimony atom in the anion has a distorted octahedral environment. Additionally, all complexes present a 3D framework built up by N-H?Br, C-H?Br and C-H?Cl weak hydrogen bonds interactions.  相似文献   

2.
Four related ruthenium(III) complexes, with the formula mer-[RuCl3(dmso)(N−N)] (dmso = dimethyl sulfoxide; N−N = 2,2′-bipyridine (1), 1,10-phenantroline (2), dipyrido[3,2-f:2′,3′-h]quinoxaline (3) and dipyrido[3,2-a:2′,3′-c]phenazine (4)), have been reported. Complexes 3 and 4 are newly synthesized and characterized by X-ray diffraction. The hydrolysis process of 1-4 has been studied by UV-vis measurement, and it has been found that the extension of the N−N ligands can increase the stability of the complexes. The binding of these complexes with DNA has been investigated by plasmid cleavage assay, competitive binding with ethidium bromide (EB), DNA melting experiments and viscosity measurements. The DNA binding affinity is increased with the extension of the planar area of the N−N ligands, and complex 4 shows an intercalative mode of interaction with DNA. The in vitro anticancer activities of these compounds are moderate on the five human cancer cell lines screened.  相似文献   

3.
A series of mononuclear acetonitrile complexes of the type [Ru(CH3CN)(L)(terpy)]2+ {L = phen (1), dpbpy (3), and bpm (5)}, and their reference complexes [RuCl(L)(terpy)]+ {L = phen (2), dpbpy (4), and dpphen (6)} were prepared and characterized by electrospray ionization mass spectrometry, UV-vis spectroscopy, and cyclic voltammograms (CV). Abbreviations of the ligands (Ls) are phen = 1,10-phenanthroline, dpbpy = 4,4′-diphenyl-2,2′-bipyridine, bpm = 2,2′-bipyrimidine, dpphen = 4,7-diphenyl-1,10-phenanthroline, bpy = 2,2′-bipyridine, and terpy = 2,2′:6′,2″-terpyridine. The X-ray structures of the two complexes 2 and 3 were newly obtained. The metal-to-ligand charge transfer (MLCT) bands in the visible region for 1, 3, and 5 in acetonitrile were blue shifted relative to those of the reference complexes [RuCl(L)(terpy)]+. CV for all the [Ru(CH3CN)(L)(terpy)]2+ complexes showed the first oxidation wave at around 0.95 V, being more positive than those of [RuCl(L)(terpy)]+. The time-dependent-density-functional-theory approach (TDDFT) was used to interpret the absorption spectra of 1 and 2. Good agreement between computed and experimental absorption spectra was obtained. The DFT approach also revealed the orbital interactions between Ru(phen)(terpy) and CH3CN or Cl. It is demonstrated that the HOMO-LUMO energy gap of the acetonitrile ligand is larger than that of the Cl one.  相似文献   

4.
The electrochemical properties of cationic complexes [(η6-arene)Ru(N ∩ N)Cl]Cl (arene/N ∩ N = C6H6/1,10-phenanthroline (1), p-MeC6H4Pri/1,10-phenanthroline (2), C6Me6/1,10-phenanthroline (3), C6Me6/5-NO2-1,10-phenanthroline (4), and C6Me6/5-NH2-1,10-phenanthroline (5)) were studied by cyclic voltammetry in order to rationalize catalytic activity in transfer hydrogenation of the respective aqua complexes [(η6-arene)Ru(N ∩ N)(OH2)](BF4)2 (6-10). Complexes 1-5 were chosen because the ‘true’ catalysts 6-10 are unstable under the conditions of the measurement. The electrochemical behaviour of 1-5 in acetonitrile solution is rather complicated due to consecutive and parallel chemical reactions that accompany electron transfer processes. Nonetheless, interpretation of the electrochemical data allowed to assess the influence of the structure and substitution on the redox and catalytic properties: the catalytic ability correlates with the reduction potentials, indicating the decisive role of the η6-arene ring directly bonded to the catalytic centre (Ru).  相似文献   

5.
A series of coordination polymers have been prepared by the combination of flexible ligand 1,1′-biphenyl-2,2′-dicarboxylic acid (H2dpa) and different types of nitrogen-containing ligands, with various metal ions such as Co(II), Zn(II) and Cd(II). The single-crystal structure analyses reveal that the above complexes possess different structure features with the introduction of different nitrogen-containing ligands. When auxiliary linear ligand 4,4′-bipyridine (4,4′-bpy) is introduced, two-dimensional layered complex, [Co2(dpa)2(4,4′-bpy)2(H2O)]n (1) is formed. Whereas if chelating ligand, 1,10-phenanthroline (1,10′-phen) and 2,2′-bipyridine (2,2′-bpy) are introduced, one-dimensional complex [Zn(dpa)(1,10′-phen)]n (2) and discrete complexes [Co2(dpa)2(2,2′-bpy)2(H2O)2] (3), [Co3(dpa)3(1,10′-phen)6(H2O)2] (4), [Cd(dpa)(1,10′-phen)2][(H2dpa)2(H2O)2] (5) are synthesized. To our interest, 1 and 2 crystallize in homochiral spacegroup. Furthermore, the magnetic property of complex 1 and the fluorescent properties of complexes 2 and 5 are studied.  相似文献   

6.
A family of cationic and neutral highly water-soluble rhodium complexes [Cp∗Rh(PTA)3]Cl2 (1), [Cp∗RhCl2(THP)] (2), [Cp∗RhCl(THP)2]Cl (3), and [Cp∗RhCl(PTA)(THP)]Cl (4) have been synthesised and fully characterised [PTA = 1,3,5-triaza-7-phosphaadamantane; THP = tris(hydroxymethyl)phosphine]. Their water-solubility increases as the number of the phosphines coordinated to the metal centre is increased. The X-ray crystal structure of compound 2 was obtained and shows the presence of intermolecular hydrogen bonding. NMR speciation studies of [Cp∗RhCl2(PTA)] in deuterated water show the existence of several equilibria involving substitution processes in which the water molecules can substitute both chloride and PTA ligands.  相似文献   

7.
A novel polypyridyl ligand CNPFIP (CNPFIP = 2-(5(4-chloro-2-nitrophenyl)furan-2-yl)-1H-imidazo[4,5f][1,10]phenanthroline) and its mononuclear Ru(II) polypyridyl complexes of [Ru(phen)2CNPFIP]2+(1) (phen = 1,10-phenanthroline), [Ru(bpy)2CNPFIP]2+(2) (bpy = 2,2′-bipyridine), and [Ru(dmb)2CNPFIP]2+(3) (dmb = 4,4′-dimethyl-2,2′-bipyridine) have been synthesized successfully and characterized thoroughly by elemental analysis, UV/Vis, IR, NMR, and ESI-MS. The interaction of the Ru(II) complexes with calf thymus DNA (CT-DNA) was investigated by absorption titration, fluorescence, viscosity measurements. The experimental results suggest that three complexes bind to CT-DNA through an intercalative mode and the DNA-binding affinity of complex 1 is greater than that of complexes 2 and 3. The photocleavage of plasmid pBR322 DNA by ruthenium complexes 1, 2, and 3 was investigated. We have also tested three complexes for their antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. The in vitro cytotoxicity of these complexes was evaluated by MTT assay, and complex 1 shows higher cytotoxicity than 2 and 3 on HeLa cells. The induced apoptosis and cell cycle arrest of HeLa cells were investigated by flow cytometry for 24 h. The molecular docking of ruthenium complexes 1, 2, and 3 with the active site pocket residues of human DNA TOP1 was performed using LibDock.  相似文献   

8.
Seven new mixed-ligand vanadyl complexes, [VIVO(5-Br-SAA)(NN)] and [VIVO(2-OH-NAA)(NN)] (1-7) (5-Br-SAA for 5-bromosalicylidene anthranilic acid, 2-OH-NAA for 2-hydroxy-1-naphthaldehyde anthranilic acid and NN for N,N′-donor heterocyclic base, namely, 2,2′-bipyridine (bpy, 1 and 5), 1,10-phenanthroline (phen, 2 and 6), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq, 3 and 7), dipyrido[3,2-a:2′,3′-c]phenazine (dppz, 4)), were synthesized and characterized. X-ray crystal structure of [VIVO(5-Br-SAA)(phen)] revealed a distorted octahedral geometry with the Schiff base ligand coordinated in a tridentate ONO-fashion and the phenanthroline ligand in a bidentate fashion. Density-functional theory (DFT) calculations suggest a similar structure and the same coordination mode for all the other oxovanadium complexes synthesized. Biochemical assays demonstrate that the mixed-ligand oxovanadium(IV) complexes are potent inhibitors of protein tyrosine phosphatase 1B (PTP1B), with IC50 values approximately 41-75 nM. Kinetics assays suggest that the complexes inhibit PTP1B in a competitive manner. Notably, they had moderate selectivity of PTP1B over T-cell protein tyrosine phosphatase (TCPTP) (about 2-fold) and good selectivity over Src homology phosphatase 1 (SHP-1) (about 4∼7-fold). Thus, these mixed-ligand complexes represent a promising class of PTP1B inhibitors for future development as anti-diabetic agents.  相似文献   

9.
Using a phosphorus based Mannich condensation reaction the new pyridylphosphines {5-Ph2PCH2N(H)}C5H3(2-Cl)N (1-Cl) and {2-Ph2PCH2N(H)}C5H3(5-Br)N (1-Br) have been synthesised in good yields (60% and 88%, respectively) from Ph2PCH2OH and the appropriate aminopyridine. The ligands 1-Cl and 1-Br display variable coordination modes depending on the choice of late transition-metal complex used. Hence P-monodentate coordination has been observed for the mononuclear complexes AuCl(1-Cl) (2), AuCl(1-Br) (3), RuCl2(p-cymene)(1-Cl) (4), RuCl2(p-cymene)(1-Br) (5), RhCl2(Cp)(1-Cl) (6), RhCl2(Cp)(1-Br) (7), IrCl2(Cp)(1-Cl) (8), IrCl2(Cp)(1′-Cl) (8′), IrCl2(Cp)(1-Br) (9), cis-/trans-PdCl2(1-Cl)2 (10), cis-/trans-PdCl2(1-Br)2 (11), cis-PtCl2(1-Cl)2 (12) and cis-PtCl2(1-Br)2 (13). Reaction of Pd(Me)Cl(cod) (cod = cycloocta-1,5-diene) with either 1 equiv. of 1-Br or the known pyridylphosphines 1′-Cl, 1-OH or 1-H gave the P/N-chelate complexes Pd(Me)Cl(1-Br-1-H) (14)-(17). All new compounds have been fully characterised by spectroscopic and analytical methods. Furthermore the structures of 4, 5, 10 and 16 · (CH3)2SO have been elucidated by single crystal X-ray crystallography. A crystal structure of the dinuclear metallocycle trans,trans-[PdCl2{μ-P/N-{Ph2PCH2N(H)}C5H4N}]2 · CHCl3, 18 · CHCl3, has also been determined. Here 1-H bridges, using both P and pyridyl N donors, two dichloropalladium centres affording a 12-membered ring with the PdCl2 units adopting a head-to-tail arrangement.  相似文献   

10.
Interaction of four luminescent rhenium(I) diimine complexes, [Re(CO)3(N-N)L]PF6 ((N-N = 2,2-bipyridine, L = py-3-COOH) 1a, (N-N = 2,2-bipyridine, L = py-3-CONH2) 1b, (N-N = 1,10-phenanthroline, L = py-3-COOH) 2a, (N-N = 1,10-phenanthroline, L = py-3-CONH2) 2b with bovine serum albumin (BSA) at physiological pH has been examined using UV-Vis absorption and luminescence spectroscopy, excited state lifetime measurement and circular dichroism (CD). In the presence of BSA, the luminescence of Re(I) complexes is quenched due to the locking-in of the probe into the protein environment. Interestingly the probe is released from the protein environment in the presence of sodium dodecyl sulfate (SDS) resulting in the restoration of the original luminescence along with a red shift in the emission maximum. These observations are explained in terms of binding constants (Ka) of probe with protein and surfactant and the nature of the binding has been investigated from Scatchard plot and Hill’s coefficient (n) value. These studies point out that the interaction between Re(I) complexes and BSA is cooperative in nature.  相似文献   

11.
Structure determinations for 2,2′-bipyridine and 1,10-phenanthroline adducts of lead(II) hexafluoroacetylacetonate, [Pb(bipy)2(hfacac)2] (1), [Pb(bipy)(hfacac)2] (2), and [Pb(phen)(hfacac)2] (3), show that the balance of intermolecular forces within the lattices is seemingly sensitive to the adduct stoichiometry but not to the nature of the heteroaromatic base. In 3, a structure, in which there is an apparent preference for CF/aromatic interactions over separate CF/CF and aromatic/aromatic interactions, is essentially identical at both 120 and 293 K.  相似文献   

12.
The dinuclear complexes [Pd2(L)2(bipy)2] (1), [Pd2(L)2(phen)2] (2), [Pt2(L)2(bipy)2] (3) and [Pt2(L)2(phen)2] (4), where bipy = 2,2′-bipyridine, phen = 1,10-phenanthroline and L = 2,2′-azanediyldibenzoic dianion) dibridged by H2L ligands have been synthesized and characterized. The binding of the complexes with fish sperm DNA (FS-DNA) were investigated by fluorescence spectroscopy. The results indicate that the four complexes bound to DNA with different binding affinity, in the order complex 4 > complex 3 > complex 2 > complex 1, and the complex 3 binds to DNA in both coordination and intercalative mode. Gel electrophoresis assay demonstrates the ability of the complexes to cleave the pBR 322 plasmid DNA. The cytotoxic activity of the complexes was tested against four different cancer cell lines. The four complexes exhibited cytotoxic specificity and significant cancer cell inhibitory rate.  相似文献   

13.
The Rh(III) polypyridyl complexes of the type [RhCl(pp)([9]aneS3)]2+ [(pp) = 2,2′-bipyridine (bpy), 2,2′-bipyrimidine (bpm),1,10-phenanthroline (phen), pyrazino[2,3-f]quinoxaline (tap), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq), dipyrido[2,3-a:2′,3′-c]phenazine (dppz)] 2-7 have been prepared in a stepwise manner by treatment of RhCl3 · 3H2O with the appropriate polypyridyl ligand (pp) followed by 1,4,7-trithiacyclononane. Interactions of the polypyridyl complexes with DNA were investigated by CD and UV/visible spectroscopy and by gel electrophoresis. The dpq complex 6 cleaves DNA exiguously in the dark, but UV irradiation is required to induce nuclease activity for the bpy complex 2. Whereas 2 [IC50 values: 12.8 (±0.2) and 4.4 (±0.1) μM] exhibits significantly higher cytotoxicities towards MCF-7 and HT-29 cells than 4 [IC50 values: 36.3 (±6.0) and 72.2 (±8.0)], the activity of complexes in the series 4/6/7 correlates directly with the size of the polypyridyl ligand, as documented by their respective IC50 values of 72.2 (±8.0), 20.9 (±2.8) and 7.4 (±2.2) towards HT-29 cells. Complexes of the nitrogen-rich ligands bpm (3) [IC50 values: 1.7 (±0.5) and 1.9 (±0.1) μM] and tap (5) [IC50 values: 11.5 (±0.6) and 7.6 (±4.8) μM] are considerably more potent than their bpy and phen counterparts 2 and 4. Measurement of the lactate dehydrogenase release for lymphoma (BJAB) cells after 1 h incubation demonstrates that unspecific necrosis is negligible for the most active compounds 3 and 7. Specific cell death apoptosis via DNA fragmentation was detected for BJAB cells after 72 h incubation and significant loss of the mitochondrial membrane potential in lymphoma cells indicates that the intrinsic pathway is involved.  相似文献   

14.
The synthesis, structure and spectral and redox properties of the copper(II) complexes [Cu(pmtpm)Cl2] (1) and [Cu(pmtpm)2](ClO4)2 (6), where pmtpm is the linear tridentate ligand 2-pyridyl-N-(2′-methylthiophenyl)methyleneimine containing a thioether and two pyridine donors, are described. Also, the mixed ligand complexes [Cu(pmtpm)(diimine)](ClO4)2 (2-5), where the diimine is 2,2′-bipyridine (bpy) (2), 1,10-phenanthroline (phen) (3), 2,9-dimethyl-1,10-phenanthroline (2,9-dmp) (4) or dipyrido-[3,2-d:2′,3′-f]-quinoxaline (dpq) (5), have been isolated and studied. The X-ray crystal structures of the complexes 1, [Cu(pmtpm)(2,9-dmp)](ClO4)24 and 6 have been successfully determined. The complex 1 possesses a trigonal bipyramidal distorted square based pyramidal (TBDSBP) coordination geometry in which three corners of the square plane are occupied by two nitrogens and thioether s of pmtpm ligand and the remaining equatorial and the axial positions by two chloride ions. The complex 4 contains a CuN4S chromophore also with a TBDSBP coordination geometry in which two nitrogens and the thioether sulfur of pmtpm ligand occupy three corners of the square plane. One of the two nitrogens of 2,9-dmp ligand is equatorially coordinated and the other axially to copper. On the other hand, the complex 6 is found to possess a square based pyramidal distorted trigonal bipyramidal (SPDTBP) coordination geometry. The CuN2S trigonal plane in it is comprised of the pyridine and imine nitrogens and the thioether sulfur of the pmtpm ligand. The pyridine nitrogens of the ligand occupy the axial positions and the second thioether sulfur remains uncoordinated. On long standing in acetonitrile solution the mixed ligand complexes 2 and 3 undergo ligand disproportionation to provide the corresponding bis-complexes of bpy and phen, respectively, and 6. The electronic and EPR spectral parameters and the positive redox potential of complex 4 are consistent with the equatorial location of the thioether sulfur in the square-based coordination geometry around copper(II). On the other hand, the higher g and lower A values and lower E1/2 values for the complexes 2, 3 and 5 are consistent with the axial coordination of the thioether sulfur. Also, the Cu(II)/Cu(I) redox potentials increase with increase in number of aromatic rings of the diimine ligand. The steric and electronic effects of the bidentate diimine ligands in orienting the thioether coordination to axial or equatorial position are discussed.  相似文献   

15.
Three new heteroleptic Cu(I) complexes containing one phenanthroline and one diphosphine type ligand ([Cu(N-N)(P-P)]+) have been prepared. In particular, one ligand is constituted by 1,10-phenanthroline (1), 2,9-dimethyl-1,10-phenanthroline (2) and 2,9-diphenethyl-1,10-phenanthroline (3) and the other ligand is in all cases 1,1′-bis(diphenylphosphino)ferrocene (dppf). Therefore, copper and iron metal centres are quite close one another, as evidenced by X-ray crystal diffraction. The structure together with the electrochemical and photophysical properties of these complexes have been compared to that of the corresponding complexes where dppf has been replaced by bis[2-(diphenylphosphino)-phenyl]ether (POP). Cyclic voltammetric experiments evidenced that the first oxidation process is located on the ferrocene moiety and that oxidation of Cu(I) is moved to more positive potential values and a chemical reaction is coupled to the electron transfer process. The absorption spectra show a metal-to-ligand charge transfer (MLCT) band, typical of Cu(I) phenanthroline complexes, at a higher energy compared to the homoleptic [Cu(N-N)2]+ species. No emission at either room temperature or 77 K has been observed for compounds 2 and 3, contrary to the high luminescence observed for the corresponding POP complexes. This result is consistent with a photoinduced energy transfer from the Cu(I) complex to the ferrocene moiety.  相似文献   

16.
Bin Hu 《Inorganica chimica acta》2010,363(7):1348-6199
Four transition metal complexes of 3,8-di(thiophen-2′,2″-yl)-1,10-phenanthroline (dtphen), formulated as [Ni(dtphen)2(H2O)2]·(ClO4)2 (1), [Zn(dtphen)2(H2O)]·(ClO4)2 (2) [Cu(dtphen)2(H2O)]·(ClO4)2 (3), [Cu(dtphen)(phen)2]·(ClO4)2 (4) (phen = 1,10-phenanthroline) with different metal-to-ligand ratios, were synthesized and characterized herein. The X-ray single-crystal diffraction studies of 1-4 exhibit that different molecular configurations for the dtphen ligand can be observed where the side thiophene rings adopt the trans/trans, trans/cis, trans/disorder and cis/cis conformations relative to the central 1,10-phenanthroline unit in different compounds. Fluorescence emission spectra of 1-4 in methanol show that the fluorescence emission of 2 is much stronger than the other three metal complexes, which is mainly due to its full d10 electronic configuration of Zn(II) ion.  相似文献   

17.
To investigate the structure-activity relationship of vanadium complexes in inhibiting protein tyrosine phosphatase1B (PTP1B), eight mixed-ligand oxovanadium(IV) complexes, [VIVO(SalAla)(NN)] (H2SalAla for salicylidene alanine, NN for N,N′-donor heterocyclic base, namely, 2,2′-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq, 3), dipyrido[3,2-a:2′,3′-c]phenazine (dppz, 4)), [VIVO(SalLys)(dpq)] (5), [VIVO(SalLys)(dppz)] (6), [VIVO(SalAsp)(dppz)], (7) and [VIVO(SalTrp)(dppz)] (8)), of which 3-8 are new, have been prepared and characterized by elemental analysis, infrared, UV-visible, electrospray ionization mass spectrometry and conductivity. The molar conductance data confirmed the non-electrolytic nature of the complexes in DMSO solution. The coordination in [VIVO (SalAla)(phen)] (2) was confirmed by X-ray crystal structure analysis. The oxidation state of V(IV) with d1 configuration in 2 was confirmed by EPR. The speciation of VO-SalAla-phen in aqueous solution was investigated by potentiometric pH titrations. The results indicate that the main species are two ternary complexes at the pH range 7.0-7.4. Biochemical assays demonstrate that the mixed-ligand oxovanadium(IV) complexes are potent inhibitors of PTP1B with IC50 values in the range of 62-597 nM, approximately 3-10 fold weaker in potency than those of similar mixed-ligand oxovanadium(IV) complexes of salicylidene anthranilic acid (SAA) derivative with polypyridyl ligands, except complex 8, which exhibits comparable or better inhibition activity than those of the mixed-ligand oxovanadium(IV) complexes of SAA derivative with polypyridyl ligands. The results demonstrate that the structures of vanadium complexes influence the PTP1B inhibition activity. Kinetics assays reveal that complex 2 inhibits PTP1B in a competitive manner.  相似文献   

18.
A facile method to coordinate transition metal complexes (TMCs) on single-walled carbon nanotubes (SWNTs) has been developed. Reaction of Zn(OAc)2 with carboxylic acid functionalized SWNTs (SWNT-COOH) affords SWNT complexes ‘zipped-together’ by zinc carboxylate units (termed SWNT-TMC-1 herein). Reactions of SWNT-TMC-1 with 2,2′-bipyridine or 4,4′-bipyridine gave two new SWNT-TMCs, the former being ‘unzipped’ (SWNT-TMC-2), and the latter involving an additional ligand bridge between the zinc ions (SWNT-TMC-3). Inclusion of 2,2′-bipyridine and 4,4′-bipyridine into the SWNT-TMCs was confirmed by IR spectroscopy. The microstructures of SWNT-TMC-2 and SWNT-TMC-3 were investigated by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (Xps), elemental mapping and linear profiles analysis.  相似文献   

19.
Reaction of PPN[W(CO)3(R2PC2H4PR2)(SH)] (PPN=Ph3PNPPh3; R=Me, 1; R=Ph, 2) with aromatic aldehydes in the presence of trifluoroacetic acid gave tungsten complexes of thiobenzaldehydes mer-[W(CO)3(R2PC2H4PR2)(η2-SCHR)] (R=Me, 3a-3f; R=Ph, 4a-4e) in high yields. Analogous complexes of aliphatic thioaldehydes mer-[W(CO)3(Me2PC2H4PMe2)(η2-SCHR)] (3g-3l) could only be obtained from the highly electron-rich thiolate complex 1. The structure of 3i (R=i-Bu) was determined by X-ray crystallography. In solution the complexes 3 and 4 are in equilibrium with small quantities of their isomers fac-[W(CO)3(R2PC2H4PR2)(η2-SCHR)]. Reaction of complexes 3 with dimethylsulfate followed by salt metathesis with NH4PF6 gave the alkylation products mer-[W(CO)3(Me2PC2H4PMe2)(η2-MeSCHR)]PF6 (5a-5l) as mixtures of E and Z isomers. The methylated thioformaldehyde complex mer-[W(CO)3(Me2PC2H4PMe2)(η2-MeSCH2)]PF6 (5m) was prepared similarly. Nucleophilic addition of hydride (from LiAlH4) to 5 initially gave thioether complexes mer-[W(CO)3(Me2PC2H4PMe2)(MeSCH2R)] (mer-6) which rapidly isomerized to fac-[W(CO)3(Me2PC2H4PMe2)(MeSCH2R)] (fac-6).  相似文献   

20.
The reaction of [Ag2(κ2-P,P′-DPEphos)2(μ-OTf)2] (1) (DPEphos = bis(2-(diphenylphosphino)phenyl]ether) with 1,10-phenanthroline (phen) and 4,4′-bipyridine in equimolar ratios afford, respectively, the mononuclear complex [Ag(κ2-P,P′-DPEphos)(phen)][OTf] (2) and the coordination polymer [Ag(κ2-P,P′-DPEphos)(μ-4,4′-bpy)]n[OTf]n (3). In complex 3, the silver atoms are bridged by 4,4′-bipyridine units to form a zigzag metallopolymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号