首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The most deadly form of cancer is not lung or colon, breast or prostate; it is any cancer that has become metastatic. Mortality due to metastatic melanoma, one of the most aggressive and deadly cancers, has increased steadily over the last several decades. Unfortunately, the arsenal of chemotherapeutic agents available today is most often unsuccessful at extending and improving the life expectancy of afflicted individuals. We sought to identify an effective and nontoxic agent against metastatic melanoma.

Methodology/Principal Findings

We chose to study Cloudman S-91 mouse melanoma cells (sub-clone M3, CCL53.1) because these cells are highly aggressive and metastatic, representing one of the deadliest types of cancer. Melanoma cells also had an experimental advantage because their morphology, which is easily monitored, relates to the physiology of metastatic cells and normal melanocytes. We chose to test methyl sulfone as a chemotherapeutic agent for two reasons. Because of its chemical structure, we speculated a potential anti-cancer activity by targeting microtubules. Equally important, methyl sulfone has a well-established safety profile in humans. Surprisingly, we found that malignant melanoma cells exposed to methyl sulfone demonstrated the loss of phenotypes characteristic of malignant cells, and the reemergence of phenotypes characteristic of healthy melanocytes. Briefly, over time methyl sulfone induced contact inhibition, loss of ability to migrate through an extracellular matrix, loss of anchorage-independent growth, proper wound healing followed by contact inhibition, irreversible senescence followed by arborization with melanosomes in arbors as seen in normal melanocytes.

Conclusions/Significance

Methyl sulfone may have clinical potential as a non-toxic agent effective against metastatic melanoma. Additionally, methyl sulfone has promise as a tool to explore molecular mechanisms of metastatic transformation as well as fundamental processes such as cell migration, contact inhibition, wound healing and cellular senescence.  相似文献   

2.
3.
In the vertebrate embryo, melanocytes arise from the neural crest, migrate to and colonize the basal layer within the skin and skin appendages. Post-migratory melanocytes are securely attached to the basement membrane, and their morphology, growth, adhesion, and migration are under control of neighboring keratinocytes. Melanoma is a malignant tumor originated from melanocytes or their progenitor cells. During melanocyte transformation and melanoma progression, melanocytes lose their interactions with keratinocytes, resulting in uncontrolled proliferation and invasion of the malignant cells. Melanoma cells at the advanced stages often lack melanocytic features and resemble multipotent progenitors, which are a potential melanocyte reservoir in human skin. In this mini-review, we will summarize findings on cell-cell interactions that are responsible for normal melanocyte homeostasis, stem cell self-renewal, and differentiation. Our ultimate goal is to define molecules and pathways, which are essential for normal cell-cell interactions but deregulated in melanoma formation and progression.  相似文献   

4.
Incidence of malignant melanoma is increasing globally. While the initial stages of tumors can be easily treated by a simple surgery, the therapy of advanced stages is rather limited. Melanoma cells spread rapidly through the body of a patient to form multiple metastases. Consequently, the survival rate is poor. Therefore, emphasis in melanoma research is given on early diagnosis and development of novel and more potent therapeutic options. The malignant melanoma is arising from melanocytes, cells protecting mitotically active keratinocytes against damage caused by UV light irradiation. The melanocytes originate in the neural crest and consequently migrate to the epidermis. The relationship between the melanoma cells, the melanocytes, and neural crest stem cells manifests when the melanoma cells are implanted to an early embryo: they use similar migratory routes as the normal neural crest cells. Moreover, malignant potential of these melanoma cells is overdriven in this experimental model, probably due to microenvironmental reprogramming. This observation demonstrates the crucial role of the microenvironment in melanoma biology. Indeed, malignant tumors in general represent complex ecosystems, where multiple cell types influence the growth of genetically mutated cancer cells. This concept is directly applicable to the malignant melanoma. Our review article focuses on possible strategies to modify the intercellular crosstalk in melanoma that can be employed for therapeutic purposes.  相似文献   

5.
The synthesis of melanin involves the oxidation of phenolic substrates by the enzyme tyrosinase. In vertebrates tyrosinase is present only in specialized cells (melanocytes), where it catalyses the oxidation of tyrosine and certain diphenolic intermediate products to quinones which polymerize to give rise to melanin. This specialized metabolic pathway provides a possible approach to the specific chemotherapy of malignant tumours of pigment cells (malignant melanoma). Certain analogues of tyrosine are oxidized by tyrosinase generating reactive orthoquinones with cytotoxic potential. One such analogue, 4-hydroxyanisole, has been investigated as a possible specific melanocytotoxic precursor. The parent compound inhibits DNA synthesis but exhibits little general toxicity, while the tyrosinase oxidation products are highly toxic to cells. The mechanism of this toxicity may involve semiquinone radicals. Encouraging initial results have been obtained from clinical pilot studies using intra-arterial infusion of hydroxyanisole in patients with localized recurrences of malignant melanoma.  相似文献   

6.
It has been shown that tumor-promoting phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulates the proliferation of normal human melanocytes, whereas it inhibits the growth of human melanoma cell lines. The expression of protein kinase C (PKC) subspecies, the major intracellular receptors for TPA, was examined in normal melanocytes and the four melanoma cell lines HM3KO, MeWo, HMV-1, and G361. PKC was partially purified and then separated into subspecies by column chromatography on Mono Q and hydroxyapatite successively, and finally subjected to immunoblot analysis using antibodies specific for the PKC subspecies. Of the PKC subspecies examined, δ-, ϵ-, and ζ-PKC were detected in both normal melanocytes and the four melanoma cell lines. In contrast, both α-PKC and β-PKC were expressed in normal melanocytes, whereas either α-PKC or β-PKC was detected in melanoma cells. Specifically, HM3KO, MeWo, and HMV-1 cells were shown to contain α-PKC but not β-PKC, while G361 cells expressed β-PKC but not α-PKC. The growth of these melanoma cells was suppressed by TPA treatment, and the growth of the G361 cells lacking α-PKC was inhibited more efficiently than the other melanoma cell lines which lacked β-PKC. It was further shown that β-PKC was not detected in freshly isolated human primary or metastatic melanoma tissues. These results suggest that the expression of α-PKC or β-PKC may be altered during the malignant transformation of normal melanocytes and that loss of α-PKC or β-PKC may be related to the inhibitory effect of TPA on the growth of melanoma cells. © 1996 Wiley-Liss, Inc.  相似文献   

7.
We previously described a novel in vitro culture technique for dedifferentiated human adult skin melanocytes. Melanocytes cultured in a defined, cholera toxin and PMA free medium became bipolar, unpigmented, and highly proliferative. Furthermore, TRP-1 and c-Kit expression disappeared and EGFR receptor and nestin expression were induced in the cells. Here, we further characterized the phenotype of these dedifferentiated cells and by comparing them to mature pigmented melanocytes we detected crucial steps in their phenotype change. Our data suggest that normal adult melanocytes easily dedifferentiate into pluripotent stem cells given the right environment. This dedifferentiation process described here for normal melanocyte is very similar to what has been described for melanoma cells, indicating that phenotype switching driven by environmental factors is a general characteristic of melanocytes that can occur independent of malignant transformation.  相似文献   

8.
9.
10.
Normal or malignant melanocytes interact with the microenvironment through the release of soluble factors from cells and through direct cell-cell contact. Melanoma cells produce a large number of different growth factors and cytokines that affect angiogenesis, stroma formation, motility, and the inflammatory and immune response. Most of the angiogenic growth factors produced by melanoma cells are also mitogenic for fibroblasts. The mechanisms and the receptors involved in direct cell-cell contacts of melanocytes and melanoma cells are largely unknown, but the regulatory role of keratinocytes for melanocytic cells appears at several levels. Keratinocytes induce a dendritic morphology in melanocytes, and control proliferation to maintain a constant keratinocyte/melanocyte ratio during exponential growth. Expression of cell surface adhesion receptors is controlled by keratinocytes on melanocytes and nevus cells but not on advanced melanoma cells. These studies underline the complex interactions between skin cells. The escape of melanocytes from the control by keratinocytes may be a hallmark of nevus cells, and the constitutive production of various growth factors and cytokines appears to represent a major characteristic of melanoma cells.  相似文献   

11.
High levels of intracellular glutathione (GSH) may result in resistance of tumor cells to cytotoxic drugs. Because of the innate refractory nature of melanoma cells to chemotherapy, we have used a syngeneic murine system consisting of nontumorigenic Mel-ab melanocytes, tumorigenic H-ras-transformed melanocytes (C9.1), and the highly metastatic BL6 melanoma cells to examine the GSH content, glutathione S-transferase (GST) activity, and sensitivity to buthionine sulfoximine (BSO) and other cytotoxic drugs. Compared to the nontumorigenic melanocytes, both C9.1 and BL6 melanoma cells have nearly fivefold higher GSH content, and BL6 cells have increased GST activity. C9.1 and BL6 cells are more resistant to the cytotoxic effects of BCNU and adriamycin; however, the degrees of resistance do not reflect the increased GSH content in these cells. Pretreatment of BL6 melanoma cells with 50 microM BSO depleted over 90% of their GSH content and enhanced the growth-inhibitory effects of L-dopa methylester, BCNU, bleomycin, and dacarbazine. Exposure to BSO alone was not toxic to the tumor cells for up to 24 hr, but was significantly cytotoxic in the melanocytes after 9 hr. The sensitivity of these cells to BSO appears to depend on a critical level of GSH depletion which is not related to the initial GSH content. These studies suggest that the resistance of melanoma cells to cytotoxic drugs is only partially attributed to changes in the GSH system caused during cellular transformation.  相似文献   

12.
Syndecan‐2, a transmembrane heparan sulfate proteoglycan that is highly expressed in melanoma cells, regulates melanoma cell functions (e.g. migration). Since melanoma is a malignant tumor of melanocytes, which largely function to synthesize melanin, we investigated the possible involvement of syndecan‐2 in melanogenesis. Syndecan‐2 expression was increased in human skin melanoma tissues compared with normal skin. In both mouse and human melanoma cells, siRNA‐mediated knockdown of syndecan‐2 was associated with reduced melanin synthesis, whereas overexpression of syndecan‐2 increased melanin synthesis. Similar effects were also detected in human primary epidermal melanocytes. Syndecan‐2 expression did not affect the expression of tyrosinase, a key enzyme in melanin synthesis, but instead enhanced the enzymatic activity of tyrosinase by increasing the membrane and melanosome localization of its regulator, protein kinase CβII. Furthermore, UVB caused increased syndecan‐2 expression, and this up‐regulation of syndecan‐2 was required for UVB‐induced melanin synthesis. Taken together, these data suggest that syndecan‐2 regulates melanin synthesis and could be a potential therapeutic target for treating melanin‐associated diseases.  相似文献   

13.
Melanoma growth stimulatory activity (MGSA) was originally described as an endogenous growth factor for human melanoma cells. To test the hypothesis that an MGSA autocrine loop is responsible for the partial freedom from growth control observed in nevocytes and melanoma cells, MGSA growth response and MGSA mRNA/protein levels were examined in these cells compared with normal melanocytes. As a single agent, or in combination with other factors, MGSA stimulated the growth of normal human epidermal melanocytes as well as other growth promoters for melanocytes. Nevocytes were not as responsive to exogenous MGSA as melanocytes. MGSA mRNA was minimal or not detected in cultured normal melanocytes, although the protein was present when the cells were cultured in the presence of serum/growth factors and absent when serum/growth factors were omitted. In contrast, MGSA mRNA was constitutively expressed in the absence of exogenous growth factors in cultures established from benign intradermal and dysplastic nevi and melanoma lesions in different stages of tumor progression. Nevus cultures contained immunoreactive MGSA protein in the presence of serum but were negative or only faintly positive in the absence of serum. Melanoma cell lines were positive for MGSA protein in both the presence and the absence of serum. Thus, continued expression of both MGSA mRNA and MGSA protein in the absence of exogenous hormones or serum factors may correlate with partial freedom from growth control exhibited by malignant melanocytes.  相似文献   

14.
黑素瘤是一种多发于皮肤的恶性肿瘤,因其侵袭性强,预后差等特点一直是科研人员关注的热点。环状RNAs(circRNAs)是一种新型内源性非编码RNA,广泛参与动物生长发育、细胞分化和信号转导等生理过程,但circRNAs在黑素瘤细胞内的分子机制尚未被充分解析。本研究以小鼠(C57BL/6J)正常黑素细胞及B16黑素瘤细胞为研究对象,采用二代测序技术分析两种细胞间circRNAs表达特性。测序结果显示,小鼠正常黑素细胞和黑素瘤细胞中共有851个circRNAs,其中195个差异表达circRNAs(DECs)。GO及KEGG数据库注释发现,DECs的来源基因主要参与细胞周期(cell cycle)、紧密结合(tight junction)、Rap1信号通路(Rap1 signaling pathway)、TGF-beta信号通路(TGF-beta signaling pathway)等与细胞增殖、迁移相关的信号通路;探究发现,黑素瘤细胞中显著性高表达的circE2F5(circ-3:14578602|14606309)通过上调E2F5的表达促进黑素瘤细胞增殖。circRNA靶基因预测发现,...  相似文献   

15.
To identify C-MYC targets rate-limiting for proliferation of malignant melanoma, we stably inhibited C-MYC in several human metastatic melanoma lines via lentivirus-based shRNAs approximately to the levels detected in normal melanocytes. C-MYC depletion did not significantly affect levels of E2F1 protein reported to regulate expression of many S-phase specific genes, but resulted in the repression of several genes encoding enzymes rate-limiting for dNTP metabolism. These included thymidylate synthase (TS), inosine monophosphate dehydrogenase 2 (IMPDH2) and phosphoribosyl pyrophosphate synthetase 2 (PRPS2). C-MYC depletion also resulted in reduction in the amounts of deoxyribonucleoside triphosphates (dNTPs) and inhibition of proliferation. shRNA-mediated suppression of TS, IMPDH2 or PRPS2 resulted in the decrease of dNTP pools and retardation of the cell cycle progression of melanoma cells in a manner similar to that of C-MYC-depletion in those cells. Reciprocally, concurrent overexpression of cDNAs for TS, IMPDH2 and PRPS2 delayed proliferative arrest caused by inhibition of C-MYC in melanoma cells. Overexpression of C-MYC in normal melanocytes enhanced expression of the above enzymes and increased individual dNTP pools. Analysis of in vivo C-MYC interactions with TS, IMPDH2 and PRPS2 genes confirmed that they are direct C-MYC targets. Moreover, all three proteins express at higher levels in cells from several metastatic melanoma lines compared to normal melanocytes. Our data establish a novel functional link between C-MYC and dNTP metabolism and identify its role in proliferation of tumor cells.  相似文献   

16.
17.
18.
Accesibility to DNA in the nucleus is important for the regulation of gene expression and for the effect of DNA-modifying drugs. We have now studied differential genome susceptibility in normal melanocytes and the corresponding malignant melanoma. DNA hypersensitivity assays revealed a markedly lesser degradation in melanoma nuclei compared to that in melanocytes. Cross-linking of DNA to nuclear proteins by ultraviolet light showed a cell-type dependent inverse correlation of genomic susceptibility with binding of (dA.dT) (dA.dT) sequences, compared to that shown with (dG.dC) (dG.dC), regardless of methylation in cytosines. Exposure to cholera toxin partly reversed genomic susceptibility and increased DNA/protein cross-linking in melanocytes. In contrast, melanoma cells showed decreased DNA/protein interactions and greater genome susceptibility after exposure to cholera toxin or okadaic acid. Our data suggest that a molecular mechanism for differential genome exposure in cancer cells involves a modified expression of sequence-specific DNA-binding proteins.  相似文献   

19.
Melanoma cells which have been isolated from metastatic melanoma tissue are able to survive and proliferate in serum supplemented media. In contrast, normal human melanocytes require the presence of growth stimulators if they are to survive in culture. A tumor promotor, 12–0-tetradecanoyl-phorbol-13-acetate (TPA) and substances that increase intracellular levels of cyclic-adenosine-monophosphate (cAMP), such as cholera toxin or isobutylmethyl xanthine, have been widely used for this purpose. The phorbol diester receptor was shown in 1982 to be the phospholipid- and calcium-dependent enzyme protein kinase C (PKC). We therefore directed our studies to the role of PKC regulation in the growth of normal human melanocytes and their transformation. Our studies show that while melanoma cells are inhibited by TPA, the growth of normal melanocytes is stimulated in a dose-dependent manner. The inhibitor, 1-(5-isoquinolinesulfonyl)-2-methyl-piperizine dihydrochloride (H7), which has been found to be the most specific for PKC, had no effect on the growth of normal melanocytes, but inhibited the growth of melanoma cells in a dose-dependent manner. PKC was isolated from the membrane and cytosol of normal melanocytes and melanoma cells. The basal (resting) levels of PKC activity in normal melanocytes was low compared to that measured in melanoma cells, and after short-term (1 hour) treatment with TPA the PKC activity was greatest at the membrane, with the activity decreasing the cytosol. Upon prolonged (48 hours) treatment with TPA, this redistribution of activity continued in normal melanocytes and the total activity increased. In melanoma cells, however, the total PKC activity decreased, particularly in the membrane fraction. A difference in activity and distribution of the enzyme was also seen after short-term (1 hour) treatment with H7. There was very little effect seen on PKC in normal melanocytes; however, the effect on melanoma cells was similar to that seen after 48 hours of exposure to TPA with a decrease in total activity, particularly in the membrane fraction. These results indicate that the regulation of PKC, in particular its activation by TPA, is altered during the transformation of normal human melanocytes  相似文献   

20.
Conditional Cre-mediated recombination has emerged as a robust method of introducing somatic genetic alterations in an organ-specific manner in the mouse. Here, we generated and characterized mice harboring a 4-hydroxytamoxifen (OHT)-inducible Cre recombinase-estrogen receptor fusion transgene under the control of the melanocyte-specific tyrosinase promoter, designated Tyr::CreER(T2). Cre-mediated recombination was induced in melanocytes in a spatially and temporally controlled manner upon administration of OHT and was documented in embryonic melanoblasts, follicular bulb melanocytes, dermal dendritic melanocytes, epidermal melanocytes of tail skin, and in putative melanocyte stem cells located within the follicular bulge. Functional evidence suggestive of recombination in follicular melanocyte stem cells included the presence of Cre-mediated recombination in follicular bulb melanocytes 1 year after topical OHT administration, by which time several hair cycles have elapsed and the melanocytes residing in this location have undergone multiple rounds of apoptosis and replenishment. These Tyr:: CreER(T2) transgenic mice represent a useful resource for the evaluation of melanocyte developmental genetics, the characterization of melanocyte stem cell function and dynamics, and the construction of refined mouse models of malignant melanoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号