首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Black tea is recently reported to have anti-carcinogenic effects through pro-oxidant property, but the underlying mechanisms remain unclear. Mammalian cytosolic thioredoxin reductase (TrxR1) is well -known for its anti-oxidation activity. In this study, we found that black tea extract (BTE) and theaflavins (TFs), the major black tea polyphenols, inhibited the purified TrxR1 with IC50 44 μg/ml and 21 ± 1 μg/ml, respectively. Kinetics of TFs exhibited a mixed type of competitive and non-competitive inhibition, with Kis 4 ± 1 μg/ml and Kii 26 ± 5 μg/ml against coenzyme NADPH, and with Kis 12 ± 3 μg/ml and Kii 27 ± 5 μg/ml against substrate DTNB. In addition, TFs inhibited TrxR1 in a time-dependent manner. In an equilibrium step, a reversible TrxR1-TFs complex (E * I) forms, which is followed by a slow irreversible first-order inactivation step. Rate constant of the inactivation was 0.7 min−1, and dissociation constant of E * I was 51.9 μg/ml. Treatment of NADPH-reduced TrxR1 with TFs decreased 5-(Iodoacetamido) fluorescein incorporation, a fluorescent thiol-reactive reagent, suggesting that Sec/Cys residue(s) in the active site may be involved in the binding of TFs. The inhibitory capacity of TFs depends on their structure. Among the TFs tested, gallated forms had strong inhibitory effects. The interactions between TFs and TrxR1 were investigated by molecular docking, which revealed important features of the binding mechanism of theaflavins. An inhibitory effect of BTE on viability of HeLa cells was observed with IC50 29 μg/ml. At 33 μg/ml of BTE, TrxR1 activity in HeLa cells was decreased by 73% at 22 h after BTE treatment. TFs inhibited cell viability with IC50 10 ± 4 μg/ml for HeLa cells and with IC50 20 ± 5 μg/ml for EAhy926 cells. The cell susceptibility to TFs was inversely correlated to cellular levels of TrxR1. The inhibitory actions of TFs on TrxR1 may be an important mechanism of their anti-cancer properties.  相似文献   

2.
A series of 5,7-dihydroxyflavanone derivatives were synthesized and identified as reversible and competitive protein tyrosine phosphatase (PTP) 1B inhibitors with IC50 values in the micromolar range. Compound 4k had the most potent in vitro inhibition activity against PTP1B (IC50 = 2.37?±?0.37 μM) and the greatest selectivity (3.7-fold) for PTP1B relative to T-cell protein tyrosine phosphatase. Cell-based studies revealed that 4k was membrane-permeable and enhanced insulin receptor tyrosine phosphorylation in CHO/hIR cells.  相似文献   

3.
Pathological calcifications induced by deposition of basic phosphate crystals or hydroxyapatite (HA) on soft tissues are a large family of diseases comprising of ankylosing spondylitis (AS), end-stage osteoarthritis (OA) and vascular calcification. High activity of tissue non-specific alkaline phosphatase (TNAP) is a hallmark of pathological calcifications induced by HA deposition. The use of TNAP inhibitor is a possible therapeutic option to address calcific diseases produced by HA deposition on soft tissues. We report the synthesis of a series of thiopheno-imidazo[2,1-b]thiazole derivatives which were evaluated as potential inhibitors of TNAP displaying a large range of IC50 at pH 10.4 (from 42 ± 13 μM to more than 800 μM).  相似文献   

4.
Bis(maltolato)oxovanadium(IV) (BMOV), and its ethylmaltol analog, bis(ethylmaltolato)oxovanadium(IV) (BEOV), are candidate insulin-enhancing agents for the treatment of type 2 diabetes mellitus; in mid-2008, BEOV advanced to phase II clinical testing. The interactions of BMOV and its inorganic congener, vanadyl sulfate (VOSO4), with human serum apo-transferrin (hTf) were investigated using differential scanning calorimetry (DSC). Addition of BMOV or VOSO4 to apo-hTf resulted in an increase in thermal stability of both the C- and N-lobes of transferrin as a result of binding to either vanadyl compound. A series of DSC thermograms of hTf solutions containing different molar ratios of BMOV and VOSO4 were used to determine binding constants; at 25 °C the binding constants of BMOV to the C- and N-lobes of apo-hTf were found to be 3 (±1) × 105 and 1.8 (±0.7) × 105 M−1, respectively. The corresponding values for VOSO4 were 1.7 (±0.3) × 105 and 7 (±2) × 104 M−1. The results show that the vanadium species initially presented as either BMOV or VOSO4 had similar affinities for human serum transferrin due to oxidation of solvated vanadyl(IV) prior to complexation to transferrin. Binding of metavanadate () was confirmed by DSC and isothermal titration calorimetry (ITC) experiments of the interaction between sodium metavanadate (NaVO3) and hTf.  相似文献   

5.
Ma L  Lu L  Zhu M  Wang Q  Gao F  Yuan C  Wu Y  Xing S  Fu X  Mei Y  Gao X 《Journal of inorganic biochemistry》2011,105(9):1138-1147
Three dinuclear copper complexes of organic claw ligands (2,2′,2″,2?-(5-R-2-hydroxy-1,3-phenylene)bis(methylene)bis(azanetriyl)tetraacetic acid, R = methyl (H5L1), chloro (H5L2) and bromo (H5L3)): [Cu2NaL1(H2O)2] (1), [Cu2HL2(H2O)2] (2), [Cu2NaL3(H2O)2] (3), have been synthesized and characterized by elemental analyses, infrared spectra, thermo-gravimetric analyses, X-ray diffraction analysis, electrospray ionization mass spectra, pH-potentiometric titration, molar conductivity. Their inhibitory effects against human protein tyrosine phosphatase 1B (PTP1B), T cell protein tyrosine phosphatase (TCPTP), Megakaryocyte protein tyrosinephosphatase 2 (PTP-MEG2), srchomology phosphatase 1 (SHP-1) and srchomology phosphatase 2 (SHP-2) are evaluated in vitro. The three copper complexes exhibit potent and almost same inhibition against PTP1B and SHP-1 with IC50 values ranging from 0.15 to 0.31 μM, about 2-fold stronger inhibition than against PTP-MEG2, 10-fold stronger inhibition than against TCPTP, but almost no inhibition against SHP-2. Kinetic analysis indicates that they are reversible competitive inhibitors of PTP1B. Molecular docking analyses confirm the inhibition model. Fluorescence titration studies suggest that the complexes bond to PTP1B with the formation of a 1:1 complex. The results demonstrate that copper complexes that are potent PTPs inhibitors but have different inhibitory effects over different PTPs, may be explored as new practical inhibitors towards individual PTP with some specificity.  相似文献   

6.
Acyl coenzyme A:cholesterol acyltransferase (ACAT) catalyzes the intracellular synthesis of cholesteryl esters (CE). Both ACAT isoforms, ACAT1 and ACAT2, play key roles in the pathophysiology of atherosclerosis and ACAT inhibition retards atherosclerosis in animal models. Rimonabant, a type 1 cannabinoid receptor (CB1) antagonist, produces anti-atherosclerotic effects in humans and animals by mechanisms which are not completely understood. Rimonabant is structurally similar to two other cannabinoid receptor antagonists, AM251 and SR144528, recently identified as potent inhibitors of ACAT. Therefore, we examined the effects of Rimonabant on ACAT using both in vivo cell-based assays and in vitro cell-free assays. Rimonabant dose-dependently reduced ACAT activity in Raw 264.7 macrophages (IC50 = 2.9 ± 0.38 μM) and isolated peritoneal macrophages. Rimonabant inhibited ACAT activity in intact CHO-ACAT1 and CHO-ACAT2 cells and in cell-free assays with approximately equal efficiency (IC50 = 1.5 ± 1.2 μM and 2.2 ± 1.1 μM for CHO-ACAT1 and CHO-ACAT2, respectively). Consistent with ACAT inhibition, Rimonabant treatment blocked ACAT-dependent processes in macrophages, oxysterol-induced apoptosis and acetylated-LDL induced foam cell formation. From these results we conclude that Rimonabant is an ACAT1/2 dual inhibitor and suggest that some of the atherosclerotic beneficial effects of Rimonabant are, at least partly, due to inhibition of ACAT.  相似文献   

7.
Organovanadium compounds have been shown to be insulin sensitizers in vitro and in vivo. One potential biochemical mechanism for insulin sensitization by these compounds is that they inhibit protein tyrosine phosphatases (PTPs) that negatively regulate insulin receptor activation and signaling. In this study, bismaltolato oxovanadium (BMOV), a potent insulin sensitizer, was shown to be a reversible, competitive phosphatase inhibitor that inhibited phosphatase activity in cultured cells and enhanced insulin receptor activation in vivo. NMR and X-ray crystallographic studies of the interaction of BMOV with two different phosphatases, HCPTPA (human low molecular weight cytoplasmic protein tyrosine phosphatase) and PTP1B (protein tyrosine phosphatase 1B), demonstrated uncomplexed vanadium (VO(4)) in the active site. Taken together, these findings support phosphatase inhibition as a mechanism for insulin sensitization by BMOV and other organovanadium compounds and strongly suggest that uncomplexed vanadium is the active component of these compounds.  相似文献   

8.
In vitro antitumour activity of the [Pt(ox)(Ln)2] (1-7) and [Pd(ox)(Ln)2] (8-14) oxalato (ox) complexes involving N6-benzyl-9-isopropyladenine-based N-donor carrier ligands (Ln) against ovarian carcinoma (A2780), cisplatin resistant ovarian carcinoma (A2780cis), malignant melanoma (G-361), lung carcinoma (A549), cervix epitheloid carcinoma (HeLa), breast adenocarcinoma (MCF7) and osteosarcoma (HOS) human cancer cell lines was studied. Some of the tested complexes were even several times more cytotoxic as compared with cisplatin employed as a positive control. The improved cytotoxic effect was demonstrated for the platinum(II) complexes 3 (IC50 = 3.2 ± 1.0 μM and 3.2 ± 0.6 μM) and 5 (IC50 = 4.0 ± 1.0 μM and 4.1 ± 1.4 μM) against A2780 and A2780cis, as compared with 11.5 ± 1.6 μM, and 30.3 ± 6.1 μM determined for cisplatin, respectively. The significant in vitro cytotoxicity against MCF7 (IC50 = 8.2 ± 3.8 μM for 12) and A2780 (IC50 = 5.4 ± 1.2 μM for 14) was evaluated for the palladium(II) oxalato complexes, which again exceeded cisplatin, whose IC50 equalled 19.6 ± 4.3 μM against the MCF7 cells. Selected complexes were also screened for their in vitro cytotoxic effect in primary cultures of human hepatocytes and they were found to be non-hepatotoxic.  相似文献   

9.
Four bis(thiosemicarbazonate)gold(III) complexes (1-4) with a general formula [Au(L)]Cl {L = L1, glyoxal-bis(N4-methylthiosemicarbazone); L2, glyoxal-bis(N4-ethylthiosemicarbazone); L3, diacetyl-bis(N4-methylthiosemicarbazone); L4, diacetyl-bis(N4-ethylthiosemicarbazone)} were synthesised and screened for activity against the human immunodeficiency virus (HIV). Complexes 1-4 were characterised using 1H-NMR and IR spectroscopy; and their purity established by micronanalysis. Complex 3 inhibited viral infection of TZM-bl cells by 98% (IC50 = 6.8 ± 0.6 μM) at a non toxic concentration of 12.5 μM while complex 4 inhibited infection of these cells by 72 and 98% (IC50 = 5.3 ± 0.4 μM) at concentrations of 6.25 and 12.5 μM respectively. The mechanism of inhibition of infection in TZM-bl cells is presumably as a result of the cytostatic or anti-proliferative activity that was observed for complex 4 in real time cell electronic sensing (RT-CES) and carboxyflourescein succinimidyl ester (CFSE) analysis. Treatment of T lymphocytes from HIV infected individuals with 4 decreased CD4+ T cell expression (p = 0.0049) as demonstrated by multi-parametric flow cytometry without suppressing cytokine production. None of the ligands (L1-L4) demonstrated anti-viral activity, supporting the importance of metal (gold) complexation in these potential drugs. Complexes 3 and 4 were shown to have ideal lipophilicity values that were similar when shake flask (0.97 ± 0.5 and 2.42 ± 0.6) and in silico prediction (0.8 and 1.5) methods were compared. The activity and drug-like properties of complexes 3 and 4 suggests that these novel metal-based compounds could be combined with virus inhibitory drugs to work as cytostatic agents in the emerging class of anti-HIV drugs known as virostatics.  相似文献   

10.
We demonstrate the inhibition of the native phosphatase activity of a cold active alkaline phosphatase from Vibrio (VAP) (IC50 of 44 ± 4 (n = 4) μM at pH 7.0 after a 30 min preincubation) by a specific β-lactam compound (only by imipenem, and not by ertapenem, meropenem, ampicillin or penicillin G). The homologous scaffold was detected by an in silico analysis that established the spatial and electrostatic congruence of the active site of a Class B2 CphA metallo-β-lactamase from Aeromonas hydrophila to the active site of VAP. The tested β-lactam compounds did not inhibit Escherichia coli or shrimp alkaline phosphatase, which could be ascribed to the lower congruence indicated by CLASP. There was no discernible β-lactamase activity in the tested alkaline phosphatases. This is the first time a scaffold recognizing imipenem in an alkaline phosphatase (VAP) has been demonstrated.  相似文献   

11.
A series of pyrrolo[2,3-c]azepine derivatives was designed, synthesized, and evaluated as a new class of inhibitors against protein tyrosine phosphatase 1B (PTP1B) in vitro. The results demonstrated that compounds bearing a biphenyl moiety were proved to markedly influence the potency of these inhibitors. Particularly, compounds 29, 35 and 36 showed interesting inhibition with IC50 value of 16.36, 14.93 and 13.92 μM, respectively.  相似文献   

12.
A series of N-phenylnicotinamides (1-40) were designed and evaluated in vitro for their COX inhibitory activities. Most of the synthesized compounds were proved to be potent and selective inhibitors of COX-1. Compound 28 showed the most potent COX-1 inhibitory activity (COX-1 IC50 = 0.68 ± 0.07 μM) and good selectivity (COX-2 IC50 >100 μM). This compound may be useful as a lead compound for superior COX-1 inhibitors. On the basis of the biological results, structure-activity relationships for the COX-1-inhibitory activities of the synthesized N-phenylnicotinamides were discussed concisely.  相似文献   

13.
Human isoprenylcysteine carboxyl methyltransferase (hIcmt) is a promising anticancer target as it is important for the post-translational modification of oncogenic Ras proteins. We herein report the synthesis and biochemical activity of 41 farnesyl-cysteine based analogs versus hIcmt. We have demonstrated that the amide linkage of a hIcmt substrate can be replaced by a sulfonamide bond to achieve hIcmt inhibition. The most potent sulfonamide-modified farnesyl cysteine analog was 6ag with an IC50 of 8.8 ± 0.5 μM for hIcmt.  相似文献   

14.
Three stable silanetriols with increasing steric protection of the silicon atom have been tested for inhibition of acetylcholinesterase (AChE). For all tested silanetriols we found reversible inhibition of the AChE activity at a 100 μM concentration. The highest inhibition rate was found for the sterically least hindered cyclohexylsilanetriol with 45% inhibition relative to galanthamine hydrobromide for which an IC50 value of 121 ± 3 μM was determined as well. The cytotoxicity of the silanetriols used was found to be negligible at concentrations relevant for inhibition.  相似文献   

15.
A 96-member chelator fragment library (CFL-1.1) was screened to identify inhibitors of the lymphoid tyrosine phosphatase in the absence and presence of zinc acetate. Fragments that inhibit LYP activity more potently in the presence of zinc, fragments that rescue LYP activity in the presence of inhibitory concentrations of zinc, and fragments that inhibit LYP activity independent of zinc concentration were identified. Of these, 1,2-dihydroxynaphthalene was the most potent inhibitor with an IC50 value of 2.52 ± 0.06 μM after 2 h of incubation. LYP inhibition by 1,2-dihydroxynaphthalene was very similar to inhibition by 1,2-naphthoquinone (IC50 = 1.10 ± 0.03 µM), indicating that the oxidized quinone species is likely the active inhibitor. The inhibition was time-dependent, consistent with covalent modification of the enzyme.  相似文献   

16.
Integrin α5β1 immobilized on a ProteoChip was used to screen new antagonistic peptides from multiple hexapeptide sub-libraries of the positional scanning synthetic peptide combinatorial library (PS-SPCL). The integrin α5β1-Fibronectin interaction was demonstrated on the chip. A novel peptide ligand, A5-1 (VILVLF), with high affinity to integrin α5β1 was identified from the hexapeptide libraries with this chip-based screening method on the basis of a competitive inhibition assay. A5-1 inhibits the integrin-fibronectin interaction in a dose-dependent manner (IC50; 1.56 ± 0.28 μM. In addition, it inhibits human umbilical vein endothelial cell proliferation, migration, adhesion, tubular network formation, and bFGF-induced neovascularization in a chick chorioallantoic membrane. These results suggest that A5-1 will be a potent inhibitor of neovascularization.  相似文献   

17.
A series of novel N-phenylacetyl (sulfonyl) 4,5-dihydropyrazole derivatives as potential telomerase inhibitors were synthesized. The bioassay tests show that compound 4a exhibited high activity against human gastric cancer cell SGC-7901, liver cancer Hep-G2 and human prostate PC-3 cell lines with IC50 values of 21.23 ± 0.99, 29.43 ± 0.32 and 30.89 ± 1.07 μM, respectively. All title compounds were assayed for telomerase inhibition by a modified TRAP assay, the results show that compound 4a can inhibit telomerase with IC50 value of 4.0 ± 0.32 μM. Docking simulation was performed to position compound 4a into the telomerase (3DU6) active site to determine the probable binding model.  相似文献   

18.
Bovine intestine alkaline phosphatase (BIALP) is widely used as a signaling enzyme in sensitive assays such as enzyme immunoassay (EIA). In this study, we evaluated the effects of various aminoalcohols and amines on the activity of BIALP in the hydrolysis of p-nitrophenyl phosphate (pNPP) at pH 9.8, at 20 °C. The kcat values at 0.05 M diethanolamine, 0.1 M triethanolamine, and 0.2 M N-methylethanolamine were 190 ± 10, 840 ± 30, and 500 ± 10 s−1, respectively. The kcat values increased with increasing concentrations of diethanolamine, triethanolamine, and N-methylethanolamine and reached 1240 ± 60, 1450 ± 30, and 2250 ± 80 s−1, respectively, at 1.0 M. On the other hand, the kcat values at 0.05-1.0 M ethanolamine, ethylamine, methylamine, and dimethylamine were in the range of 100-600 s−1. These results indicate that diethanolamine, triethanolamine and N-methylethanolamine highly activate BIALP and might be suitable as a dilution buffer of BIALP in EIA. Interestingly, the Km values increased with increasing concentrations of diethanolamine and N-methylethanolamine, but not triethanolamine: the Km value at 1.0 M diethanolamine (0.83 ± 0.15 mM) was 12-fold higher than that at 0.05 M (0.07 ± 0.01 mM), and that at 1.0 M N-methylethanolamine (2.53 ± 0.20 mM) was 14-fold higher than that at 0.2 M (0.18 ± 0.02 mM), while that at 1.0 M triethanolamine (0.31 ± 0.01 mM) was similar as that at 0.2 M (0.25 ± 0.01 mM), suggesting that the mechanisms of BIALP activation are different between the aminoalcohols.  相似文献   

19.
In this study, we synthesized hydroxy and/or alkoxy substituted phenyl-benzo[d]thiazole derivatives using substituted benzaldehydes and 2-aminothiophenol in MeOH. The structures of these compounds were established by 1H and 13C NMR and mass spectral analyzes. All synthesized compounds were evaluated for their mushroom tyrosinase inhibition activity. Out the 12 generated compounds, 2a and 2d exhibited much higher tyrosinase inhibition activity (45.36-73.07% and 49.94-94.17% at 0.01-20 μM, respectively) than kojic acid (9.29-50.80% at 1.25-20 μM), a positive control.The cytotoxicity of 2a and 2d was evaluated using B16 cells and the compounds were found to be nontoxic. Compounds 2a and 2d were also demonstrated to be potent mushroom tyrosinase inhibitors, displaying IC50 values of 1.14 ± 0.48 and 0.01 ± 0.0002 μM, respectively, compared with kojic acid, which has an IC50 value of 18.45 ± 0.17 μM. We also predicted the tertiary structure of tyrosinase, simulated the docking with compounds 2a and 2d and confirmed that the compounds strongly interact with mushroom tyrosinase residues. Kinetic plots showed that 2a and 2d are competitive tyrosinase inhibitors. Substitutions with a hydroxy group at R3 or both R3 and R1 of the phenyl ring indicated that these groups play a major role in the high binding affinity to tyrosinase. We further found that compounds 2a and 2d inhibit melanin production and tyrosinase activity in B16 cells. These results may assist in the development of new potent tyrosinase inhibitors against hyperpigmentation.  相似文献   

20.
A series of 1,5-diaryl-substituted tetrazole derivatives was synthesized via conversion of readily available diaryl amides into corresponding imidoylchlorides followed by reaction with sodium azide. All compounds were evaluated by cyclooxygenase (COX) assays in vitro to determine COX-1 and COX-2 inhibitory potency and selectivity. Tetrazoles 3a-e showed IC50 values ranging from 0.42 to 8.1 mM for COX-1 and 2.0 to 200 μM for COX-2. Most potent compound 3c (IC50 (COX-2) = 2.0 μM) was further used in molecular modeling docking studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号