首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

4.
Theil R  Scheit KH 《The EMBO journal》1983,2(7):1159-1163
Analytical ultracentrifugation of highly purified seminalplasmin revealed a molecular mass of 6300. Amino acid analysis of the protein preparation indicated the absence of sulfur-containing amino acids cysteine and methionine. The amino acid sequence of seminalplasmin was determined by manual Edman degradation of peptides obtained by proteolytic enzymes trypsin, chymotrypsin and thermolysin: NH2-Ser Asp Glu Lys Ala Ser Pro Asp Lys His His Arg Phe Ser Leu Ser Arg Tyr Ala Lys Leu Ala Asn Arg Leu Ser Lys Trp Ile Gly Asn Arg Gly Asn Arg Leu Ala Asn Pro Lys Leu Leu Glu Thr Phe Lys Ser Val-COOH. The number of amino acids according to the sequence were 48, the molecular mass 6385. As predicted from the sequence, seminalplasmin very likely contains two α-helical domains in which residues 8-17 and 40-48 are involved. No evidence for the existence of β-sheet structures was obtained. Treatment of seminalplasmin with the above proteases as well as with amino peptidase M and carboxypeptidase Y completely eliminated biological activity.  相似文献   

5.
The amino acid sequence of a protease inhibitor isolated from the hemolymph of Sarcophaga bullata larvae was determined by tandem mass spectrometry. Homology considerations with respect to other protease inhibitors with known primary structures assisted in the choice of the procedure followed in the sequence determination and in the alignment of the various peptides obtained from specific chemical cleavage at cysteines and enzyme digests of the S. bullata protease inhibitor. The resulting sequence of 57 residues is as follows: Val Asp Lys Ser Ala Cys Leu Gln Pro Lys Glu Val Gly Pro Cys Arg Lys Ser Asp Phe Val Phe Phe Tyr Asn Ala Asp Thr Lys Ala Cys Glu Glu Phe Leu Tyr Gly Gly Cys Arg Gly Asn Asp Asn Arg Phe Asn Thr Lys Glu Glu Cys Glu Lys Leu Cys Leu.  相似文献   

6.
7.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

8.
9.
We have reported that prothrombin (1 microm) is able to replace high molecular weight kininogen (45 nm) as a cofactor for the specific binding of factor XI to the platelet (Baglia, F. A., and Walsh, P. N. (1998) Biochemistry 37, 2271-2281). We have also determined that prothrombin fragment 2 binds to the Apple 1 domain of factor XI at or near the site where high molecular weight kininogen binds. A region of 31 amino acids derived from high molecular weight kininogen (HK31-mer) can also bind to factor XI (Tait, J. F., and Fujikawa, K. (1987) J. Biol. Chem. 262, 11651-11656). We therefore investigated the role of prothrombin fragment 2 and HK31-mer as cofactors in the binding of factor XI to activated platelets. Our experiments demonstrated that prothrombin fragment 2 (1 microm) or the HK31-mer (8 microm) are able to replace high molecular weight kininogen (45 nm) or prothrombin (1 microm) as cofactors for the binding of factor XI to the platelet. To localize the platelet binding site on factor XI, we used mutant full-length recombinant factor XI molecules in which the platelet binding site in the Apple 3 domain was altered by alanine scanning mutagenesis. The recombinant factor XI with alanine substitutions at positions Ser(248), Arg(250), Lys(255), Leu(257), Phe(260), or Gln(263) were defective in their ability to bind to activated platelets. Thus, the interaction of factor XI with platelets is mediated by the amino acid residues Ser(248), Arg(250), Lys(255), Leu(257), Phe(260), and Gln(263) within the Apple 3 domain.  相似文献   

10.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

11.
A loop structure, formed by the putative disulfide bridging of Cys198 and Cys209, is a principal element of the ligand binding site in the glycine receptor (GlyR). Disruption of the loop's tertiary structure by Ser mutations of these Cys residues either prevented receptor assembly on the cell surface, or created receptors unable to be activated by agonists or to bind the competitive antagonist, strychnine. Mutation of residues Lys200, Tyr202 and Thr204 within this loop reduced agonist binding and channel activation sensitivities by up to 55-, 520- and 190-fold, respectively, without altering maximal current sizes, and mutations of Lys200 and Tyr202 abolished strychnine binding to the receptor. Removal of the hydroxyl moiety from Tyr202 by mutation to Phe profoundly reduced agonist sensitivity, whilst removal of the benzene ring abolished strychnine binding, thus demonstrating that Tyr202 is crucial for both agonist and antagonist binding to the GlyR. Tyr202 also influences receptor assembly on the cell surface, with only large chain substitutions (Phe, Leu and Arg, but not Thr, Ser and Ala) forming functional receptors. Our data demonstrate the presence of a second ligand binding site in the GlyR, consistent with the three-loop model of ligand binding to the ligand-gated ion channel superfamily.  相似文献   

12.
Kallistatin is a serpin with a unique P1 Phe, which confers an excellent inhibitory specificity toward tissue kallikrein. In this study, we investigated the P3-P2-P1 residues (residues 386-388) of human kallistatin in determining inhibitory specificity toward human tissue kallikrein by site-directed mutagenesis and molecular modeling. Human kallistatin mutants with 19 different amino acid substitutions at each P1, P2, or P3 residue were created and purified to compare their kallikrein binding activity. Complex formation assay showed that P1 Arg, P1 Phe (wild type), P1 Lys, P1 Tyr, P1 Met, and P1 Leu display significant binding activity with tissue kallikrein among the P1 variants. Kinetic analysis showed the inhibitory activities of the P1 mutants toward tissue kallikrein in the order of P1 Arg > P1 Phe > P1 Lys >/= P1 Tyr > P1 Leu >/= P1 Met. P1 Phe displays a better selectivity for human tissue kallikrein than P1 Arg, since P1 Arg also inhibits several other serine proteinases. Heparin distinguishes the inhibitory specificity of kallistatin toward kallikrein versus chymotrypsin. For the P2 and P3 variants, the mutants with hydrophobic and bulky amino acids at P2 and basic amino acids at P3 display better binding activity with tissue kallikrein. The inhibitory activities of these mutants toward tissue kallikrein are in the order of P2 Phe (wild type) > P2 Leu > P2 Trp > P2 Met and P3 Arg > P3 Lys (wild type). Molecular modeling of the reactive center loop of kallistatin bound to the reactive crevice of tissue kallikrein indicated that the P2 residue required a long and bulky hydrophobic side chain to reach and fill the hydrophobic S2 cleft generated by Tyr(99) and Trp(219) of tissue kallikrein. Basic amino acids at P3 could stabilize complex formation by forming electrostatic interaction with Asp(98J) and hydrogen bond with Gln(174) of tissue kallikrein. Our results indicate that tissue kallikrein is a specific target proteinase for kallistatin.  相似文献   

13.
The posttranslational modification of proteins by amino acids has been described in a variety of biological systems. These reactions occur at low levels in intact sciatic nerves of rats but are increased 10-fold following nerve injury and during subsequent regeneration of the nerve. While it has been shown in brain and liver that the site of addition of Arg is to the N-terminus, there is no information on the location at which the other amino acids add on to targeted proteins nor the site of addition of Arg in regenerating nerves. In the present study, we have used manual micro-Edman degradation combined with HPLC, and digestion with carboxypeptidase A and B to determine the site of addition of various amino acids to targeted proteins. Of the 3H-labelled amino acids incorporated posttranslationally into proteins of regenerating sciatic nerves (Arg, Lys, Leu, Phe, Val, Ala, Pro and Ser), only [3H]Arg was found to be present at the N-terminus. To determine whether amino acid additions were occurring at the C-terminus, proteins modified by two of the amino acids incorporated in greatest amounts (Lys and Leu) were incubated with specific carboxypeptidases. [3H]Leucine was not liberated following incubation with carboxypeptidase, suggesting that Leu is not added at the C-terminus of modified proteins. Under similar conditions, some [3H]Lys was liberated, but in amounts not significantly different from controls incubated without carboxypeptidase, indicating a non-specific degradation of Lys modified proteins rather than a specific release of Lys from the C-terminus. These experiments show that in regenerating sciatic nerves of rats, Arg is the only amino acid added posttranslationally to the amino terminus of target proteins, and that Leu, and probably Lys, are not conjugated to proteins at the C-terminus.  相似文献   

14.
Magee BA  Shooter GK  Wallace JC  Francis GL 《Biochemistry》1999,38(48):15863-15870
The biological activity of the insulin-like growth factors (IGF-I and IGF-II) is regulated by six IGF binding proteins (IGFBPs 1-6). To examine the surface of IGF-I that associates with the IGFBPs, we created a series of six IGF-I analogues, [His(4)]-, [Gln(9)]-, [Lys(9)]-, [Ser(16)]-, [Gln(9),Ser(16)]-, and [Lys(9),Ser(16)]IGF-I, that contained substitutions for residues Thr(4), Glu(9), or Phe(16). Substitution of Ser for Phe(16) did not affect secondary structure but significantly decreased the affinity for all IGFBPs by between 14-fold and >330-fold, indicating that Phe(16) is functionally important for IGFBP association. While His(4) or Gln(9) substitutions had little effect on IGFBP affinity, changing the negative charge of Glu(9) to a positive Lys(9) selectively decreased the affinities of IGFBP-2 and -6 by 140- and 30-fold, respectively. Furthermore, the effects of mutations to both residues 9 and 16 appear to be additive. The analogues are biologically active in rat L6 myoblasts and they retain native structure as assessed by their far-UV circular dichroism (CD) profiles. We propose that Phe(16) and adjacent hydrophobic residues (Leu(5) and Leu(54)) form a functional binding pocket for IGFBP association.  相似文献   

15.
16.
The contribution of the P1' residue at the first reactive site of peanut protease inhibitor B-III to the inhibition was analyzed by replacement of the P1' Arg(11) with other amino acids (Arg, Ser, Ala, Leu, Phe, Asp) after selective modification of the second reactive site. The Arg derivative had the same trypsin inhibitory activity as the native inhibitor (Ki = 2 X 10(-9) M). The Ser derivative inhibited more weakly (Ki = 2 X 10(-8) M). The Ala and Leu derivatives inhibited trypsin very weakly (Ki = 2 X 10(-7) M and 4 X 10(-7) M, respectively), and the Phe and Asp derivatives not at all. These results suggest that the P1' arginine residue is best for inhibitory activity at the first reactive site of B-III, although it has been suggested that a P1' serine residue at the reactive site is best for inhibitory activity of Bowman-Birk type inhibitors.  相似文献   

17.
By site-directed mutagenesis, substitutions were made for His-184 (H-184), H-197, H-266, and H-306 in Escherichia coli isocitrate lyase. Of these changes, only mutations of H-184 and H-197 appreciably reduced enzyme activity. Mutation of H-184 to Lys, Arg, or Leu resulted in an inactive isocitrate lyase, and mutation of H-184 to Gln resulted in an enzyme with 0.28% activity. Nondenaturing polyacrylamide gel electrophoresis demonstrated that isocitrate lyase containing the Lys, Arg, Gln, and Leu substitutions at H-184 was assembled poorly into the tetrameric subunit complex. Mutation of H-197 to Lys, Arg, Leu, and Gln resulted in an assembled enzyme with less than 0.25% wild-type activity. Five substitutions for H-266 (Asp, Glu, Val, Ser, and Lys), four substitutions for H-306 (Asp, Glu, Val, and Ser), and a variant in which both H-266 and H-306 were substituted for showed little or no effect on enzyme activity. All the H-197, H-266, and H-306 mutants supported the growth of isocitrate lyase-deficient E. coli JE10 on acetate as the sole carbon source; however, the H-184 mutants did not.  相似文献   

18.
在详细分析TNF α结构及有关TNF α结构与功能关系研究的基础上,设计并人工合成了一对TNF α结构基因点突变引物。应用PCR和分子克隆技术构建了一种新型人肿瘤坏死因子(TNF α)分子的编码基因,将该编码基因插入表达质粒,转化大肠杆菌,通过温度诱导获得了表达蛋白,对突变体克隆进行了DNA电泳、酶切位点检测以及基因序列测定,并对突变体蛋白进行了SDS PAGE电泳检测。  相似文献   

19.
According to present models, thrombin activates platelets by cleaving its receptors after Arg41, creating a new N terminus which acts as a tethered ligand. In support of this model, a peptide (SFLLRNPNDKYEPF or TRP42/55) corresponding to residues 42-55 has been shown to activate the receptor. In the present studies, the structural basis for thrombin receptor activation was examined using fragments of this peptide, as well as variants of the peptide with selected amino acid substitutions. The results show that the features of SFLLRNPNDKYEPF required to mimic the effects of thrombin reside within the first 6 residues, SFLLRN. A hexapeptide comprised of these residues was approximately 5 times more potent than the parent peptide in assays of platelet aggregation and, in addition, caused tyrosine phosphorylation, inhibition of cAMP formation, and an increase in cytosolic Ca2+. Omission of either the Ser residue or the Arg and Asn residues greatly diminished peptide activity, as did the substitution of Ala for Phe or Arg. Substitution of Ala for Ser or the initial Leu, on the other hand, had little adverse effect. The inactive peptides SALLRN and NPNDKYEPF had no effect on platelet activation initiated by SFLLRN, but FLLRN inhibited platelet aggregation in response to both SFLLRN and thrombin. These results suggest that within SFLLRN the Phe and Arg residues are particularly important and that Phe must be preceded by another amino acid, the identity of which is not tightly constrained. This observation and comparisons with the homologous domains of proteins whose tertiary structure is known were used to predict the conformation of the SFLLR sequence. The model which emerged suggests that the SFLLR domain may be part of an extended beta structure in the intact receptor and that cleavage by thrombin causes it to contract and assume a modified helical configuration. In this predicted conformation the side chains of Phe and Arg point in the same direction, potentially into a pocket formed by the remainder of the receptor.  相似文献   

20.
We examined the effects of orally administrated amino acids on myfibrillar proteolysis in food-deprived chicks. Plasma N(tau)-methylhistidine concentration, as an index of myofibrillar proteolysis, was decreased by the administration of Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg but not by Asp, Val, Phe, Tyr or His to chicks. Orally administrated Cys was fatal to chicks. These results indicate that oral Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg administration suppressed myofibrillar proteolysis in chicks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号