共查询到20条相似文献,搜索用时 0 毫秒
1.
How cyclic AMP and its receptor protein act in Escherichia coli 总被引:24,自引:0,他引:24
2.
3.
Binding of the Escherichia coli cyclic AMP receptor protein to DNA fragments containing consensus nucleotide sequences. 总被引:10,自引:1,他引:9 下载免费PDF全文
Binding of the Escherichia coli CRP protein to DNA fragments carrying nucleotide sequences closely corresponding to the consensus is very tight with a dissociation time of over 2 h in our conditions. The concentration of cyclic AMP required for this binding is below the physiological range of intracellular cyclic AMP concentrations. Changes in nucleotide sequence at positions that are not well-conserved between different naturally-occurring CRP sites allow a more rapid dissociation of CRP-DNA complexes. There is an inverse correlation between the stability of CRP binding to sites in vitro and the repression by glucose of expression dependent on these sites in vivo: expression that is dependent on the tighter binding sites cannot be repressed by the inclusion of glucose in the growth medium. 相似文献
4.
5.
6.
Charge neutralization and DNA bending by the Escherichia coli catabolite activator protein 下载免费PDF全文
We are interested in the role of asymmetric phosphate neutralization in DNA bending induced by proteins. We describe an experimental estimate of the actual electrostatic contribution of asymmetric phosphate neutralization to the bending of DNA by the Escherichia coli catabolite activator protein (CAP), a prototypical DNA-bending protein. Following assignment of putative electrostatic interactions between CAP and DNA phosphates based on X-ray crystal structures, appropriate phosphates in the CAP half-site DNA were chemically neutralized by methylphosphonate substitution. DNA shape was then evaluated using a semi-synthetic DNA electrophoretic phasing assay. Our results confirm that the unmodified CAP DNA half-site sequence is intrinsically curved by 26° in the direction enhanced in the complex with protein. In the absence of protein, neutralization of five appropriate phosphates increases DNA curvature to 32° (~23% increase), in the predicted direction. Shifting the placement of the neutralized phosphates changes the DNA shape, suggesting that sequence-directed DNA curvature can be modified by the asymmetry of phosphate neutralization. We suggest that asymmetric phosphate neutralization contributes favorably to DNA bending by CAP, but cannot account for the full DNA deformation. 相似文献
7.
A monoclonal antibody that inhibits cyclic AMP binding by the Escherichia coli cyclic AMP receptor protein 总被引:3,自引:0,他引:3
The monoclonal antibody (mAb) 64D1 was found to inhibit cAMP binding by the cAMP receptor protein (CRP) from Escherichia coli (Li, X.-M., and Krakow, J. S. (1985) J. Biol. Chem. 260, 4378-4383). CRP is relatively resistant to attack by the Staphylococcus aureus V8 protease, chymotrypsin, trypsin, and subtilisin whereas both mAb 64D1-CRP and cAMP-CRP are attacked by these proteases yielding N-terminal core fragments. The fragment patterns resulting from proteolysis of mAb 64D1-CRP and cAMP-CRP differ indicating that the CRP in each complex is in a different conformation. The data presented indicate that the preferred conformation of the antigenic site for mAb 64D1 is present in unliganded CRP. Binding of mAb 64D1 to CRP is inhibited at high cAMP concentration. Formation of a stable cAMP-CRP-lac P+-RNA polymerase open promoter complex resistant to dissociation by mAb 64D1 occurs at a much lower cAMP concentration. The observed increase in resistance to mAb 64D1 may reflect a possible conformational change in CRP effected by contact with RNA polymerase in the open promoter complex. 相似文献
8.
The non-specific DNA binding of CRP and its N-terminal core, alpha CRP, to a 298 base pair DNA fragment, in the presence and absence of cAMP, has been studied using the nitrocellulose filter binding technique and analysed quantitatively using the theory of Clore et al. [J. Mol. Biol. (1982) 155, 447-466]. It is shown that both CRP and alpha CRP bind cooperatively to DNA. At an ionic strength of 100 mM and pH 7.5, the intrinsic equilibrium association constant for the binding of alpha CRP to DNA is approximately 10-times smaller than that for CRP, but the cooperativity parameter is approximately 17-times larger for alpha CRP than CRP. cAMP exerts its effect solely on the intrinsic equilibrium constant and does not alter the cooperativity. In the case of alpha CRP, cAMP reduces the intrinsic equilibrium association constant by a factor of 3, in contrast to the case of CRP where cAMP increases it by a factor of 3. The possible location of the DNA binding site present in the N-terminal core of CRP is discussed in the light of crystallographic data on the cAMP . CRP complex [McKay et al. (1982) J. Biol. Chem. 257, 9518-9524]. 相似文献
9.
Characterization of nine monoclonal antibodies against the Escherichia coli cyclic AMP receptor protein 总被引:2,自引:0,他引:2
Nine hybridoma clones producing antibodies against the Escherichia coli cAMP receptor protein (CRP) have been isolated. Five of the monoclonal antibodies (Class I) had a much higher affinity for native CRP while the remaining four (Class II) bound equally well to native or denatured CRP. Using native N-terminal CRP cores, it was shown that none of the Class I monoclonal antibodies cross-reacted with the 15,000-Da CRP core, and only two bound to the 18,800-Da CRP core. The positions of the antigenic determinants for the Class II monoclonal antibodies were found by Western blotting analysis to reside in the N-proximal region of CRP. Only one monoclonal antibody strongly inhibited cAMP binding by CRP, and this was accompanied by a consequent strong inhibition of both lac DNA binding and abortive initiation by RNA polymerase. Each of the Class I monoclonal antibodies inhibited abortive initiation, and four of these antibodies also blocked the binding of cAMP X CRP to the lac DNA fragment. One Class I and one Class II monoclonal antibody bound to the cAMP X CRP X DNA complex. Two of the Class II monoclonal antibodies were without apparent effect on any of the assays used. 相似文献
10.
Mutagenesis of various amino acids in Escherichia coli cyclic AMP receptor protein (CRP) has been shown to modulate protein compressibility and dynamics [Gekko et al. (2004) Biochemistry 43, 3844-3852]. Cooperativity of cAMP binding to CRP and the apparent DNA binding affinity are perturbed [Lin and Lee (2002) Biochemistry 41, 11857-11867]. The aim of this study is to explore the effects of mutation on the surface chemistry of CRP and to define the consequences of these changes in affecting specific DNA sequence recognition by CRP. Furthermore, the role of the interplay between mutation and specific identity of the bound cyclic nucleotide in this DNA recognition was explored. In the current study, effects of eight site-specific mutations (K52N, D53H, S62F, T127L, G141Q, L148R, H159L, and K52N/H159L) on DNA recognition of four sequences (Class I (site PI of lac), Class II (site PI of gal), and synthetic sequences that are hybrids of Classes I and II sites) modulated by three different cyclic nucleotides (cAMP, cCMP, and cGMP) were investigated. All mutations altered the surface chemistry of CRP as evidenced by the change in elution properties of these proteins from different matrixes. While T127L, S62F, K52N, and H159L exhibited unexpected behavior under combinations of specific experimental conditions, such as the identity of bound cyclic nucleotide and DNA sequence, in general, results showed that the affinities of CRP for DNA were sequence-dependent, increasing in the order of lacgal26 < gal26 < lac26 < gallac26 for all the mutants in the presence of 200 microM cAMP. The apparent association constants significantly increased in the order of no cyclic nucleotide approximately cGMP < cCMP < cAMP for all the examined DNA sequences. Linear correlation between the DeltaG for CRP-DNA complex formation and the cooperativity energy for cAMP binding was observed with gallac26, gal26, and lacgal26; however, the slope of this linear correlation is DNA sequence dependent. Structural information was presented to rationalize the interplay between CRP sequence and cyclic nucleotides in defining the recognition of DNA sequences. 相似文献
11.
Binding of the cyclic AMP receptor protein of Escherichia coli to RNA polymerase. 总被引:11,自引:0,他引:11 下载免费PDF全文
Fluorescence polarization studies were used to study the interaction of a fluorescein-labelled conjugate of the Escherichia coli cyclic AMP receptor protein (F-CRP) and RNA polymerase. Under conditions of physiological ionic strength, F-CRP binds to RNA polymerase holoenzyme in a cyclic AMP-dependent manner; the dissociation constant was about 3 microM in the presence of cyclic AMP and about 100 microM in its absence. Binding to core RNA polymerase under the same conditions was weak (Kdiss. approx. 80-100 microM) and independent of cyclic AMP. Competition experiments established that native CRP and F-CRP compete for the same binding site on RNA polymerase holoenzyme and that the native protein binds about 3 times more strongly than does F-CRP. Analytical ultracentrifuge studies showed that CRP binds predominantly to the monomeric rather than the dimeric form of RNA polymerase. 相似文献
12.
The Guillardia theta chloroplast hlpA gene encodes a protein resembling bacterial histone-like protein HU. This gene was cloned and overexpressed in Escherichia coli cells, and the resulting protein product, HlpA, was purified and characterized in vitro. In addition to exhibiting a general DNA-binding activity, the chloroplast HlpA protein also strongly facilitated cyclization of a short DNA fragment in the presence of T4 DNA ligase, indicating its ability to mediate very tight DNA curvatures. 相似文献
13.
Ligand-induced conformational and structural dynamics changes in Escherichia coli cyclic AMP receptor protein 总被引:1,自引:0,他引:1
Cyclic AMP receptor protein (CRP) regulates the expression of a large number of genes in E. coli. It is activated by cAMP binding, which leads to some yet undefined conformational changes. These changes do not involve significant redistribution of secondary structures. A potential mechanism of activation is a ligand-induced change in structural dynamics. Hence, the cAMP-mediated conformational and structural dynamics changes in the wild-type CRP were investigated using hydrogen-deuterium exchange and Fourier transform infrared spectroscopy. Upon cAMP binding, the two functional domains within the wild-type CRP undergo conformational and structural dynamics changes in two opposite directions. While the smaller DNA-binding domain becomes more flexible, the larger cAMP-binding domain shifts to a less dynamic conformation, evidenced by a faster and a slower amide H-D exchange, respectively. To a lesser extent, binding of cGMP, a nonfunctional analogue of cAMP, also stabilizes the cAMP-binding domain, but it fails to mimic the relaxation effect of cAMP on the DNA-binding domain. Despite changes in the conformation and structural dynamics, cAMP binding does not alter significantly the secondary structural composition of the wild-type CRP. The apparent difference between functional and nonfunctional analogues of cAMP is the ability of cAMP to effect an increase in the dynamic motions of the DNA binding domain. 相似文献
14.
E. coli cyclic AMP receptor protein, CRP, is a modular protein that consists of a covalent linkage of two common structural domains. To probe the mechanism for intramolecular communications and to define the unique properties acquired by covalent linkage, the structural, and functional properties of the cAMP- and DNA-binding domains of CRP were studied separately as two independent polypeptides. The N-terminal cAMP-binding domain (alpha-CRP), including S-CRP and CH-CRP, which were generated by digestion of CRP by subtilisin and chymotrypsin, respectively, are mainly populated by beta-sheets. The C-terminal DNA-binding domain, designated as beta-CRP, consists of mostly alpha-helices. The residues of S-CRP and CH-CRP are from 1 to 116 and 1 to 136 of intact wild-type CRP, and those of beta-CRP are from 108 to 209. The secondary structures of alpha-CRP and beta-CRP were monitored by FT-IR, and they are similar to those of the corresponding parts in intact wild-type CRP. Results from hydrogen-deuterium exchange experiments indicated that beta-CRP is more dynamic than alpha-CRP. In an earlier study, it was shown that alpha-CRP retains the function of binding cAMP [Heyduk, E., et al. (1992) Biochemistry 31, 3682-3688]. beta-CRP was able to bind to DNA, although only weakly, and was not sequence specific. Thus, a covalent linkage between the two domains is essential for the realization of the intramolecular signal transmission between the domains triggered by ligand binding. The acquisition of this unique property is intimately associated with the dynamics of the molecule. 相似文献
15.
16.
Sedimentation equilibrium studies show that the Escherichia coli cyclic AMP receptor protein (CAP) and lactose repressor associate to form a 2:1 complex in vitro. This is, to our knowledge, the first demonstration of a direct interaction of these proteins in the absence of DNA. No 1:1 complex was detected over a wide range of CAP concentrations, suggesting that binding is highly cooperative. Complex formation is stimulated by cAMP, with a net uptake of 1 equivalent of cAMP per molecule of CAP bound. Substitution of the dimeric lacI-18 mutant repressor for tetrameric wild-type repressor completely eliminates detectable binding. We therefore propose that CAP binds the cleft between dimeric units in the repressor tetramer. CAP-lac repressor interactions may play important roles in regulatory events that take place at overlapping CAP and repressor binding sites in the lactose promoter. 相似文献
17.
The amount of asparaginase II in an Escherichia coli wild-type strain (cya+, crp+) markedly increased upon a shift from aerobic to anaerobic growth. However, no such increase occurred in a mutant (cya) lacking cyclic AMP synthesis unless supplemented with exogenous cyclic AMP. Since a mutant (crp) deficient in cyclic AMP receptor protein also did not support the anaerobic formation of this enzyme, it is concluded that the formation of E. coli asparaginase II depends on both cyclic AMP and cyclic AMP receptor protein. 相似文献
18.
The effect of cyclic AMP on protein phosphorylation was analyzed comparatively in two strains of E.coli differing in their capacity to synthesize this nucleotide, one of them lacking the adenylate cyclase activity. The results obtained from both in vivo and in vitro experiments concurred in showing that the bacterial protein kinase activity is cAMP-independent. 相似文献
19.
20.
Abnormally high rate of cyclic AMP excretion from an Escherichia coli mutant deficient in cyclic AMP receptor protein 总被引:16,自引:0,他引:16
K Potter G Chaloner-Larsson H Yamazaki 《Biochemical and biophysical research communications》1974,57(2):379-385
By labeling adenosine 3′, 5′-cyclic monophosphate (cyclic AMP) with [32P] phosphate and chromatographing it on a thin-layer alumina plate, we have determined the extra- and intracellular amounts of cyclic AMP in an CRP? mutant (deficient in a cyclic AMP receptor protein) and its isogenic CRP+ cell. The CRP? cell was found to excrete cyclic AMP at an abnormally high rate as compared to the CRP+ cell when growing on glucose or glycerol, which can be correlated with the abnormally high intracellular levels of cyclic AMP in the CRP? cell. 相似文献