首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyacrylamide gel electrophoresis has been used to visualise and quantitate complexes between the Escherichia coli cyclic AMP receptor protein (CRP) and DNA fragments containing the promoter region of either the E. coli galactose or lactose operons. We show that, although CRP binding to the gal fragment is weaker than binding to the lac fragment, in each case, stable complexes are formed between one dimer of CRP and one molecule of DNA. We have examined the effects of a series of deletions and point mutations in the gal promoter region on CRP binding. From the position of deletions and mutations which prevent the formation of stable complexes, we deduce the location and extent of the sequence at the CRP binding site. We show that it covers approximately the same length of sequence as the binding site at the lac promoter. Unlike the lac site, the gal site contains no palindromic sequence. We discuss the importance of symmetry in the sequence at CRP binding sites and the validity of CRP binding consensus sequences which have been proposed.  相似文献   

2.
3.
The hinge-region of the lac repressor plays an important role in the models for induction and DNA looping in the lac operon. When lac repressor is bound to a tight-binding symmetric operator, this region forms an alpha-helix that induces bending of the operator. The presence of the hinge-helices is questioned by previous data that suggest that the repressor does not bend the wild-type operator. We show that in the wild-type complex the hinge-helices are formed and the DNA is bent, similar to the symmetric complex. Furthermore, our data show differences in the binding of the DNA binding domains to the half-sites of the wild-type operator and reveal the role of the central base-pair of the wild-type operator in the repressor-operator interaction. The differences in binding to the operator half-sites are incorporated into a model that explains the relative affinities of the repressor for various lac operator sequences that contain left and right half-sites with different spacer lengths.  相似文献   

4.
The binding of Escherichia coli Cyclic AMP Receptor Protein (CRP) to several DNA fragments of about 45 base pairs, bearing the natural lactose or galactose sites, as well as several synthetic related sites, was investigated using fluorescence spectroscopy and gel retardation experiments. The salt dependence of the equilibrium binding constant indicates that CRP makes an identical number of ion pairs with the lac, lacL8 and gal sites although the binding constants are drastically different. However increasing the symmetry of the gal site leads to an increase of the number of ion pairs between the protein and the DNA. A single strand nick was introduced at the centre of a symmetrized gal site and this reduces the binding energy of CRP by about 0.6 Kcal. These results are discussed with respect to the bending constraints imposed on the DNA by the binding of CRP. The results are in agreement with the recently published crystal structure of the CRP complexed with DNA [Schutz, S.C., Shields, G.C. and Steitz, T.A., Science 253, 1001-1007 (1991)] showing that the 90 degrees bending of the DNA in the complex results from two kinks.  相似文献   

5.
6.
7.
The binding of the cyclic AMP receptor protein (CRP) to symmetrical synthetic DNA-binding sites was investigated with a gel-retardation assay. A set of ten different sequences was employed, comprising all base permutations at positions 2, 4, and 5 of the consensus sequence 5'(TGTGA)3'. We show that: (i) CRP has a higher affinity for the completely symmetrical site than towards the lac wild-type site; (ii) base substitutions at position 2 lead to either a complete loss of specific CRP binding (G----C), a reduction in specific CRP binding (G----A) or only marginal effects on specific CRP binding (G----T); (iii) changes at position 4 abolish (G----C; G----A) or reduce (G----T) specific CRP binding; and (iv) base permutations at position 5 reduce specific CRP binding, but never completely abolish it. Thus position 4, and to a lesser extent position 2, in the DNA consensus sequence are the most crucial ones for specific binding by CRP.  相似文献   

8.
S Busby  M Dreyfus 《Gene》1983,21(1-2):121-131
Using hydroxylamine mutagenesis in vitro, mutations were introduced into a short DNA fragment containing the two overlapping promoters of the Escherichia coli galactose operon and the start of the first gal gene, galE. The mutagenised fragment was inserted into a lac expression plasmid. In such a vector, lac expression is controlled by the gal promoter region. Amongst eighteen candidates in which expression was reduced due to mutations in the gal fragment, twelve contained promoter mutations and six carried mutations that reduce the initiation of galE translation. The candidates in which promoter activity was reduced contained mutations affecting the promoter P1, which is dependent on the cyclic AMP-receptor protein complex (cAMP-CRP) for activation. All carried mutations in the sequence 5'GTGA3' at the CRP binding site. One of the twelve also contained a second mutation affecting the second promoter, P2, which normally functions in the absence of cAMP-CRP. Amongst the six candidates affecting galE translation, two contained a mutation that changes the initiator codon from AUG to AUA and almost completely suppresses galE expression. The mutations in the other four candidates affect the ribosome binding sequence, 5'GGAG3'. However, multiple mutations that abolish this sequence do not totally suppress galE expression, showing that there must be another way to guide ribosomes to the correct initiation site.  相似文献   

9.
10.
The extent of DNA bending induced by 434 repressor, its amino terminal DNA binding domain (R1-69), and 434 Cro was studied by gel shift assay. The results show that 434 repressor and R1-69 bend DNA to the same extent. 434 Cro-induced DNA bends are similar to those seen with the 434 repressor proteins. On approximately 265 base pair fragments, the cyclic AMP receptor protein of Escherichia coli (CRP) produces larger mobility shifts than does 434 repressor. This indicates that the 434 proteins bend DNA to a much smaller extent than does CRP. The effects of central operator sequence on intrinsic and 434 protein-induced DNA bending was also examined by gel shift assay. Two 434 operators having different central sequences and affinities for 434 proteins display no static bending. The amount of gel shift induced by 434 repressor on these operators is identical, showing that the 434 repressor bends operators with different central sequences to the same extent. Hence, mutations in the central region of the operator do not influence the bent structure of the unbound or bound operator.  相似文献   

11.
12.
13.
Dai J  Lin SH  Kemmis C  Chin AJ  Lee JC 《Biochemistry》2004,43(28):8901-8910
Mutagenesis of various amino acids in Escherichia coli cyclic AMP receptor protein (CRP) has been shown to modulate protein compressibility and dynamics [Gekko et al. (2004) Biochemistry 43, 3844-3852]. Cooperativity of cAMP binding to CRP and the apparent DNA binding affinity are perturbed [Lin and Lee (2002) Biochemistry 41, 11857-11867]. The aim of this study is to explore the effects of mutation on the surface chemistry of CRP and to define the consequences of these changes in affecting specific DNA sequence recognition by CRP. Furthermore, the role of the interplay between mutation and specific identity of the bound cyclic nucleotide in this DNA recognition was explored. In the current study, effects of eight site-specific mutations (K52N, D53H, S62F, T127L, G141Q, L148R, H159L, and K52N/H159L) on DNA recognition of four sequences (Class I (site PI of lac), Class II (site PI of gal), and synthetic sequences that are hybrids of Classes I and II sites) modulated by three different cyclic nucleotides (cAMP, cCMP, and cGMP) were investigated. All mutations altered the surface chemistry of CRP as evidenced by the change in elution properties of these proteins from different matrixes. While T127L, S62F, K52N, and H159L exhibited unexpected behavior under combinations of specific experimental conditions, such as the identity of bound cyclic nucleotide and DNA sequence, in general, results showed that the affinities of CRP for DNA were sequence-dependent, increasing in the order of lacgal26 < gal26 < lac26 < gallac26 for all the mutants in the presence of 200 microM cAMP. The apparent association constants significantly increased in the order of no cyclic nucleotide approximately cGMP < cCMP < cAMP for all the examined DNA sequences. Linear correlation between the DeltaG for CRP-DNA complex formation and the cooperativity energy for cAMP binding was observed with gallac26, gal26, and lacgal26; however, the slope of this linear correlation is DNA sequence dependent. Structural information was presented to rationalize the interplay between CRP sequence and cyclic nucleotides in defining the recognition of DNA sequences.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号