首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon monoxide (CO) is a classical respiratory inhibitor, but CO-releasing molecules (CO-RMs) have therapeutic value, increasing phagocytosis, and reducing sepsis-induced lethality. CORM-3, Ru(CO)(3) Cl(glycinate), a ruthenium-based carbonyl that liberates CO under physiological conditions, has previously been shown to inhibit bacterial growth and respiration, even at high concentrations of oxygen. Here, we report the effects of CORM-3 on the microaerophilic foodborne pathogen Campylobacter jejuni. Even at CO-RM (i.e., CO) concentrations that exceed dissolved oxygen levels, CORM-3 does not inhibit microaerobic growth. This insensitivity is not due to failure of CORM-3 to penetrate cells, as revealed by assay with extracellular myoglobin and by the ability of CO from externally added CORM-3 to bind intracellular membrane-associated respiratory oxidases. Even at almost 200 μ M oxygen, CORM-3 inhibits formate-dependent respiration and leads to generation of hydrogen peroxide. This work shows that CO-RMs have valuable properties as antimicrobial agents; however, growth inhibition does not always accompany inhibition of respiration, even when ambient oxygen concentrations are low.  相似文献   

2.
The effects of oxygen concentration on photosynthesis and respiration in two hypersaline cyanobacterial mats were investigated. Experiments were carried out on mats from Eilat, Israel, with moderate photosynthetic activity, and mats from Mallorca, Spain, with high photosynthetic activity. The oxygen concentration in the overlying water above the mats was increased stepwise from 0% to 100% O2. Subsequent changes in oxygen concentration, gross photosynthetic rates, and pH values inside the mats were measured with microelectrodes. According to published reports on the regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the key enzyme in the CO2-fixation pathway of phototrophs, we expected photosynthetic activity to decrease with increasing oxygen concentration. Gross photosynthetic and total respiration rates in both mats were highest when the O2 concentration was at 0% in the overlying water. Net oxygen production rates under these conditions were the same as under air saturation (21% O2), while gross photosynthetic and respiration rates were lowest at air saturation. In both mats, gross photosynthetic and respiration rates increased upon gradually increasing the oxygen concentration in the overlying water from 21% to 100%. These results contradict the expectation that photosynthesis decreases with increasing oxygen concentration. Increased photosynthetic rates at oxygen concentrations above 21% were probably caused by enhanced oxidation of organic matter and concomitant CO2 production due to the increased oxygen availability. The cause of the high respiration rates at 0% O2 in the overlying water was presumably the enhanced excretion of photosynthetic products during increased photosynthesis. We conclude that the effect of the O2/CO2 concentration ratio on the activity of Rubisco as demonstrated in vitro on enzyme extracts cannot be extrapolated to the situation in intact microbial mats, because the close coupling of the activity of primary producers and heterotrophic bacteria plays a major role in this ecosystem.  相似文献   

3.
C3 and C4 plants were grown in open-top chambers in the field at two CO2 concentrations, normal ambient (ambient) and normal ambient + 340 [mu]LL-1 (elevated). Dark oxygen uptake was measured in leaves and stems using a liquid-phase Clark-type oxygen electrode. High CO2 treatment decreased dark oxygen uptake in stems of Scirpus olneyi (C3) and leaves of Lindera benzoin (C3) expressed on either a dry weight or area basis. Respiration of Spartina patens (C4) leaves was unaffected by CO2 treatment. Leaf dry weight per unit area was unchanged by CO2, but respiration per unit of carbon or per unit of nitrogen was decreased in the C3 species grown at high CO2. The component of respiration in stems of S. olneyi and leaves of L. benzoin primarily affected by long-term exposure to the elevated CO2 treatment was the activity of the cytochrome pathway. Elevated CO2 had no effect on activity and capacity of the alternative pathway in S. olneyi. The cytochrome c oxidase activity, assayed in a cell-free extract, was strongly decreased by growth at high CO2 in stems of S. olneyi but it was unaffected in S. patens leaves. The activity of cytochrome c oxidase and complex III extracted from mature leaves of L. benzoin was also decreased after one growing season of plant exposure to elevated CO2 concentration. These results show that in some C3 species respiration will be reduced when plants are grown in elevated atmospheric CO2. The possible physiological causes and implications of these effects are discussed.  相似文献   

4.
Rhodamine 123, a laser dye, has been demonstrated to inhibit import of the precursor to pyridine dinucleotide transhydrogenase into mitochondria in rat liver cells. When rat hepatocytes were labeled with 35[S] methionine in the presence of 0.4 mM rhodamine 123, the precursor to transhydrogenase was found to have a half-life in the cytoplasm of 15 minutes as opposed to a half-life of 1-2 minutes when cells were radiolabeled in the absence of the dye. To clarify the mechanism of import inhibition, studies were initiated to assess the effect of rhodamine 123 on mitochondrial respiration. Upon addition of the dye to a mitochondrial suspension, respiration was initially enhanced, then inhibited. The inability of FCCP, a classical uncoupler, to enhance respiration during the inhibitory phase suggests that rhodamine 123 is primarily inhibiting respiration through the electron transport system rather than through the ATPase. These results suggest that rhodamine 123 may inhibit import of the transhydrogenase precursor into mitochondria by disrupting components in the mitochondrial membrane necessary for efficient import.  相似文献   

5.
Averaged across many previous investigations, doubling the CO2 concentration ([CO2]) has frequently been reported to cause an instantaneous reduction of leaf dark respiration measured as CO2 efflux. No known mechanism accounts for this effect, and four recent studies have shown that the measurement of respiratory CO2 efflux is prone to experimental artifacts that could account for the reported response. Here, these artifacts are avoided by use of a high-resolution dual channel oxygen analyzer within an open gas exchange system to measure respiratory O2 uptake in normal air. Leaf O2 uptake was determined in response to instantaneous elevation of [CO2] in nine contrasting species and to long-term elevation in seven species from four field experiments. Over six hundred separate measurements of respiration failed to reveal any decrease in respiratory O2 uptake with an instantaneous increase in [CO2]. Respiration was found insensitive not only to doubling [CO2], but also to a 5-fold increase and to decrease to zero. Using a wide range of species and conditions, we confirm earlier reports that inhibition of respiration by instantaneous elevation of [CO2] is likely an experimental artifact. Instead of the expected decrease in respiration per unit leaf area in response to long-term growth in the field at elevated [CO2], there was a significant increase of 11% and 7% on an area and mass basis, respectively, averaged across all experiments. The findings suggest that leaf dark respiration will increase not decrease as atmospheric [CO2] rises.  相似文献   

6.
Rhodamine 123 accumulates in the mitochondria of living cells and exhibits selective anticarcinoma activity. The biochemical basis of toxicity was investigated by testing the effect of the dye on isolated rat liver mitochondria. Much lower concentrations of rhodamine 123 were required to inhibit ADP-stimulated respiration and ATP synthesis in well-coupled energized mitochondria than were required to inhibit uncoupled respiration and uncoupler-stimulated ATP hydrolysis. The amount of rhodamine 123 associated with the mitochondria was several-fold greater under energized as compared to non-energized conditions, which may explain why coupled functions appeared to be more sensitive than uncoupled functions to inhibition at low concentrations of rhodamine 123. It was concluded that the site of rhodamine 123 inhibition is most likely the F0F1 ATPase complex and possibly electron transfer reactions as well.  相似文献   

7.
Changes in the concentration and stable isotope ratio of atmospheric CO(2) can be used to study variations in the net exchange of carbon dioxide in terrestrial ecosystems (net difference between total photosynthesis and respiration). Changes in the timing of seasonal fluctuations in atmospheric CO(2) concentration have suggested that net uptake of carbon dioxide has been increasing in northern latitude ecosystems in association with warmer temperatures and a lengthening of the growing season. Stable isotope techniques allow a more detailed separation of differences between ecosystem photosynthesis and respiration because these two processes have contrasting effects on both the carbon and oxygen isotope ratio of atmospheric CO(2). Future applications of stable isotope analyses include documenting and monitoring the influence of global environmental change on ecosystem CO(2) exchange at regional scales (10-1000km(2)).  相似文献   

8.
In sperm of the echiuroid, Urechis unicinctus, respiration in the presence of CO was reversibly augmented by light irradiation in an examined range of wavelengths between 350 and 650 nm. The respiratory rate of sperm in the presence of CO was enhanced by light irradiation in proportion to the light fluence rate. A sharp and large peak was obtained at the wavelength of 430 nm in the action spectrum of photo-activated respiration of sperm in the presence of CO. Broad and small peaks were also found at around 530 and 570 nm. This action spectrum is similar in its profile to the absorption spectrum of reduced cytochrome b. Absorption of photon energy by reduced b-type cytochrome probably activates the redox reaction of this cytochrome to enhance the respiratory rate. Photo-activated respiration in the presence of CO was inhibited by antimycin A and cyanide. In this respiratory system, an electron equivalent is probably transferred through the mitochondrial respiratory chain between cytochrome b and cytochrome c and finally to molecular oxygen in the reaction catalyzed by the CO-insensitive terminal oxidase.  相似文献   

9.
Carbon monoxide (CO), produced during the degradation of heme by the enzyme heme oxygenase, is an important signaling mediator in mammalian cells. Here we show that precise delivery of CO to isolated heart mitochondria using a water-soluble CO-releasing molecule (CORM-3) uncouples respiration. Addition of low-micromolar concentrations of CORM-3 (1–20 μM), but not an inactive compound that does not release CO, significantly increased mitochondrial oxygen consumption rate (State 2 respiration) in a concentration-dependent manner. In contrast, higher concentrations of CORM-3 (100 μM) suppressed ADP-dependent respiration through inhibition of cytochrome c oxidase. The uncoupling effect mediated by CORM-3 was inhibited in the presence of the CO scavenger myoglobin. Moreover, this effect was associated with a gradual decrease in membrane potential (ψ) over time and was partially reversed by malonate, an inhibitor of complex II activity. Similarly, inhibition of uncoupling proteins or blockade of adenine nucleotide transporter attenuated the effect of CORM-3 on both State 2 respiration and Δψ. Hydrogen peroxide (H2O2) produced by mitochondria respiring from complex I-linked substrates (pyruvate/malate) was increased by CORM-3. However, respiration initiated via complex II using succinate resulted in a fivefold increase in H2O2 production and this effect was significantly inhibited by CORM-3. These findings disclose a counterintuitive action of CORM-3 suggesting that CO at low levels acts as an important regulator of mitochondrial respiration.  相似文献   

10.
This paper demonstrates the functionality, laboratory testing and field application of a microbial sensor that is capable of monitoring the organic pollution extent of wastewaters both off-line in a laboratory and on-line in a wastewater treatment plant. The biosensor was first developed in the laboratory using synthetic wastewater and then applied to monitor the effluent of the unit. The basic working principle of the biosensor is based on the on-line measurement of CO2 concentration in the off gas produced during carbon compound degradation by microbial respiration activities. CO2 concentration under operation conditions (constant oxygen flow rate, residence time and pH) is closely related to the extent of organic pollution (biochemical oxygen demand, chemical oxygen demand). CO2 monitoring is carried out by an infrared spectrometer, whereas current organic pollution is determined off-line according to the conventional 5-day lasting BOD analysis. Off gas analysis of CO2 concentration strongly correlates with off-line biochemical oxygen demand measurements allowing continuous on-line monitoring of the organic load within a wastewater treatment plant. Thus, real time process control and operation become feasible.  相似文献   

11.
We measured the oxygen isotope composition (delta(18)O) of CO(2) respired by Ricinus communis leaves in the dark. Experiments were conducted at low CO(2) partial pressure and at normal atmospheric CO(2) partial pressure. Across both experiments, the delta(18)O of dark-respired CO(2) (delta(R)) ranged from 44 per thousand to 324 per thousand (Vienna Standard Mean Ocean Water scale). This seemingly implausible range of values reflects the large flux of CO(2) that diffuses into leaves, equilibrates with leaf water via the catalytic activity of carbonic anhydrase, then diffuses out of the leaf, leaving the net CO(2) efflux rate unaltered. The impact of this process on delta(R) is modulated by the delta(18)O difference between CO(2) inside the leaf and in the air, and by variation in the CO(2) partial pressure inside the leaf relative to that in the air. We developed theoretical equations to calculate delta(18)O of CO(2) in leaf chloroplasts (delta(c)), the assumed location of carbonic anhydrase activity, during dark respiration. Their application led to sensible estimates of delta(c), suggesting that the theory adequately accounted for the labeling of CO(2) by leaf water in excess of that expected from the net CO(2) efflux. The delta(c) values were strongly correlated with delta(18)O of water at the evaporative sites within leaves. We estimated that approximately 80% of CO(2) in chloroplasts had completely exchanged oxygen atoms with chloroplast water during dark respiration, whereas approximately 100% had exchanged during photosynthesis. Incorporation of the delta(18)O of leaf dark respiration into ecosystem and global scale models of C(18)OO dynamics could affect model outputs and their interpretation.  相似文献   

12.
1. The oxygen kinetics of purified beef heart cytochrome c oxidase were investigated. 2. The effect of addition of various fixed concentrations of the inhibitors CO, HN3, HCOOH, HCN and H2S on the double reciprocal plot of respiration rate against oxygen concentration was studied. 3. CO is strictly competitive, azide and formate are uncompetitive, and cyanide and sulfide are non-competitive inhibitors towards oxygen. 4. Binding constants for the various inhibitors from secondary plots of the oxygen kinetics at pH 7.4 are: CO: Ki = 0.32 micronM, azide: Ki = 33 micronM; formate: Ki = 15 mM; cyanide: Ki = 0.2 micronM and sulfide: Ki = 0.2 micronM. 5. The possible significance of these results in the elucidation of the reaction mechanism is discussed.  相似文献   

13.
The effect of the rate of oxygen supply on biomass growth, consumption of carbon source formation of metabolic by-products, biomass yeilds referred to C-source and oxygen, respiration rate and the respiratory quotient was studied in a multistage tower fermentor with an interstage backflow, i.e. with a continuous reinoculation of the preceding stages. Experiments were done with Klebsiella aerogenes CCM 2318 in a synthetic glucose medium with constant glucose concentration in the feed, at pH 7.0. temperature 30 degrees C, and dilution rates 0.6 and 0.178 h-1 (referred to one stage). Different behavior of the culture was found at different dilution rates both with oxygen and under oxygen limitation. As compared with the chemostat system, the regime with an interstage backflow exhibited differences in respiration rate and CO2 formation; this attests to a considerably different physiological state of the cells.  相似文献   

14.
Studies on long-term effects of plants grown at elevated CO(2) are scarce and mechanisms of such responses are largely unknown. To gain mechanistic understanding on respiratory acclimation to elevated CO(2), the Crassulacean acid metabolism Mediterranean invasive Opuntia ficus-indica Miller was grown at various CO(2) concentrations. Respiration rates, maximum activity of cytochrome c oxidase, and active mitochondrial number consistently decreased in plants grown at elevated CO(2) during the 9 months of the study when compared to ambient plants. Plant growth at elevated CO(2) also reduced cytochrome pathway activity, but increased the activity of the alternative pathway. Despite all these effects seen in plants grown at high CO(2), the specific oxygen uptake rate per unit of active mitochondria was the same for plants grown at ambient and elevated CO(2). Although decreases in photorespiration activity have been pointed out as a factor contributing to the long-term acclimation of plant respiration to growth at elevated CO(2), the homeostatic maintenance of specific respiratory rate per unit of mitochondria in response to high CO(2) suggests that photorespiratory activity may play a small role on the long-term acclimation of respiration to elevated CO(2). However, despite growth enhancement and as a result of the inhibition in cytochrome pathway activity by elevated CO(2), total mitochondrial ATP production was decreased by plant growth at elevated CO(2) when compared to ambient-grown plants. Because plant growth at elevated CO(2) increased biomass but reduced respiratory machinery, activity, and ATP yields while maintaining O(2) consumption rates per unit of mitochondria, we suggest that acclimation to elevated CO(2) results from physiological adjustment of respiration to tissue ATP demand, which may not be entirely driven by nitrogen metabolism as previously suggested.  相似文献   

15.
Effects of probes of membrane potential on metabolism in synaptosomes   总被引:1,自引:0,他引:1  
Effects of three probes for measuring membrane potential, tetraphenylphosphonium (TPP+), rhodamine 6G and 3,3'-dipropylthiocarbocyanine (diS-C3-(5)) on energy metabolism in synaptosomes were investigated. None of the three probes had any effect on lactate production in synaptosomes. TPP+ and rhodamine 6G did not inhibit the respiration of synaptosomes with pyruvate and succinate as exogenous substrate and were only weakly inhibitory with endogenous substrates. In contrast, diS-C3-(5) markedly inhibited the respiration of synaptosomes with glucose, pyruvate and endogenous substrates. All three probes reduced ATP content in synaptosomes and depolarized the membrane potential in synaptosomes with increasing concentrations of the probes. It is, therefore, preferable to estimate membrane potential with TPP+ or rhodamine 6G at their low concentrations where their effect on metabolism is negligible.  相似文献   

16.
1. Pyruvate carboxylase is present in brown adipose tissue mitochondria. 2. In isolated mitochondria, pyruvate, bicarbonate and ATP, the substrates for pyruvate carboxylase, are able to replace added malate in supplying a condensing partner for acetyl-CoA formed from beta-oxidation of fatty acids. 3. In brown adipocytes, pyruvate and CO2 increase the rate of norepinephrine-stimulated respiration synergistically. 4. The norepinephrine-stimulated respiration in brown adipocytes is diminished when pyruvate transport into the mitochondria is inhibited. 5. Pyruvate carboxylation increases the intramitochondrial level of citric acid cycle intermediates, as shown by titrations of malonate inhibition of respiration. 6. Pyruvate carboxylation can continuously supply the mitochondria with citric acid cycle intermediates, as evidenced by its ability to maintain respiration when oxoglutarate conversion to glutamate is stimulated. 7. Pyruvate carboxylation is necessary for maximal oxygen consumption even when drainage of the citric acid cycle for amino acid synthesis is eliminated. 8. Pyruvate carboxylation explains observed effects of CO2 on respiration in brown adipocytes, and may also explain the increased glucose uptake by brown adipose tissue during thermogenesis in vivo.  相似文献   

17.
Among vertebrates, turtles are able to tolerate exceptionally low oxygen tensions. We have investigated the compensatory mechanisms that regulate respiration and blood oxygen transport in snapping turtles during short exposure to hypoxia. Snapping turtles started to hyperventilate when oxygen levels dropped below 10% O(2). Total ventilation increased 1.75-fold, essentially related to an increase in respiration frequency. During normoxia, respiration occurred in bouts of four to five breaths, whereas at 5% O(2), the ventilation pattern was more regular with breathing bouts consisting of a single breath. The increase in the heart rate between breaths during hypoxia suggests that a high pulmonary blood flow may be maintained during non-ventilatory periods to improve arterial blood oxygenation. After 4 days of hypoxia at 5% O(2), hematocrit, hemoglobin concentration and multiplicity and intraerythrocytic organic phosphate concentration remained unaltered. Accordingly, oxygen binding curves at constant P(CO(2)) showed no changes in oxygen affinity and cooperativity. However, blood pH increased significantly from 7.50+/-0.05 under normoxia to 7.72+/-0.03 under hypoxia. The respiratory alkalosis will produce a pronounced in vivo left-shift of the blood oxygen dissociation curve due to the large Bohr effect and this is shown to be critical for arterial oxygen saturation.  相似文献   

18.
Long-term and short-term effects of CO2 enrichment on dark respiration were investigated using soybean (Glycine max [L.] Merr.) plants grown at either 35.5 or 71.0 Pa CO2. Indirect effects, or effects of growth in elevated CO2, were examined using a functional model that partitioned respiration into growth and maintenance components. Direct effects, or immediate effects of a short-term change in CO2, were examined by measuring dark respiration, first, at the CO2 partial pressure at which plants were grown, and second, after equilibration in the reciprocal CO2 partial pressure. The functional component model indicated that the maintenance coefficient of respiration increased 34% with elevated CO2, whereas the growth coefficient was not significantly affected. Changes in maintenance respiration were correlated with a 33% increase in leaf total nonstructural carbohydrate concentration, but leaf nitrogen content of soybean leaves was not affected by CO2 enrichment. Thus, increased maintenance respiration may be a consequence of increased nonstructural carbohydrate accumulation. When whole soybean plants were switched from low CO2 to high CO2 for a brief period, leaf respiration was always reduced. However, this direct effect of CO2 partial pressure was approximately 50% less in plants grown in elevated CO2. We conclude from this study that there are potentially important effects of CO2 enrichment on plant respiration but that the effects are different for plants given a short-term increase in CO2 partial pressure versus plants grown in elevated CO2.  相似文献   

19.
Lipophilic cations, such as rhodamine 123, have selective anticarcinoma activity both in epithelial-derived tumor cells and in tumor cells injected into mice. The mechanism by which rhodamine 123 and safranin have their effect on mitochondrial function was examined. Rhodamine 123 and safranin inhibit the stimulation of mitochondrial respiration by ADP in a similar concentration range. This inhibition occurs whether the mitochondria are respiring on succinate as a substrate or on ascorbate plus tetramethylphenylenediamine. ATP hydrolysis was stimulated twofold by high lipophilic cation concentration. These results demonstrate that rhodamine 123 and safranin affect oxidative phosphorylation in a similar fashion.  相似文献   

20.
We present robust methods for online estimation of cell specific oxygen uptake and carbon dioxide production rates (q(O2) and q(CO2), respectively) during perfusion cultivation of mammalian cells. Perfusion system gas and liquid phase mass balance expressions for oxygen and carbon dioxide were used to estimate q(O2), q(CO2) and the respiratory quotient (RQ) for Chinese hamster ovary (CHO) cells in perfusion culture over 12 steady states with varying dissolved oxygen (DO), pH, and temperature set points. Under standard conditions (DO = 50%, pH = 6.8, T = 36.5°C), q(O2) and q(CO2) ranges were 5.14-5.77 and 5.31-6.36 pmol/cell day, respectively, resulting in RQ values of 0.98-1.14. Changes to DO had a slight reducing effect on respiration rates with q(O2) and q(CO2) values of 4.64 and 5.47, respectively, at DO = 20% and 4.57 and 5.12 at DO = 100%. Respiration rates were lower at low pH with q(O2) and q(CO2) values of 4.07 and 4.15 pmol/cell day at pH = 6.6 and 4.98 and 5.36 pmol/cell day at pH = 7. Temperature also impacted respiration rates with respective q(O2) and q(CO2) values of 3.97 and 4.02 pmol/cell day at 30.5°C and 5.53 and 6.25 pmol/cell day at 37.5°C. Despite these changes in q(O2) and q(CO2) values, the RQ values in this study ranged from 0.98 to 1.23 suggesting that RQ was close to unity. Real-time q(O2) and q(CO2) estimates obtained using the approach presented in this study provide additional quantitative information on cell physiology both during bioprocess development and commercial biotherapeutic manufacturing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号