首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although it is well established that symptomatology, morbidity and death following scorpion envenomation are due to increases in neurotransmitter release secondary to toxins binding to voltage-sensitive sodium channels, the mechanism by which venom action is involved in damaging heart, liver, lungs and kidneys remains unclear. We hypothesized that scorpion toxins could induce the generation of high levels of free radicals responsible for membrane damage in organs targeted by venom action. We have investigated lipid peroxidation in different organs, through the evaluation of thiobarbituric acid reactive substances (TBARS), after experimental envenomation of rats by toxic fractions of Androctonus australis Hector venom. We have shown that scorpion toxins cause considerable lipid peroxidation in most vital organs. We also evaluated the protective effects of antioxidants in mice injected with lethal doses of toxins. Among the drugs tested, N-acetylcysteine (NAC) was effective in protecting the mice when injected prior to toxin application. However, the free radical scavenging properties of NAC seem less implicated in these protective effects than its ability to increase the fluidity of bronchial secretions. We therefore conclude that free radical generation only plays a minor role in the toxicity of scorpion venom.  相似文献   

2.
Zhijian C  Yun X  Chao D  Shunyi Z  Shijin Y  Yingliang W  Wenxin L 《Peptides》2006,27(6):1235-1240
Many studies have been carried on peptides and genes encoding scorpion toxins from the venom of Mesobuthus martensii Karsch (synonym: Buthus martensii Karsch, BmK), such as Na+, K+ and Cl- channel modulators. In this study, a novel calcium channel toxin-like gene BmCa1 was isolated and characterized from the venom of Mesobuthus martensii Karsch. First, a partial cDNA sequence of the Ca2+ channel toxin-like gene was identified by random sequencing method from a venomous gland cDNA library of Mesobuthus martensii Karsch. The full-length sequence of BmCa1 was then obtained by 5'RACE technique. The peptide deduced from BmCa1 precursor nucleotide sequence contains a 27-residue signal peptide and a 37-residue mature peptide. Although BmCa1 and other scorpion toxins are different at the gene and protein primary structure levels, BmCa1 has the same precursor nucleotide organization and cysteine arrangement as that of the first subfamily members of calcium channel scorpion toxins. Genomic DNA sequence of BmCa1 was also cloned by PCR. Sequence analysis showed that BmCa1 gene consists of three exons separated by two introns of 72 bp and 1076 bp in length, respectively. BmCa1 is the first calcium channel toxin-like gene cloned from the venom of Mesobuthus martensii Karsch and potentially represents a novel class of calcium channel toxins in scorpion venoms.  相似文献   

3.
Previous studies have demonstrated that scorpion toxins increase the serum levels of IL-1, IL-6, INF-gamma, and GM-CSF in patients with severe shock and pulmonary edema. Moreover, it has been shown that experimental models of scorpion envenomation presented an increase in serum levels of IL-1, IL-6, IFN-gamma and nitric oxide. Thus, it is possible that the cytokine release may contribute to the onset and maintenance of the pulmonary edema induced by scorpion venom. This study was designed to investigate whether inflammatory and non-inflammatory cytokines, contribute to the pulmonary injury induced by infusion of Tityus serrulatus scorpion toxin in rats. We show that scorpion venom not only increases the expression of mRNA pulmonary inflammatory cytokines but also non-inflammatory cytokines as well. Moreover, the expression of IL-1alpha, IL-1beta and IL-6 mRNA was shown to be higher among the remaining detectable cytokines. The findings of this study provide additional insight towards the understanding of the pathophysiology of the pulmonary edema induced by scorpion venom. The increased level of pulmonary cytokines observed during the pulmonary edema may be responsible for the exacerbation and maintenance of the inflammatory response to scorpion venom in the lungs.  相似文献   

4.
The water-soluble part of the dried venom from the scorpion, Tityus serrulatus Lutz and Mello (range, Southeastern Brazil), showed 16 polypeptide bands on polyacrylamide gel electrophoresis. This material exhibited toxic and hyaluronidase activity but no phospholipase, phosphodiesterase, protease, or fibrinolytic activity. Fractionation on glycinamide-treated Sephadex G-50 afforded three protein fractions, which were non-toxic, equitoxic, and three times more toxic than the water-soluble venom. Subsequent separation of the toxic fractions on carboxymethyl-cellulose with phosphate buffers furnished five toxic components, which were further purified on carboxymethyl-cellulose with a salt gradient in acetate buffer. Toxin γ, the major and most basic toxin, is a 62-residue protein that, unlike other scorpion toxins, contains methionine. Automated Edman degradation showed the amino-terminal sequence to be H-Lys-Glu-Gly-Tyr-Leu-Met-Asp-His-Glu-Gly-Cys-Lys-Leu-Ser-Cys-Phe-Ile-Arg-Pro-Ser-Gly-Tyr-Cys-Gly-Arg-Glu-Cys-Gly-Ile-. Toxin γ is the first example of a fifth structural type of mammalian toxin from scorpion venom. Its amino-terminal sequence shows greater homology with toxins similar to Centruroides suffusus suffusus toxin III and Androctonus australis toxin II than with toxins similar to A. australis toxin I or Bhutus occitanus tunetanus toxin I.  相似文献   

5.
6.
We have characterized tamulustoxin, a novel 35-amino-acid peptide found in the venom of the Indian red scorpion (Mesobuthus tamulus). Tamulustoxin was identified through a [125I]toxin I screen, designed to identify toxins that block voltage-activated potassium channels. Tamulustoxin has also been cloned by RT-PCR, using RNA extracted from scorpion venom glands. Tamulustoxin shares no homology with other scorpion venom toxins, although the positions of its six cysteine residues would suggest that it shares the same structural scaffold. Tamulustoxin rapidly inhibited both peak and steady-state currents (18.9 +/- 1.0 and 37 +/- 1.1%, respectively) produced by injecting CHO cells with mRNA encoding the hKv1.6 channel.  相似文献   

7.
Recent progress in biochemical, structural and physiological studies has revealed several interesting properties of the toxins from the American scorpion, Centruroides sculpturatus. These toxins, together with similar toxins from other species of scorpions, comprise a unique family of homologous proteins with phylogenetically related structural differences. There is now evidence from both binding and electrophysiological studies that two distinct classes of toxins are present in the venom of C. sculpturatus. One class of toxins markedly slows inactivation of the sodium permeability but has no demonstrable effect on activation, whereas the second class induces a transient shift in the voltage-dependence of activation. Both groups make inactivation incomplete.  相似文献   

8.
Androctonus australis is primarily involved in envenomations in North Africa, notably in Tunisia and Algeria, and constitutes a significant public health problem in this region. The toxicity of the venom is mainly due to various neurotoxins that belong to two distinct structural and immunological groups, group I (the AahI and AahIII toxins) and group II (AahII). Here, we report the use of a diabody mixture in which the molar ratio matches the characteristics of toxins and polymorphism of the venom. The mixture consists of the Db9C2 diabody (anti-group I) and the Db4C1op diabody (anti-AahII), the latter being modified to facilitate in vitro production and purification. The effectiveness of the antivenom was tested in vivo under conditions simulating scorpion envenomation. The intraperitoneal injection of 30 μg of the diabody mixture protected almost all the mice exposed to 3 LD(50) s.c. of venom. We also show that the presence of both diabodies is necessary for the animals to survive. Our results are the first demonstration of the strong protective power of small quantities of antivenom used in the context of severe envenomation with crude venom.  相似文献   

9.
10.
Hemitoxin (HTX) is a new K+ channel blocker isolated from the venom of the Iranian scorpion Hemiscorpius lepturus. It represents only 0.1% of the venom proteins, and displaces [125 I]alpha-dendrotoxin from its site on rat brain synaptosomes with an IC50 value of 16 nm. The amino acid sequence of HTX shows that it is a 35-mer basic peptide with eight cysteine residues, sharing 29-69% sequence identity with other K+ channel toxins, especially with those of the alphaKTX6 family. A homology-based molecular model generated for HTX shows the characteristic alpha/beta-scaffold of scorpion toxins. The pairing of its disulfide bridges, deduced from MS of trypsin-digested peptide, is similar to that of classical four disulfide bridged scorpion toxins (Cys1-Cys5, Cys2-Cys6, Cys3-Cys7 and Cys4-Cys8). Although it shows the highest sequence similarity with maurotoxin, HTX displays different affinities for Kv1 channel subtypes. It blocks rat Kv1.1, Kv1.2 and Kv1.3 channels expressed in Xenopus oocytes with IC50 values of 13, 16 and 2 nM, respectively. As previous studies have shown the critical role played by the beta-sheet in Kv1.3 blockers, we suggest that Arg231 is also important for Kv1.3 versus Kv1.2 HTX positive discrimination. This article gives information on the structure-function relationships of Kv1.2 and Kv1.3 inhibitors targeting developing peptidic inhibitors for the rational design of new toxins targeting given K+ channels with high selectivity.  相似文献   

11.
Scorpion toxins are important pharmacological tools for probing the physiological roles of ion channels which are involved in many physiological processes and as such have significant therapeutic potential. The discovery of new scorpion toxins with different specificities and affinities is needed to further characterize the physiology of ion channels. In this regard, a new short polypeptide called Kbot21 has been purified to homogeneity from the venom of Buthus occitanus tunetanus scorpion. Kbot21 is structurally related to BmBKTx1 from the venom of the Asian scorpion Buthus martensii Karsch. These two toxins differ by only two residues at position 13 (R /V) and 24 (D/N).Despite their very similar sequences, Kbot21 and BmBKTx1 differ in their electrophysiological activities. Kbot21 targets KV channel subtypes whereas BmBKTx1 is active on both big conductance (BK) and small conductance (SK) Ca2+-activated K+ channel subtypes, but has no effects on Kv channel subtypes. The docking model of Kbot21 with the Kv1.2 channel shows that the D24 and R13 side-chain of Kbot21 are critical for its interaction with KV channels.  相似文献   

12.
The complete sequence of the toxin TsTX-VI from the venom of the scorpionTityus serrulatus Lutz and Mello is presented. The sequence has been determined by automated Edman analysis of the reduced and carboxymethylated protein as well as of the resulting peptides, obtained fromS. aureus protease and tryptic digestions. TsTX-VI is composed of 62 residues and has a calculated molecular weight of 6717. Homology studies with other scorpion toxins show that TsTX-VI is more similar to the Old World than to the North American scorpion toxins. The hydropathic index indicates that TsTX-VI is more hydrophobic than Ts-γ. Toxicity studies carried out in mice demonstrate that i.v. injection of TsTX-VI is unable to evoke the usual symptoms induced by the typical neurotoxins of this venom, but only a generalized allergic reaction. These properties are important in clarifying the relationship between primary structure and biological function of scorpion toxins.  相似文献   

13.
The scorpion Tityus serrulatus venom comprises a complex mixture of molecules that paralyzes and kills preys, especially insects. However, venom components also interact with molecules in humans, causing clinic envenomation. This cross-interaction may result from homologous molecular targets in mammalians and insects, such as (NEP)-like enzymes. In face of these similarities, we searched for peptides in Tityus serrulatus venom using human NEP as a screening tool. We found a NEP-inhibiting peptide with the primary sequence YLPT, which is very similar to that of the insect neuropeptide proctolin (RYLPT). Thus, we named the new peptide [des-Arg1]-proctolin. Comparative NEP activity assays using natural substrates demonstrated that [des-Arg1]-proctolin has high specificity for NEP and better inhibitory activity than proctolin. To test the initial hypothesis that molecular homologies allow Tityus serrulatus venom to act on both mammal and insect targets, we investigated the presence of a NEP-like in cockroaches, the main scorpion prey, that could be likewise inhibited by [des-Arg1]-proctolin. Indeed, we detected a possible NEP-like in a homogenate of cockroach heads whose activity was blocked by thiorphan and also by [des-Arg1]-proctolin. Western blot analysis using a human NEP monoclonal antibody suggested a NEP-like enzyme in the homogenate of cockroach heads. Our study describes for the first time a proctolin-like peptide, named [des-Arg1]-proctolin, isolated from Tityus serrulatus venom. The tetrapeptide inhibits human NEP activity and a NEP-like activity in a cockroach head homogenate, thus it may play a role in human envenomation as well as in the paralysis and death of scorpion preys.  相似文献   

14.
The neuromuscular effects of four purified toxins and crude venom from the scorpion Androctonus australis were investigated in the extensor tibiae nerve-muscle preparation of the locust Locusta migratoria. Insect and crustacean toxin and the mammal toxins I and II which have previously been shown to act on fly larvae, isopods, and mice all paralyse locust larvae. The paralytic potencies decrease in the following order: insect toxin → mammal toxin I → crustacean toxin → mammal toxin II.The toxins and crude venom cause repetitive activity of the motor axons. This leads to long spontaneous trains of junction potentials in the case of crude venom and insect toxin. The other toxins chiefly cause short bursts of action and junction potentials following single stimuli.The ‘slow’ excitatory motor axon invariably is affected sooner than the inhibitory or the ‘fast’ excitatory one. The minimal doses of toxins required to affect the ‘slow’ motor axon decrease in an order somewhat different from that established for their paralytic potencies: insect toxin → crustacean toxin → mammal toxin I → mammal toxin II.Crude venom depolarises and destabilises the muscle membrane potential at low doses. At high doses it decreases the membrane resistance, whereas insect toxin leads to an increase.Crude venom and insect toxin enhance the frequency of mejps, whereas mammal toxin I leads to the occurrence of ‘giant’ mejps.The pattern of axonal activities indicates that the various peripheral branches of the motor nerve are the primary target of the toxins.The time course of nerve action potentials is affected by mammal toxin I and crustacean toxin which cause anomalous shapes and prolongations not caused by insect toxin.The results with other animals suggest that only the insect toxin is selective in its activity. The way it affects the axon might be quite different from that previously reported for scorpion venoms or toxins.  相似文献   

15.
A comparative analysis of cardiotropic activity of toxins has been studied in experiments on isolated heart of the poisonous animals from different systematic groups living on the territory of the USSR: reptiles (the venom of cobra, Vipera lebetina, Ancistrodon blomhoffi), amphibian (the venom of Bufo, Bombina, salamander), arachnids (the venom of Apis, Scolopendra, scorpion). The specific cardiotropic activity of the scorpion and Bufo venom has been discovered. The mechanisms of the cardiostimulative activity of scorpion venom have been found to be due to the activation of cellular adrenoreactive structures, and the Bufo venom to the activation of the intracellular calcium. The prospects of zootoxins using in cardiology for development of cardiotonic drugs and modelling the pathologic states in blood circulation system is substantiated.  相似文献   

16.
17.
The binding of the radioiodinated insect selective neurotoxin from the venom of the scorpion Androctonus australis (AaIT), to synaptic plasma membrane vesicles derived from osmotically shocked insect synaptosomes was studied under kinetic and equilibrium conditions. The integrity of these vesicles and the existence of membrane potential and its modifiability were demonstrated by assays of the uptake of the lipophilic cation tetraphenylphosphonium. It has been shown that 125I-labeled AaIT binds specifically and reversibly to a single class of noninteracting binding sites of high affinity (Kd1 = 1.2–3 nM) and low capacity (1.2–2.0 pmol/mg protein). The values of the rate association and dissociation constants k1 and k?1 are, respectively, 1.36 · 106 M?1 · s?1 and 1.9 · 10?3 s?1, and are in a good accordance with the equilibrium constant. The use of various ionophores and changes in external potassium concentration shown to modify the membrane potential of the present neuronal preparation, did not affect the binding of 125I-AaIT, thus indicating its voltage-independence. Veratridine, tetrodotoxin, sea anemone toxin and the α and β scorpion toxins specific for vertebrates did not affect the binding of 125I-AaIT. Furthermore, the above scorpion toxins were devoid of specific binding to the present insect neuronal preparation. Two additional insect toxins derived from the venom of the scorpion Buthotus judaicus, BjIT1 (spastic-excitatory toxin, homologus to the AaIT) and BjIT2 (flaccidity inducing-depressory toxin), were both shown to displace the 125I-AaIT with a high affinity (Kd = 2.2 and 1.3 nM, respectively). These data are compared and discussed in light of the information concerning the interaction of scorpion venom toxins affecting vertebrates with mammalian neuronal tissues.  相似文献   

18.
We present evidence that venom from the Brazilian scorpion Tityus serrulatus and a purified fraction selectively cleave essential SNARE proteins within exocrine pancreatic tissue. Western blotting for vesicle-associated membrane protein type v-SNARE proteins (or synaptobrevins) reveals characteristic alterations to venom-treated excised pancreatic lobules in vitro. Immunocytochemistry by electron microscopy confirms both the SNARE identity as VAMP2 and the proteolysis of VAMP2 as a marked decrease in secondary antibody-conjugated colloidal gold particles that are predominantly associated with mature zymogen granules. Studies with recombinant SNARE proteins were used to determine the specific cleavage site in VAMP2 and the susceptibility of VAMP8 (endobrevin). The VAMP2 cleavage site is between the transmembrane anchor and the SNARE motif that assembles into the ternary SNARE complex. Inclusion of divalent chelating agents (EDTA) with fraction ν, an otherwise active purified component from venom, eliminates SNARE proteolysis, suggesting the active protein is a metalloprotease. The unique cleavages of VAMP2 and VAMP8 may be linked to pancreatitis that develops following scorpion envenomation as both of these v-SNARE proteins are associated with zymogen granule membranes in pancreatic acinar cells. We have isolated antarease, a metalloprotease from fraction ν that cleaves VAMP2, and report its amino acid sequence.  相似文献   

19.
本文用山东产马氏蝎(Buthus martensii kashi)粗毒为材料,经SephadexG-50和Sp-Sephadex C-25二次柱层析,分离纯化获得三个毒峰部分,毒性比粗毒分别提高40—100倍。 纯度鉴定表明三个毒峰的聚丙烯酰胺凝胶电泳和等电聚焦电泳均为一条带,等电点分别为8.7,9.1,9.1,分子量用SDS-不连续聚丙烯酰胺凝胶电泳测定分别为6,600,5,000和8,500。对纯化蝎毒毒素的氨基酸组分也作了分析。 蝎毒毒素对人红细胞膜作用的初步探索结果表明:它使人红细胞膜的Na.K-ATP酶活性和膜脂流动性有所降低。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号