首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary

Rat liver mitochondria have a specific Ca2+ release pathway which operates when NAD+ is hydrolysed to nicotinamide and ADPribose. NAD+ hydrolysis is Ca2+-dependent and inhibited by cyclosporine A (CSA). Mitochondrial Ca2+ release can be activated by the prooxidant t-butylhydroperoxide (tbh) or by gliotoxin (GT), a fungal metabolite of the epipolythiodioxopiperazine group. Tbh oxidizes NADH to NAD+ through an enzyme cascade consisting of glutathione peroxidase, glutathione reductase, and the energy linked transhydrogenase, whereas GT oxidizes some vicinal thiols to the disulfide form, a prerequisite for NAD+ hydrolysis. We report now that rat skeletal muscle mitochondria also contain a specific Ca2+ release pathway activated by both tbh and GT. Ca2+ release increases with the mitochondrial Ca2+ load, is completely inhibited in the presence of CSA, and is paralleled by pyridine nucleotide oxidation. In the presence of tbh and GT, mitochondria do not lose their membrane potential and do not swell, provided continuous release and re-uptake of Ca2+ (‘Ca2+ cycling’) is prevented. These data support the notion that both tbh- and GT-induced Ca2+ release are not the consequence of an unspecific increase of the inner membrane permeability (‘pore’ formation). Tbh induces Ca2+ release from rat skeletal muscle less efficiently than from liver mitochondria indicating that the coupling between tbh and NADH oxidation is much weaker in skeletal muscle mitochondria. This conclusion is corroborated by a much lower glutathione peroxidase activity in skeletal muscle than in liver mitochondria. The prooxidant-dependent pathway promotes, under drastic conditions (high mitochondrial Ca2+ loads and high tbh concentrations), Ca2+ release to about the same extent and rate as the Na+/Ca2+ exchanger. This renders the prooxidant-dependent pathway relevant in the pathophysiology of mitochondrial myopathies where its activation by an increased generation of reactive oxygen species probably results in excessive Ca2+ cycling and damage to mitochondria.  相似文献   

2.
Poly (ADP-ribose) synthetase activity in rat testis mitochondria   总被引:1,自引:0,他引:1  
A quite active poly (ADP-ribose) synthetase was found in isolated rat testis mitochondria. Similar levels of activity were found in mitochondria isolated from bull and hamster testis. In contrast, mitochondria isolated from rat brain or liver, and demembraned sperm, showed negligible activity. Centrifugation of testis mitochondria through a linear sucrose gradient, showed that, poly (ADP-ribose) synthetase cosediment together with succinatecytochrome c reductase and mitochondrial proteins. Furthermore, treatment with digitonin indicated that, the enzyme is localized in the inner membrane-matrix complex. Finally, kinetic studies demonstrated that, the apparent Km for NAD+ of the mitochondrial enzyme, was 22 μM compared with 210 μM for the nuclear enzyme.  相似文献   

3.
The mechanism by which Helminthosporium maydis race T toxin inhibits respiration dependent on NAD+-linked substrates in T cytoplasm corn mitochondria was investigated. The toxin did not cause leakage of the soluble matrix enzyme malate dehydrogenase from the mitochondria or inhibit malate dehydrogenase or isocitrate dehydrogenase directly. The toxin did increase the permeability of the inner membranes of T cytoplasm, but not N cytoplasm, mitochondria to NAD+. Added NAD+ partially or fully restored toxin-inhibited electron transport in T cytoplasm mitochondria. Thiamin pyrophosphate had a similar effect when malate was the substrate. It was concluded that the inhibition of respiration of NAD+-linked substrates by the toxin is due to depletion of the intramitochondrial pool of NAD+ and other coenzymes.  相似文献   

4.
Peroxisomes isolated on sucrose density gradients from homogenates of rat, chicken, or dog livers and rat kidney contained NAD+:α-glycerol phosphate dehydrogenase. Since the amount of sucrose in the peroxisomal fraction inhibited the enzyme activity about 70%, it was necessary to remove the sucrose by dialysis. About 8.4% of the total dehydrogenase of rat livers was in the surviving intact peroxisomes after homogenation. If corrected for particle breakage, this represented approximately 21% of the total activity. About 9.5% of the total enzyme was isolated in rat kidney peroxisomes, and because of severe particle rupture may represent over half of the total activity. No glycerol phosphate dehydrogenase was found in spinach leaf peroxisomes. A specific activity of 326 nmoles min?1 mg?1 protein in the rat liver peroxisomal fraction was at least twice that in the cytoplasm. NAD+:α-glycerol phosphate dehydrogenase was also present in a membrane fraction which was not identified, but none was in the mitochondria. The liver peroxisomal and cytoplasmic NAD+:α-glycerol phosphate dehydrogenase moved similarly on polyacrylamide gels and each resolved into two adjacent bands.Malate dehydrogenase was not found in peroxisomes from liver and kidney of rats and pigs, but 1–2% of the total particulate malate dehydrogenase was present in the peroxisomal area of the gradient from dog livers. However, this malate dehydrogenase in dog peroxisomal fractions did not exactly coincide with the peroxisomal marker, catalase. Malate dehydrogenase in dog liver mitochondria and in the peroxisomal fraction had similar pH optima and Km values and migrated similarly to the anode at pH 6.5 on starch gels as a major and a minor band. The cytoplasmic malate dehydrogenase had a different pH optimum and Km value and resolved into five different isoenzymes by electrophoresis. It is concluded that NAD+:α-glycerol phosphate dehydrogenase is in peroxisomes of liver and kidney, whereas malate dehydrogenase, present in peroxisomes of plants, is apparently absent in animal peroxisomes.  相似文献   

5.
Acetone was found to form a dead-end ternary complex with horse liver alcohol dehydrogenase and oxidized nicotinamide adenine dinucleotide (NAD+) when the reactants were incubated for a long time at relatively high concentrations. The complex formation was demonstrated by measuring the increase in absorbance at 320 nm, the quenching of protein fluorescence, and the loss of enzyme activity. Since acetone is a substrate of liver alcohol dehydrogenase, and the presence of acetaldehyde or pyrazole prevents acetone from forming the dead-end complex with liver alcohol dehydrogenase and NAD+, the acetone molecule in the complex may be bound to the substrate binding site of liver alcohol dehydrogenase. The dissociation of the complex was demonstrated by prolonged dialysis or by addition of reduced nicotinamide adenine dinucleotide (NADH) and iso-butyramide. A modified nicotinamide adenine dinucleotide was obtained as a main product from the dead-end complex after dissociation of the complex or denaturation of the apoenzyme. The modified nicotinamide adenine dinucleotide was found to exhibit an absorption spectrum similar to that of NADH; however, it was not oxidizable by liver alcohol dehydrogenase in the presence of acetaldehyde and exhibited no fluorescence.  相似文献   

6.
Mitochondria from liver, kidney, brain, and skeletal muscle metabolized acetaldehyde. Acetaldehyde oxidation by liver and kidney mitochondria was maximal at low levels of acetaldehyde and was sensitive to rotenone, suggesting the involvement of a NAD+-dependent aldehyde dehydrogenase with a high affinity for acetaldehyde. Acetaldehyde oxidation was stimulated 50% by ADP, suggesting that, in state 4, reoxidation of NADH is rate limiting for acetaldehyde oxidation. In state 4, acetaldehyde oxidation was decreased by NAD+-dependent substrates, as well as by succinate and ascorbate. The inhibition by the latter two substrates was prevented by ADP, dinitrophenol, valinomycin, and gramicidin, but not by oligomycin. Since these compounds are linked to energy transduction and utilization, the data suggest that the inhibition is mediated via energy-dependent reversed electron transport. In state 3, all of these substrates caused considerably less inhibition of acetaldehyde oxidation, suggesting that the activity of aldehyde dehydrogenase, and not of NADH reoxidation, is probably rate limiting for acetaldehyde oxidation. The ionophores valinomycin and gramicidin stimulated acetaldehyde oxidation to a greater extent than ADP. These ionophores also stimulated acetaldehyde oxidation in the presence of ADP. Stimulation by valinomycin occurred in the presence of monovalent cations transported by this ionophore, e.g., K+, Rb+, Cs+. Stimulation by gramicidin also occurred in the presence of these cations, but did not occur with Na+ or Li+. Na+ prevents the stimulation of acetaldehyde oxidation, which occurs in the presence of gramicidin and K+. The stimulation by valinomycin and gramicidin was energy dependent and required the presence of a permeant anion. In the absence of an ionophore, potassium phosphate had no effect on acetaldehyde oxidation. These data suggest that the oxidation of acetaldehyde by rat liver and kidney mitochondria is influenced by the oxidation-reduction state of the mitochondria and by the cationic environment. With brain and muscle mitochondria, the rate of acetaldehyde oxidation increased two- to threefold as the concentration of acetaldehyde was raised from 0.167 to 0.50 mm. Acetaldehyde oxidation in these mitochondria was also sensitive; to rotenone, indicating dependence on NAD+. ADP, valinomycin, gramicidin, and succinate, compounds which either increased or decreased the rate of acetaldehyde oxidation by liver and kidney mitochondria, had no effect on acetaldehyde oxidation by muscle or brain mitochondria. In state 4, mitochondria from Becker-transplantable hepatocellular carcinoma HC-252 oxidized acetaldehyde at the same rate as liver mitochondria. However, in the presence of ADP, dinitrophenol, valinomycin and gramicidin, the rate of acetaldehyde oxidation by the tumor mitochondria was two to three times greater than that of liver mitochondria, suggesting the presence of a more active; acetaldehyde-oxidizing system in tumor than in liver mitochondria.  相似文献   

7.
The perfused rat liver responds in several ways to NAD+ infusion (20–100 μM). Increases in portal perfusion pressure and glycogenolysis and transient inhibition of oxygen consumption and gluconeogenesis are some of the effects that were observed. Extracellular NAD+ is also extensively transformed in the liver. The purpose of the present work was to determine the main products of extracellular NAD+ transformation under various conditions and to investigate the possible contribution of these products for the metabolic effects of the parent compound. The experiments were done with the isolated perfused rat liver. The NAD+ transformation was monitored by HPLC. Confirming previous findings, the single-pass transformation of 100 μM NAD+ ranged between 75% at 1.5 min after starting infusion to 95% at 8 min. The most important products of single-pass NAD+ transformation appearing in the outflowing perfusate were nicotinamide, ADP-ribose, uric acid, and inosine. The relative proportions of these products presented some variations with the time after initiation of NAD+ infusion and the perfusion conditions, but ADP-ribose was always more abundant than uric acid and inosine. Cyclic ADP-ribose (cADP-ribose) as well as adenosine were not detected in the outflowing perfusate. The metabolic effects of ADP-ribose were essentially those already described for NAD+. These effects were sensitive to suramin (P2XY purinergic receptor antagonist) and insensitive to 3,7-dimethyl-1-(2-propargyl)-xanthine (A2 purinergic receptor antagonist). Inosine, a known purinergic A3 agonist, was also active on metabolism, but uric acid and nicotinamide were inactive. It was concluded that the metabolic and hemodynamic effects of extracellular NAD+ are caused mainly by interactions with purinergic receptors with a highly significant participation of its main transformation product ADP-ribose.  相似文献   

8.
Low concentrations of HPE and MLA inhibited state 3 respiration of rat liver mitochondria in the presence of different NAD+-dependent substrates. MLA appeared to be more active than HPE. High aldehyde concentrations inhibited the state 3 respiration with succinate. The restraint of succinate oxidation by HPE and MLA and of glutamate plus malate oxidation by MLA correlated with the inhibition of succinate and glutamate dehydrogenase activites, respectively. HPE inhibited glutamate dehydrogenase at concentrations higher than those affecting glutamate oxidation. Malate dehydrogenase activity was slightly sensitive to HPE and MLA. Both aldehydes inhibited NADH oxidation by freeze-thawed mitochondria. These results suggest the existence of a site particularly sensitive to aldehydes in the electron transport chain between the specific NAD+-linked dehydrogenases and ubiquinone.  相似文献   

9.
A sensitive isotope exchange method was developed to assess the requirements for and compartmentation of pyruvate and oxalacetate production from malate in proliferating and nonproliferating human fibroblasts. Malatedependent pyruvate production (malic enzyme activity) in the particulate fraction containing the mitochondria was dependent on either NAD+ or NADP+. The production of pyruvate from malate in the soluble, cytosolic fraction was strictly dependent on NADP+. Oxalacetate production from malate (malate dehydrogenase, EC 1.1.1.37) in both the particulate and soluble fraction was strictly dependent on NAD+. Relative to nonproliferating cells, NAD+-linked malic enzyme activity was slightly reduced and the NADP+-linked activity was unchanged in the particulate fraction of serum-stimulated, exponentially proliferating cells. However, a reduced activity of particulate malate dehydrogenase resulted in a two-fold increase in the ratio of NAD(P)+-linked malic enzyme to NAD+-linked malate dehydrogenase activity in the particulate fraction of proliferating fibroblasts. An increase in soluble NADP+-dependent malic enzyme activity and a decrease in NAD+-linked malate dehydrogenase indictated an increase in the ratio of pyruvate-producing to oxalacetate-producing malate oxidase activity in the cytosol of proliterating cells. These coordinate changes may affect the relative amount of malate that is oxidized to oxalacetate and pyruvate in proliferating cells and, therefore, the efficient utilization of glutamine as a respiratory fuel during cell proliferation.  相似文献   

10.
We report the kinetics and molecular properties of CD38 purified from bovine lung microsomal membranes after its solubilization with Triton X-100. The enzyme was found to be a novel member of a multicatalytic NAD+-glycohydrolase (NADase, EC 3.2.2.6). It was able to utilize NAD + in different ways, producing nicotinamide (Nam) and either adenosine diphosphoribose (ADPR, NADase activity) or cyclic ADPR (cADPR, cyclase activity); it also catalyzed the hydrolysis of cADPR to ADPR (cADPR, hydrolase activity). In addition, the enzyme catalyzed the pyridine base exchange reaction with conversion of NAD + into NAD analogues. These data are evidence that CD38 is involved in the regulation of both NAD+ and calcium-mobilizing agents, the concentration resulting in an essential enzyme that plays a key role in cellular energy and signal-transduction systems.  相似文献   

11.
The l-alanine dehydrogenase (ADH) of Anabaena cylindrica has been purified 700-fold. It has a molecular weight of approximately 270000, has 6 sub-units, each of molecular weight approximately 43000, and shows activity both in the aminating and deaminating directions. The enzyme is NADH/NAD+ specific and oxaloacetate can partially substitute for pyruvate. The K m app for NAD+ is 14 M and 60 M at low and high NAD+ concentrations, respectively. The K m app for l-alanine is 0.4 mM, that for pyruvate is 0.11 mM, and that for oxaloacetate is 3.0 mM. The K m app for NH 4 + varies from 8–133 mM depending on the pH, being lowest at high pH levels (pH 8.7 or above). Alanine, serine and glycine inhibit ADH activity in the aminating direction. The enzyme is active both in heterocysts and vegetative cells and activity is higher in nitrogen-starved cultures than in N2-fixing cultures. The data suggest that although alanine is formed by the aminating activity of ADH, entry of newly fixed ammonia into organic combination does not occur primarily via ADH in N2-fixing cultures of A. cylindrica. Ammonia assimilation via ADH may be important in cultures with an excess of available nitrogen. The deaminating activity of the enzyme may be important under conditions of nitrogen-deficiency.Abbreviations ADH alanine dehydrogenase - DEAE diethylamino ethyl cellulose - EDTA ethylenediamine tetraacetic acid - GDH glutamic dehydrogenase - GS glutamine synthetase - GOT aspartate-glutamate aminotransferase - NAD+ nicotinamide adenine dinucleotide - NADH reduced nicotinamide adenine dinucleotide - NADP+ nicotinamide adenine dinucleotide phosphate - NADPH reduced nicotinamide adenine dinucleotide phosphate - SDS sodium dodecyl sulphate - Tris tris(hydroxymethyl) aminomethane  相似文献   

12.
NADP-Utilizing Enzymes in the Matrix of Plant Mitochondria   总被引:9,自引:4,他引:5       下载免费PDF全文
Purified potato tuber (Solanum tuberosum L. cv Bintie) mitochondria contain soluble, highly latent NAD+- and NADP+-isocitrate dehydrogenases, NAD+- and NADP+-malate dehydrogenases, as well as an NADPH-specific glutathione reductase (160, 25, 7200, 160, and 16 nanomoles NAD(P)H per minute and milligram protein, respectively). The two isocitrate dehydrogenase activities, but not the two malate dehydrogenase activities, could be separated by ammonium sulfate precipitation. Thus, the NADP+-isocitrate dehydrogenase activity is due to a separate matrix enzyme, whereas the NADP+-malate dehydrogenase activity is probably due to unspecificity of the NAD+-malate dehydrogenase. NADP+-specific isocitrate dehydrogenase had much lower Kms for NADP+ and isocitrate (5.1 and 10.7 micromolar, respectively) than the NAD+-specific enzyme (101 micromolar for NAD+ and 184 micromolar for isocitrate). A broad activity optimum at pH 7.4 to 9.0 was found for the NADP+-specific isocitrate dehydrogenase whereas the NAD+-specific enzyme had a sharp optimum at pH 7.8. Externally added NADP+ stimulated both isocitrate and malate oxidation by intact mitochondria under conditions where external NADPH oxidation was inhibited. This shows that (a) NADP+ is taken up by the mitochondria across the inner membrane and into the matrix, and (b) NADP+-reducing activities of malate dehydrogenase and the NADP+-specific isocitrate dehydrogenase in the matrix can contribute to electron transport in intact plant mitochondria. The physiological relevance of mitochondrial NADP(H) and soluble NADP(H)-consuming enzymes is discussed in relation to other known mitochondrial NADP(H)-utilizing enzymes.  相似文献   

13.
Poly(ADP-ribose) polymerase (PARP) is an intracellular enzyme involved in DNA repair and in building poly-ADP-ribose polymers on nuclear proteins using NAD+. While the majority of PARP resides in the nucleus, several studies indicated that PARP may also be located in the cytosol or in the mitochondrial matrix. In this study we found several poly-ADP-ribosylated proteins in isolated rat liver mitochondria following hydrogen peroxide (H2O2) or nitric oxide donor treatment. Protein poly-ADP-ribosylation was more intense in isolated mitochondria than in whole tissue homogenates and it was not associated with increased nuclear PARP activity. We identified five poly-ADP-ribose (PAR) positive mitochondrial bands by protein mass fingerprinting. All of the identified enzymes exhibited decreased activity or decreased levels following oxidative or nitrosative stress. One of the identified proteins is dihydrolipoamide dehydrogenase (DLDH), a component of the alpha-ketoglutarate dehydrogenase (KGDH) complex, which uses NAD+ as a substrate. This raised the possibility that KGDH may have a PARP-like enzymatic activity. The intrinsic PARP activity of KGDH and DLDH was confirmed using a colorimetric PARP assay kit and by the incubation of the recombinant enzymes with H2O2. The KGDH enzyme may, therefore, have a novel function as a PARP-like enzyme, which may play a role in regulating intramitochondrial NAD+ and poly(ADP-ribose) homeostasis, with possible roles in physiology and pathophysiology.  相似文献   

14.
Mitochondria from skeletal muscle, heart and liver of strain 129/ReJ-dy dystrophic mice and their littermate controls were characterized with respect to their respiratory and phosphorylating activities. Skeletal muscle mitochondria from dystrophic mice showed significantly lower state 3 respiratory rates than controls with both pyruvate + malate and succinate as substrates (P < 0.01). ADP/O and Ca2+/O ratios were found to be normal. A decreased rate of NADH oxidation (0.01 <P < 0.05) by sonicated mitochondrial suspensions from dystrophic mice was also seen. High respiratory rates with ascorbate + phenazine methosulfate as substrates indicated that cytochrome oxidase was not rate limiting in the oxidation of either pyruvate + malate or succinate. Skeletal muscle mitochondria from dystrophic mice showed no deficiency in any of the cytochromes or coenzyme Q. Mg2+-stimulated ATPase activity was higher in dystrophic muscle mitochondria than in controls, but basal and oligomycin-insensitive activities were virtually identical to those of controls. A significant reduction in the intramitochondrial NAD+ content (0.01 <P < 0.02) was seen in dystrophic skeletal muscle as compared to controls. Heart mitochondria from dystrophic mice showed similar, though less extensive abnormalities while liver mitochondria were essentially normal. We concluded from these results that skeletal muscle mitochondria from strain 129 dystrophic mice possess impairments in substrate utilization which may result from (1) an abnormality in the transfer of electrons on the substrate side of coenzyme Q in the case of succinate oxidation; (2) a defect on the path of electron flow from NADH to cytochrome c, and (3) a deficiency of NAD+ in the case of NAD+-linked substrates.  相似文献   

15.
S Y Ou  S A Kempson  T P Dousa 《Life sciences》1981,29(12):1195-1202
Gluconeogenesis in rat renal cortex was measured using tissue slices incubated with or without appropriate substrates. Immediately after incubation the tissue slices were snap-frozen and the content of oxidized nicotinamide adenine dinucleotide (NAD+) was determined. Incubation with 10 mM α-ketoglutarate or L-glutamate led to enhanced glucose production and an increase in tissue content of NAD+. Quinolinate and 3-mercaptopicolinate inhibited the rate of gluconeogenesis from L-glutamate and α-ketoglutarate respectively, and decreased the tissue levels of NAD+. The enhanced rate of gluconeogenesis was associated with an increase of NAD+ in the cytosol fraction (105 × g supernatant) but not in the particulate fraction (105 × g pellet) of renal cortex homogenate. Present results indicate that NAD+ content changes in parallel with the rate of gluconeogenesis in renal cortical tissue.  相似文献   

16.
Malate oxidation in plant mitochondria proceeds through the activities of two enzymes: a malate dehydrogenase and a NAD+-dependent malic enzyme. In cauliflower, mitochondria malate oxidation via malate dehydrogenase is rotenone- and cyanide-sensitive. Addition of exogenous NAD+ stimulates the oxidation of malate via malic enzyme and generates an electron flux that is both rotenone- and cyanide-insensitive. The same effects of exogenous NAD+ are also observed with highly cyanide-sensitive mitochondria from white potato tubers or with mitochondria from spinach leaves. Both enzymes are located in the matrix, but some experimental data also suggest that part of malate dehydrogenase activity is also present outside the matrix compartment (adsorbed cytosolic malate dehydrogenase?). It is concluded that malic enzyme and a specific pool of NAD+/NADH are connected to the cyanide-insensitive alternative pathway by a specific rotenone-insensitive NADH dehydrogenase located on the inner face of the inner membrane. Similarly, malate dehydrogenase and another specific pool of NAD+/NADH are connected to the cyanide- (and antimycin-) sensitive pathway by a rotenone-sensitive NADH dehydrogenase located on the inner face of the inner membrane. A general scheme of electron transport in plant mitochondria for the oxidation of malate and NADH can be given, assuming that different pools of ubiquinone act as a branch point between various dehydrogenases, the cyanide-sensitive cytochrome pathway and the cyanide-insensitive alternative pathway.  相似文献   

17.
18.
NAD+ is mainly synthesized in human cells via the “salvage” pathways starting from nicotinamide, nicotinic acid, or nicotinamide riboside (NR). The inhibition with FK866 of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), catalyzing the first reaction in the “salvage” pathway from nicotinamide, showed potent antitumor activity in several preclinical models of solid and hematologic cancers. In the clinical studies performed with FK866, however, no tumor remission was observed. Here we demonstrate that low micromolar concentrations of extracellular NAD+ or NAD+ precursors, nicotinamide mononucleotide (NMN) and NR, can reverse the FK866-induced cell death, this representing a plausible explanation for the failure of NAMPT inhibition as an anti-cancer therapy. NMN is a substrate of both ectoenzymes CD38 and CD73, with generation of NAM and NR, respectively. In this study, we investigated the roles of CD38 and CD73 in providing ectocellular NAD+ precursors for NAD+ biosynthesis and in modulating cell susceptibility to FK866. By specifically silencing or overexpressing CD38 and CD73, we demonstrated that endogenous CD73 enables, whereas CD38 impairs, the conversion of extracellular NMN to NR as a precursor for intracellular NAD+ biosynthesis in human cells. Moreover, cell viability in FK866-treated cells supplemented with extracellular NMN was strongly reduced in tumor cells, upon pharmacological inhibition or specific down-regulation of CD73. Thus, our study suggests that genetic or pharmacologic interventions interfering with CD73 activity may prove useful to increase cancer cell sensitivity to NAMPT inhibitors.  相似文献   

19.
The poly-ADP-ribosylation (PARsylation) activity of tankyrase (TNKS) regulates diverse physiological processes including energy metabolism and wnt/β-catenin signaling. This TNKS activity uses NAD+ as a co-substrate to post-translationally modify various acceptor proteins including TNKS itself. PARsylation by TNKS often tags the acceptors for ubiquitination and proteasomal degradation. Whether this TNKS activity is regulated by physiological changes in NAD+ levels or, more broadly, in cellular energy charge has not been investigated. Because the NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT) in vitro is robustly potentiated by ATP, we hypothesized that nutritional energy might stimulate cellular NAMPT to produce NAD+ and thereby augment TNKS catalysis. Using insulin-secreting cells as a model, we showed that glucose indeed stimulates the autoPARsylation of TNKS and consequently its turnover by the ubiquitin-proteasomal system. This glucose effect on TNKS is mediated primarily by NAD+ since it is mirrored by the NAD+ precursor nicotinamide mononucleotide (NMN), and is blunted by the NAMPT inhibitor FK866. The TNKS-destabilizing effect of glucose is shared by other metabolic fuels including pyruvate and amino acids. NAD+ flux analysis showed that glucose and nutrients, by increasing ATP, stimulate NAMPT-mediated NAD+ production to expand NAD+ stores. Collectively our data uncover a metabolic pathway whereby nutritional energy augments NAD+ production to drive the PARsylating activity of TNKS, leading to autoPARsylation-dependent degradation of the TNKS protein. The modulation of TNKS catalytic activity and protein abundance by cellular energy charge could potentially impose a nutritional control on the many processes that TNKS regulates through PARsylation. More broadly, the stimulation of NAD+ production by ATP suggests that nutritional energy may enhance the functions of other NAD+-driven enzymes including sirtuins.  相似文献   

20.
A malic enzyme from a cell-free extract of Pseudomonas diminuta IFO-13182 was purified to electrophoretic homogeneity by DEAE-Sepharose, Sephacryl, and Blue-Sepharose chromatographies. The purified enzyme required either NAD+ or NADP+ as a coenzyme. From the results of coenzyme specificity, the enzyme should be classified as l-malate: NAD+ oxidoreductase (decarboxylating) [EC 1.1.1.39]. The purified enzyme was most active at pH 7.5 and 50°C and was stable in the pH range from 7.0 to 9.0. The isoelectric point was pH 4.3. Its molecular weight was 680,000 by COSMOSIL 5-Diol high performance liquid gel filtration on chromatography and 65,000 by SDS polyacrylamide gel electrophoresis. This indicates that the enzyme consisted of 10 subunits. The malic enzyme activity with NADP+ was about twice that measured with NAD+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号